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Abstract: The presence of water strongly affects rock properties and would be related to a series of
geological disasters. To understand water saturation effects on the mechanical behavior of different
rock types and interpret the underlying mechanisms of differences in water sensitivity, three kinds of
rocks, namely sandstone, granite and marble, were selected for tests. Uniaxial compression experiments
were conducted on specimens under oven-dried and water-saturated conditions. Acoustic emission
(AE) techniques were also applied to monitor and record AE signals during tests. Experimental
results reveal that water weakens the mechanical parameters of the three tested rocks, such as uniaxial
compressive strength (UCS), elastic modulus and critical strain. The sandstone undergoes the greatest
weakening with the addition of pore water, the mechanical properties of the granite exhibit relatively
minor reductions, while the marble is the least affected by water saturation. The water-weakening
degree of rock properties depends on the porosity as well as the mineralogy, especially the proportion
of quartz and swelling clays. Moreover, after water saturation, the failure pattern of the sandstone
and the granite tends to transform into the shear-dominant mode from the tensile one in dry state,
probably due to frictional reduction. However, the water presence does not change the failure mode
of the marble.

Keywords: water weakening; failure type; mineral composition; quartz hydrolysis; pore pressure;
frictional reduction

1. Introduction

The presence of water can markedly alter the mechanical behavior of rock materials [1–7], which
are responsible for a variety of geological disasters such as landslides [8], goaf collapse [9,10] and
fault activation [11–13]. In many engineering applications such as tunnels, mines, basements and
radioactive waste storage, rocks are commonly subjected to water erosion resulting from construction
beneath the groundwater table. The properties of constructional materials under such conditions are
expected to be significantly different from those in a dry state. Therefore, it is crucial to investigate
the water saturation effects on the mechanical behavior of rocks for the design and construction of
underground rock engineering.

Massive efforts have been made to explore the water-induced changes in rock properties [1–6,14–28].
Among them, the effects of water on the uniaxial compressive behavior, such as the uniaxial compressive
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strength (UCS) and elastic modulus, are more commonly studied than other mechanical parameters
due to their most direct, practical relevance to rock engineering applications [7]. Over several decades,
uniaxial compression tests have been conducted on a large variety of rock types under different moisture
conditions, involving igneous rocks [25,26], sedimentary rocks [1,3,4,14–16,27,28] and metamorphic
rocks [2,29,30]. For instance, Dyke and Dobereiner [15] in 1991 reported that an increase in water
content tends to reduce rock strength. They suggested that the interaction between water and silicate
minerals converts strong silicon–oxygen bonds to weaker hydrogen bonds, decreasing the strength of
quartz-rich sandstones. Similarly, Hadizadeh and Law [27] investigated the water-weakening effects
on the UCS and stiffness of the Pennant sandstone and the Oughtibridge ganister. They speculated
that the intrinsic microfabric of rock (e.g., porosity, geometry of grain boundary and grain–matrix
relationships) significantly affects the water sensitivity of rock strength. Hawkins and McConnell [1]
further investigated the sensitivity of strength and deformability of 35 British sandstone types to
variable water content. They observed that the UCS of sandstones follows a negative exponential
relationship with water content. They also found that the degree of sensitivity to water content
is primarily controlled by the mineral composition, particularly the abundance of quartz and clay
minerals, and to a lesser extent by the rock fabric. Erguler and Ulusay [2] showed that the UCS and
elastic modulus of clay-bearing rocks can decrease up to 90% and 93%, respectively, with the increasing
water content. They also established empirical models to estimate the water sensitivity of clay-bearing
rocks using coefficients relevant to physical properties of the rocks such as porosity, dry unit weight
and water absorption. Jiang et al. [16] discovered that the UCS of mudstone decreases to only 5 MPa
after immersed in water for one month, from 45 MPa under a dry condition. Additionally, they
employed X-ray diffraction and scanning electron microscopy to examine the real-time mudstone–water
interaction. They concluded that water-induced deterioration processes for mudstone can be divided
into three stages: water firstly invades into the rock specimen from initial defects; then water gives rise
to the dissolution of carbonate cement and the volumetric swelling of clay minerals by physical and
chemical reactions; finally, these effects facilitate the propagation and interconnection of microcracks
within rocks.

