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Featured Application: The application of the work is to optimize the material feeding of a printed
circuit board (PCB) template and therefore reduce the comprehensive cost caused by surplus and
supplemental feeding.

Abstract: Accurate prediction of material feeding before production for a printed circuit board (PCB)
template can reduce the comprehensive cost caused by surplus and supplemental feeding. In this study,
a novel hybrid approach combining fuzzy c-means (FCM), feature selection algorithm, and genetic
algorithm (GA) with back-propagation networks (BPN) was developed for the prediction of material
feeding of a PCB template. In the proposed FCM–GABPN, input templates were firstly clustered by
FCM, and seven feature selection mechanisms were utilized to select critical attributes related to scrap
rate for each category of templates before they are fed into the GABPN. Then, templates belonging to
different categories were trained with different GABPNs, in which the separately selected attributes
were taken as their inputs and the initial parameter for BPNs were optimized by GA. After training,
an ensemble predictor formed with all GABPNs can be taken to predict the scrap rate. Finally, another
BPN was adopted to conduct nonlinear aggregation of the outputs from the component BPNs and
determine the predicted feeding panel of the PCB template with a transformation. To validate the
effectiveness and superiority of the proposed approach, the experiment and comparison with other
approaches were conducted based on the actual records collected from a PCB template production
company. The results indicated that the prediction accuracy of the proposed approach was better
than those of the other methods. Besides, the proposed FCM–GABPN exhibited superiority to reduce
the surplus and/or supplemental feeding in most of the case in simulation, as compared to other
methods. Both contributed to the superiority of the proposed approach.

Keywords: printed circuit board (PCB); material feeding; fuzzy c-means; back-propagation networks;
genetic algorithm

1. Introduction

Printed circuit board (PCB) is found in practically all electrical and electronic equipment, being
the base of the electronics industry [1]. Due to the rapid development of computer, communication,
consumer electronics, 5G, and automotive electronics, as well as the update of their products, the
demand of PCB orders with specialized design features and manufacturing requirements, often referred
to as a PCB template in the factory, has increased rapidly. The mode of production for a PCB factory
with lots of template orders has changed from mass production to customer-oriented small-batch
production, and therefore causes companies to face serious challenges. Accurate prediction of material
feeding for each order is one of the critical problems.
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After the feeding area and production panel (production unit) of each template order is accurately
predicted, several goals (including the reduction of comprehensive cost caused overproduction or
supplemental feeding, alleviation of environment pollution, improvement of on-time delivery, etc.) can
be simultaneously achieved. However, it is difficult to determine the material feeding area of each PCB
template order in advance of the production by manual feeding. Many factories undergo the violent
fluctuation in both surplus and supplemental feeding by empirical manual feeding. Individualized
surplus templates can be placed only in inventory or directly disposed, while supplemental feeding
brings extra production costs and increases the probability of delivery tardiness compensation [2].
Furthermore, surplus products bring extra chemical and heavy metal pollution for production and
disposal. This motivates us to explore the pattern of historical records that facilitate more reasonable
and accurate prediction of material feeding for new template orders.

There are many applications of data mining (DM) or big data for quality improvement and
optimization of PCB production [3]. Lee et al. [4] developed a data mining (DM)-based approach
to predict the yield of a PCB, using the event sequence. Tsai [5] proposed a hybrid DM approach
for soldering quality classification by using self-organizing map (SOM) and K-means, based on the
statistical process control databases. DB-based PCB manufacturing process optimization has also
attracted many researches, such as the parameter optimization of hot solder dip [6], stencil printing
process [7,8], reflow soldering [9,10], fluid dispensing for microchip encapsulation [11], and wave
soldering [12,13] for a component surface mount on a PCB. These models always combined artificial
neural network (ANN), support vector machine (SVM), and multiple linear regression (MLR) for
quality prediction with GA for parameters optimization simultaneously [7,10,11]. Meanwhile, many
DM approaches like adaptive genetic algorithm (GA)-artificial neural network (ANN) [14], decision
tree (DT) [15] have been employed for the defect diagnosis of PCB. The DM and/or big data were
also widely adopted for smart production in different industries, not only for PCB manufacturing,
and many reviews of these applications were reported in recent two years [3,16,17]. However,
few of the aforementioned studies are on the prediction and optimization of material feeding in
PCB template orders. In addition, the reviewed studies seldom considered the situation of diverse
examples with different critical influence factors that require different prediction models to improve
the prediction accuracy.