It is universally acknowledged that the presence of water weakens the strength and stiffness of
rock materials under quasi-static compression. To further reveal the loss degree of UCS induced by
water saturation, the test data on the UCS of rocks in dry and saturated states were compiled and
analyzed from hundreds of studies according to the calculating method proposed by Wong et al. [7].
The percentage distribution of UCS reduction for different rock types is shown in Figure 1. Evidently,
the water-weakening extent on rock strength is highly dependent on the rock type, and likely reflects
the great differences in lithology and texture. The UCS losses in the vast majority of rocks fall in the
range from 0% to 60%. Compared to metamorphic and igneous rocks, sedimentary rocks generally
suffer greater reductions in UCS. However, rock strength is susceptible to the test conditions [7,24,31,32]
such as strain rate, loading apparatus and ambient temperature. Test conditions are usually different
between experiments. This results in the low degree of comparability of tested data. Hence, there is a
need to research the UCS sensitivities to water of varied rock types under the same test conditions.

To date, many mechanisms have been proposed to explain the water-induced strength reduction,
such as fracture energy reduction [6,33,34], chemical and physical deterioration [35–38], pore pressure
increase [39,40], capillary tension decrease [41] and frictional reduction [42–46]. Several mechanisms
may act concurrently to control the deformation of wet rocks. However, none of these mechanisms can
be uniquely determined for the great variety of rock types, but one or some are likely more significant
than others for certain rock types and test conditions [7,42,47].
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Figure 1. Percentage distribution of uniaxial compressive strength (UCS) reduction induced by water
saturation for different rock types (red numbers denote the total percentage falling under a specific
range of UCS reduction for various rock types).

In this paper, to explore the water effects on the mechanical behavior of various rocks, three types
of rock, namely sandstone, granite and marble, were selected as test materials. Uniaxial compression
tests were performed on three rock types under dry and saturated conditions. Mechanical parameters
such as UCS, elastic modulus and critical strain were obtained and then compared. The damage
evolution within rocks during deformation was monitored by the acoustic emission (AE) technique.
The different UCS sensitivities to water of different rock types were explained in terms of the differences
in the minerology and texture.

2. Test Material and Method

2.1. Material Characterization

Three rock types commonly encountered in rock engineering applications were chosen for
experiments, i.e., one igneous rock (granite), one sedimentary rock (sandstone) and one metamorphic
rock (marble). The sampling locations for the three rocks are shown in Figure 2. We conducted X-ray
diffraction (XRD) and thin section analysis to obtain the accurate petrologic compositions of the tested
materials. Table 1 shows the constituent mineralogical components and their proportions.

The sandstone was collected from Chuxiong, Yunnan province, China. It consisted of 57.20%
quartz, 13.48% feldspar, 5.26% calcite, 3.84% mica and 13.77% clay minerals (9.72% of the sample being
smectite and 4.05% being chlorite). The main cement was calcite. The granite was collected from
Yueyang, Hunan province, China. It comprises 38.77% feldspar, 32.82% quartz, 22.85% muscovite and
5.56% chlorite. The marble was collected from Hengyang, Hunan province, China. Within the marble,
dolomite (96.98%) grains are dominant, in which a little calcite (3.02%) is dispersedly embedded.
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Figure 2. Sampling locations of the tested rocks and optical polarized micrographs for each rock.

Table 1. Percentage and grain size of mineralogical compositions for three rock types.

Rock Type Mineral Composition Percentage a/% Grain Size b/mm Average Grain Size/mm

Sandstone

Quartz 57.20 0.02–0.25

0.055

Feldspar 13.48 0.05–0.24
Calcite 5.26 0.01–0.15
Mica 3.84 0.04–0.14

Smectite 9.72 0.01–0.03
Chlorite 4.05 0.01–0.05

Granite

Feldspar 38.77 0.1–2.5

1.970Quartz 32.82 0.2–2.2
Muscovite 22.85 0.05–2.2

Chlorite 5.56 0.01–0.2

Marble Dolomite 96.98 0.1–0.6 0.083Calcite 3.02 0.1–0.4
a The percentage of mineral compositions was determined by X-ray diffraction technique. b The grain size was
measured by optical micrographs.

Mean grain sizes were measured using optical polarized micrographs of thin sections. The test
results exhibit mean grain sizes of 0.055, 1.970 and 0.083 mm for the sandstone, the granite and the
marble, respectively. Nuclear magnetic resonance (NMR) tests were also carried out to determine rock
porosities. The porosities of the sandstone, the granite and the marble were 8.50%, 1.07% and 0.63%,
respectively. More essential physical parameters are listed in Table 2.
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Table 2. Some essential physical and mechanical parameters of tested rocks.

Rock Type State
φ ρ Aw ts

a Cp κ K

/% /kg·m−3 /% /h /m·s−1 /nm2 /GPa

Sandstone
Dry

8.50
2368.5 0.00

48
3094.0

3.76 × 102 4.70
Sat. 2453.5 2.29 3614.5 N.A.

Granite
Dry

1.07
2620.3 0.00

168
4333.4

0.23
12.24

Sat. 2625.8 0.52 5105.6 N.A.

Marble
Dry

0.63
2821.2 0.00

168
5241.5

1.72 × 10−2 14.91
Sat. 2824.6 0.13 6498.9 N.A.

Note: ρ, density; φ, porosity; Aw, water absorption; ts, time required for saturation via water immersion; Cp, primary
wave velocity; κ, permeability; K, bulk modulus; N.A., not available. a The time for water saturation was determined
by monitoring the weight variation of the rock [4,48]. The specimen was considered to reach a fully saturated state
once its weight did not increase with time.

2.2. Specimen Preparation

Specimens were obtained from small-scale slabs of each rock type without visible geological
weakness (e.g., fractures and lamination) [49]. Rectangular prisms with the dimensions of
50 × 50 × 100 mm3 were first sliced. The end surfaces of each specimen were then polished
perpendicular to the long axis. To minimize the variation of physical properties across the specimen
set, P-wave measurements were conducted after specimen preparation. Specimens with similar wave
velocities were chosen for further analysis.

For each rock type, a total of ten specimens were selected for tests. Half of them were designed
to be tested under dry conditions and the remaining specimens were tested under water-saturated
conditions. Firstly, all specimens were stored in an oven at the constant temperature of 105 ◦C more
than 48 h to assure complete dryness. Afterwards, half of them were submerged in water for at least
the time required for full saturation as shown in Table 2. To avoid the moisture exchange between
rock specimen and environment, the dry specimens were wrapped by plastic film and the saturated
specimens were placed in a water tank before experiments.

2.3. Experimental Techniques and Test Condition

Uniaxial compression tests were conducted on an electric servo-hydraulic material testing machine
(INSTRON 1346) installed at the Advanced Research Center in Central South University. A load cell
and a linear variable differential transformer were applied to monitor and record the axial force and
displacement, respectively, on the specimen at 100 Hz logging frequency. Silicon grease lubricant was
elaborately smeared on the platens and the top and bottom surfaces of specimens to reduce the end
friction on the specimen–platen interfaces.

An acoustic emission (AE) system manufactured by Physical Acoustic Corporation was used
for the acquisition and analysis of the microcrack evolution within the specimen during the loading
process. A pair of AE sensors (Nano 30) mounted on the specimen surfaces and pre-amplifiers were
adopted to monitor the AE events from the specimens. The threshold value of 45 dB was set to avoid
the disturbance of outside noises, i.e., a signal is identified as an AE event and acquired only when
its amplitude exceeds 45 dB. Otherwise, it will be eliminated. In each test, the INSTRON and the AE
system were manually triggered synchronously.

To minimize the data discreteness, all specimens were tested under the same conditions.
The constant strain rate of 4 × 10−5 s−1 was designed for testing all specimens. The axial displacement
rate was thus controlled at 0.24 mm·min−1 until specimen failure. Moreover, by means of the air
conditioner, the temperature in the laboratory was kept at 25 ◦C and the humidity was maintained
at 60%.
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3. Test Results

This section presents the analysis of the test results of different rock types in oven-dried and
water-saturated states under two sub-sections: (1) mechanical behavior and (2) AE characteristics.

3.1. Effect of Water on Mechanical Behavior

3.1.1. Stress–Strain Response of Dry and Saturated Rocks

Figure 3 depicts typical stress–strain curves for different rock types tested under dry and saturated
conditions. The peak stresses of the sandstone and granite significantly decreased after water saturation.
However, the water-weakening effect on the peak stress of the marble was not obvious. After peak stress,
all specimens exhibited catastrophic stress drop. Obviously, the declining slopes of dry specimens are
greater than that of saturated ones, indicating that water made the rocks more ductile.
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3.1.2. Water-Weakening Effect on Mechanical Behavior

Table 3 lists the average value of the mechanical properties (i.e., UCS, elastic modulus and critical
strain) obtained from the stress–strain relationships. The UCS is the maximum stress exerted on
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specimens, the elastic modulus is the slope of linear portion in the curves, and the critical strain is the
strain of specimen at the peak stress. It can be clearly seen that the mechanical parameters of the three
rock types decreased under water saturation conditions.

Table 3. Average values of tested data.

Rock Type State tf σc E εc Nc

/s /MPa /GPa /%� /103

Sandstone Dry 253.0 71.91 7.05 10.21 18.0
Sat. 225.9 50.48 5.52 9.16 3.7

Granite Dry 216.6 123.82 15.18 8.46 985.7
Sat. 204.8 119.39 14.34 8.32 184.5

Marble Dry 174.0 119.48 16.82 7.12 8.1
Sat. 176.5 118.77 16.78 7.08 5.9

tf, time-to-failure; σc, uniaxial compressive strength; E, elastic modulus; εc, critical strain; Nc, cumulative ring counts.

Figure 4a illustrates that the uniaxial compressive strengths (UCSs) of all three types of rocks
were reduced by water. Among the three tested rock types, the sandstone specimen underwent the
largest drop in UCS due to water saturation. The average UCS of the dry sandstone specimen was
71.91 MPa. After soaking, the average UCS of the sandstone specimen was reduced to 50.48 MPa.
For the granite, the average UCS of the saturated specimen decreased to 119.39 MPa from 123.82 MPa
in the dry state. There was a negligible UCS reduction for the marble, indicating that the strength of
the marble was not apparently affected by water. Apart from the reduction in the average UCS, the
standard deviation of the average UCS also decreased after water saturation. The average UCSs of dry
sandstone, granite and marble specimens possessed standard deviations of 0.27, 6.34 and 1.26 MPa,
respectively. The UCS standard deviations of saturated sandstone, granite and marble specimens were
0.16, 5.70 and 0.49 MPa, respectively. The tested UCS values were less scattered for saturated rocks
compared to dry ones.

Figure 4b displays the elastic modulus of dry and saturated rocks. The elastic modulus followed a
similar weakening trend as UCS. The elastic modulus of all three rock types also decreased after water
saturation. The reduction in the elastic modulus of the sandstone was considerable, and that of the
granite was relatively minor, while that of the marble was not apparent.

Figure 4c exhibits the water-induced variation of critical strain. Under saturated condition, the loss
in the critical strain was noteworthy for the sandstone compared to the relatively small reductions for
the granite and the marble.
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strength; (b) elastic modulus; and (c) critical strain.

3.2. Effect of Water on AE Characteristics

3.2.1. Cumulative and Evolution of Ring Counts

Ring counts and their cumulative value are the main indexes to characterize the damage evolution
within rock materials [50]. Figure 5 demonstrates the variations of axial stress, ring counts and
cumulative ring counts versus time. Obviously, the history of ring counts for all specimens showed
similar trends regardless of rock type and moisture condition. According to the occurrence of ring
counts and the slope of stress history, we can divide the loading process into four stages:

(1) Crack closure stage (stage I), where initial defects are closed, and the stress increases slowly.
In theory, very few or even no ring counts occur because of little energy release during this
stage [23,48,51].

(2) Elastic deformation stage (stage II), where the rock specimen deforms elastically. The stress
increases linearly accompanied by the slow and stable accumulation of ring counts. This implies
that microcracks initiate steadily.

(3) Unstable crack propagation stage (stage III), where ring counts exponentially burst with the
increasing stress due to the energy storage enough to trigger the eruption of microcracks.

(4) Post-peak stage (stage IV), where the stress drops suddenly with the majority of ring
counts occurrence.



Appl. Sci. 2019, 9, 4450 9 of 18
Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 19 

Sandstone 
Dry Sat. 

  
Granite 

Dry Sat. 

 
Marble 

Dry Sat. 

  
Figure 5. Variations of axial stress, ring counts and cumulative ring counts versus time for different 239 
rock types under dry and saturated conditions. 240 

Figure 6 shows the relationship between stress and ring counts, from which the effect of water 241 
on the cumulative ring counts under uniaxial compression is observed: 242 
(1) In crack closure stage, the ring counts of the dry sandstone were slightly less than that of the 243 

saturated one. On the contrary, for the granite and the marble, the number of ring counts in the 244 
saturated state was larger than that in dry state, indicating saturated specimens generate more 245 
microcracks during this stage. 246 

(2) The stress at the onset of ring counts outburst, i.e., the transition point between stages II and III 247 
is defined as the threshold of crack damage [52]. For all rock types, the crack damage stress 248 
decreased when the rock became water-saturated. As an example, the crack damage stress of 249 
the dry granite specimen was approximately 115.72 MPa (90.1% of UCS), which was 1.20 times 250 

Figure 5. Variations of axial stress, ring counts and cumulative ring counts versus time for different
rock types under dry and saturated conditions.

Figure 6 shows the relationship between stress and ring counts, from which the effect of water on
the cumulative ring counts under uniaxial compression is observed:

(1) In crack closure stage, the ring counts of the dry sandstone were slightly less than that of the
saturated one. On the contrary, for the granite and the marble, the number of ring counts in the
saturated state was larger than that in dry state, indicating saturated specimens generate more
microcracks during this stage.

(2) The stress at the onset of ring counts outburst, i.e., the transition point between stages II and
III is defined as the threshold of crack damage [52]. For all rock types, the crack damage stress
decreased when the rock became water-saturated. As an example, the crack damage stress of
the dry granite specimen was approximately 115.72 MPa (90.1% of UCS), which was 1.20 times
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greater than that of the saturated one (77.6% of UCS). This implies that the presence of water
lowered the threshold of elastic energy release.

(3) The cumulative ring counts of dry rocks were dramatically greater than that of saturated ones,
meaning that the rocks tested under dry conditions suffered more violent failures. This could
be due to the increasing storage of elastic energy before failure, which can be reflected by the
larger shaded area under the pre-peak portion of stress–strain curves. Another reason may be
due to the higher slope of the stress drop in post-peak stage (i.e., greater unloading rate) causing
a catastrophic fracture of the rock [53,54].
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3.2.2. Water Induced Variation in Microscale Crack Type

Ohtsu et al. [55] suggested a method to classify the crack type based on two AE parameters, namely
the rise-time-to-amplitude (RA) ratio and the average frequency (AF, defined as counts/duration time).
Generally, tensile cracks have higher AF and lower RA values while shear cracks possess lower AF
and higher RA values. In this study, this method was adopted to identify the failure pattern. Figure 7
depicts the distribution of probability density of AF–RA data. The areas in red indicate higher density
regions and the areas in blue represent lower density regions.

From Figure 7, we can clearly observe that for the dry sandstone, more AE signals are distributed
above the diagonal and the maximum density region below the diagonal, meaning that it failed in a
tensile-dominated mixed mode. However, for the saturated sandstone, the overwhelming majority
of cracks concentrate under the diagonal, which suggests that its failure was characterized by shear
fracture. This phenomenon indicates that the water presence transformed the sandstone failure
type into shear mode, which agrees with previous studies on gabbro [20] and coal [19]. The change
of the failure mode was possibly caused by the water-induced frictional reduction, which will be
discussed latter.

Similarly, for the saturated granite, the areas in dark red move to the part below the diagonal,
signifying that there were more shear microcracks after water saturation. However, under dry
and saturated conditions, the majority of cracks for the marble were located in the tensile region.
The presence of water seemed to not affect the failure mode of the marble.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 19 

Ohtsu et al. [55] suggested a method to classify the crack type based on two AE parameters, 268 
namely the rise-time-to-amplitude (RA) ratio and the average frequency (AF, defined as 269 
counts/duration time). Generally, tensile cracks have higher AF and lower RA values while shear 270 
cracks possess lower AF and higher RA values. In this study, this method was adopted to identify 271 
the failure pattern. Figure 7 depicts the distribution of probability density of AF–RA data. The areas 272 
in red indicate higher density regions and the areas in blue represent lower density regions. 273 

From Figure 7, we can clearly observe that for the dry sandstone, more AE signals are 274 
distributed above the diagonal and the maximum density region below the diagonal, meaning that 275 
it failed in a tensile-dominated mixed mode. However, for the saturated sandstone, the 276 
overwhelming majority of cracks concentrate under the diagonal, which suggests that its failure 277 
was characterized by shear fracture. This phenomenon indicates that the water presence 278 
transformed the sandstone failure type into shear mode, which agrees with previous studies on 279 
gabbro [20] and coal [19]. The change of the failure mode was possibly caused by the water-induced 280 
frictional reduction, which will be discussed latter. 281 

Similarly, for the saturated granite, the areas in dark red move to the part below the diagonal, 282 
signifying that there were more shear microcracks after water saturation. However, under dry and 283 
saturated conditions, the majority of cracks for the marble were located in the tensile region. The 284 
presence of water seemed to not affect the failure mode of the marble. 285 

Sandstone 
Dry Sat. 

  
Granite 

Dry Sat. 

  
Marble 

Dry Sat. 

  

Figure 7. Probability density of rise time-to-amplitude ratio–average frequency (RA–AF) data for dry
and saturated rocks.



Appl. Sci. 2019, 9, 4450 12 of 18

4. Discussion

In this section, the weakening effects of water on the mechanical behavior of different rock types
are interpreted from the following aspects.

4.1. Chemical and Physical Deterioration

When submerged in purified water, rocks will react with water chemically or physically in
three manners.

(1) The hydrolysis of quartz. In the case of silicate rocks under conditions of moisture, water as a
corrosive agent hydrolyzes the quartz minerals. The hydrolysis of Si–O–Si bond in quartz lowers
the activation barrier to subcritical crack growth as strong Si–O–Si bonds at crack tips are replaced
by weaker hydrogen bonds [35–38,48]:

(−Si−O− Si−) + (H −O−H)
 (−Si−OH −HO− Si−). (1)

At the same time, the increasing external stress inducing crack creation and propagation also
promotes the quartz hydrolysis. Theoretically, the higher content of quartz leads to the greater
UCS reduction due to water presence, as shown in Figure 8. Therefore, quartz hydrolysis plays
an important role in weakening the UCS of the sandstone and the granite, while it is absent
for the marble according to the mineral compositions of the three rock types listed in Table 1.
From Figure 8, it is worth noting that the UCS reduction of granite is apparently lower than the
predicted value, probably due to the hydrolysis of quartz being limited by its extremely low
porosity (lower permeability).

(2) The swelling of clay minerals. It is well-known that expandable clay minerals (e.g., smectite)
cause high swelling stresses after water absorption, further expanding existing microfractures
as well as creating new micro-fractures [28,56]. The increase of crack density decreases the rock
strength [57,58]. In this study, this effect only acts on the sandstone containing smectite.

(3) The dissolution of calcite. Calcite minerals are vulnerable to dissolution even in weak acidic
environment [20,56,59,60], as:

CaCO3 + CO2 + H2O→ 2HCO−3 + Ca2+. (2)

This will increase the porosity of rock and decrease the intergranular cohesion, which results in
the UCS reduction of the sandstone and the marble.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 19 
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4.2. The Increase of Pore Pressure

Pore-water pressure increases only when the test is performed under a drained condition [65],
in which the water is unable to migrate freely within the testing time duration and hence the pore-water
will be pressurized. The increase of pore pressure reduces the rock strength via two aspects: decreasing
the effective normal compressive stress [47] and inducing microcrack damage once the pore pressure
exceeds the tensile strength of rocks [40]. Whether the rock is tested in drained or un-drained condition
can be identified by the fluid diffusion characteristic time (td), which is determined in a porous saturated
material by the following equation [65,66]:

td =
dm

2

H
(3)

where dm is the minimum distance from the specimen center to a free surface and H is the hydraulic
diffusivity of this material. The hydraulic diffusivity is estimated by [67]:

H =
κBK
ηα

(4)

where κ is the permeability of the material; K is the bulk modulus of the porous material; η is the
viscosity of fluid; B and α are the Skempton’s and Biot’s coefficients, respectively. In this study, dm is
25 mm according to the specimen geometry. η for water is about 1 × 10−3 Pa·s. B and α are assumed
to be of the order of unity [64,65]. κ and K are listed in Table 3. Therefore, the characteristic times
for water diffusion of sandstone, granite and marble are 0.35, 222 and 2440 s, respectively, which are
approximated to the predicted values, as shown in Figure 9. Apparently, td for the granite and the
marble are higher than their failure times, in other words, the two rocks were tested under un-drained
condition. The increasing pore pressure will induce severe crack damage [40,68] and lower the UCS of
wet granite and marble specimens. In contrast, td for the sandstone is far below its average failure
time (226 s), which suggests that pore pressure is limited due to the discharge of pore water. This can
hereby interpret the phenomenon that the granite and the marble specimens in crack closure stage
(Figure 6) generate more microcracks when they become water-saturated while the ring counts of
saturated sandstone slightly decrease.Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 19 
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4.3. Frictional Reduction

The frictional coefficient at grain boundaries will be reduced under saturated condition. This effect
facilitates the initiation and slide of shear crack, further decreasing rock strength. Figure 10 shows the
reduction in the friction coefficients of minerals due to water saturation. We can clearly observe that
the percentage decreases are quite varied among different minerals. Generally, expandable minerals,
such as smectite and kaolinite, exhibit great loss of friction coefficients in water-saturated condition.
The reason may be that the surface of minerals attracts water molecules so as to form a thin water film
with weak frictional strength [43–45]. However, for other minerals, the reductions in friction coefficients
are relatively smaller. Particularly, the friction coefficients of quartz and feldspar even remain constant
after water saturation. According to mineral contents and the loss percentages of friction coefficients,
the effect of frictional reduction perhaps dominates the failure of saturated sandstone and granite but
does not work in the marble. The failure types of the rocks, as explained in Section 3.2.2, lend support
to this hypothesis.

Summarily, for the sandstone, the significant strength decrease is caused by the water-induced
coupled effects of quartz hydrolysis, clay mineral swelling, calcite dissolution and frictional reduction.
The quartz hydrolysis, pore pressure increase and friction reduction give rise to a moderate decrease in
the strength of the granite. The least UCS reduction of the saturated marble may be attributed to the
increase of pore pressure and the dissolution of calcite.Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 19 
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5. Conclusions

In order to investigate the water-weakening effects on mechanical behavior and reveal the
weakening mechanisms for different rock types, a series of uniaxial compression tests was carried out
on three kinds of rocks (i.e., sandstone, granite and marble) in oven-dried and water-saturated states.
Mechanical parameters, such as UCS, elastic modulus and critical strain, were obtained and compared.
AE technique was also used to monitor and record the evolution of ring counts during loading process.
The failure pattern was identified by the correlation between RA and AF values.

The UCS, elastic modulus and critical strain of rocks decrease after water saturation. The weakening
degree varies with rock type: the mechanical properties of the sandstone are the most susceptible to
water, followed by the granite and the marble.

In crack closure stage, the saturated sandstone specimen cumulates less ringing counts than the
dry one, while more ringing counts are generated in the saturated state for the granite and the marble.
This depends on which condition the specimen is tested in (drained or un-drained). The pore-water
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lowers the crack damage threshold of rocks. Additionally, in post-peak stage, the ringing counts of dry
specimens are much greater than those of saturated specimens.

According to the RA–AF relationship, the failure of the three rocks is dominated by tensile cracks
in a dry state. When tested under saturated conditions, more shear cracks occur in the sandstone and
the granite, probably due to the water-induced frictional reduction. However, water has no effect on
the failure pattern of the marble.

The coupled effects of quartz hydrolysis, clay mineral swelling, calcite dissolution and frictional
reduction are responsible for the notable strength drop of the sandstone. The mild strength decrease
of granite is mainly caused by the quartz hydrolysis, pore pressure increase and friction reduction.
The pore pressure and calcite dissolution only cause slight reduction in the UCS of the saturated marble.

Author Contributions: X.C. and Z.Z. conceived and designed the tests; X.C. and H.Z. proposed and participated
in the mechanical experiments and processed the data; X.D. conducted the XRD tests; X.C. wrote the paper; X.C.
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