Considering the abovementioned requirement of a PCB template, Lv et al. [2] developed a hybrid
model, multiple structural change (MSC)–ANN, to predict the feeding panel for each template, in
which the template samples were pre-classified based on the required panel by the multiple structural
change model. Then, the critical attributes for each category were selected based on neighborhood
component approach; finally, the ANN prediction models were established for each category. The
experimental results indicated that the attempt of the pre-classifying of inputs and establishing a
prediction model for each category can indeed improve the prediction accuracy of material feeding
for PCB template production. However, the MSC–ANN considered only one attribute to classify the
sample, and the attributes were selected for each category by only one feature selection approach.
Meanwhile, a template might be partitioned into multiple categories with different degrees, while the
pre-partition based on MSC is a hard clarification. Therefore, it seems to be insufficient to predict the
production-feeding panel of each template by using a prediction approach suited to a single category.
Besides, MSC–ANN cannot handle a template order belonging to the border of two adjacent categories,
because neither of the prediction models for the two categories is suitable for the template. Furthermore,
the initialization parameter optimization of ANN benefits accuracy improvement [11,18,19] but was
not considered.

For tackling the aforementioned difficult problems, a fuzzy c-means (FCM) classifier was adopted
to handle the fuzzy classification and back-propagation network (BPN) ensemble with an aggregator
BPN was employed to tackle the prediction by considering the membership degree of each template. The
linear correlation (LC) [20], maximum information coefficient (MIC) [21], recursive feature elimination
(RFE) [22], LR [23], lasso regression [24], ridge regression [25], and random forest regression (RFR) [26]
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seven feature selection approaches were taken to select the critical attributes of each category divided
by FCM. The GA was used to optimize the initialization parameters of BPN for each category. The
reason for employing an FCM is that it accounts for the flexible classification (a template might be
clustered into multiple categories with different membership degrees) and was widely used in many
fields [27–29]. The reason for applying GA is that GA is easy to encode the problem and achieve good
optimization results. It was also widely employed to optimize the structure (the number of layers and
nodes in each hidden layer) and/or initial weight and bias [18,19,30] for the purpose of improving the
prediction effectiveness of BPN. An aggregator BPN was adopted to conduct nonlinear aggregation
because, theoretically, a BPN can approximate any nonlinear relationship [31].

In the proposed FCM–GABPN approach, input samples were first clustered with FCM, and seven
feature selection methods were utilized to select critical attributes related to scrap rate for each category
(a cluster is taken as a category) of PCB templates before they were fed into the BPN. Then, samples
belonging to different categories were trained with different BPNs, in which the separately selected
attributes were taken as their inputs and the initial parameters were optimized with GA. After training,
an ensemble predictor formed with all GABPNs was taken to predict the scrap rate. Finally, another
BPN was adopted to conduct nonlinear aggregation of the outputs from the component BPNs and
determine the predicted feeding panel of the PCB template with a transformation. The proposed
FCM–GABPN approach is illustrated in Figure 1.
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Figure 1. The architecture of the proposed fuzzy c-means–genetic algorithm with back-propagation
networks (FCM–GABPN).

The remainder of the paper is organized as follows. In Section 2, variables specification and
sample collection are described. The FCM, feature selection methods, GABPN, and the nonlinear
aggregation BPN are introduced in Section 3, followed by experimental results and discussion in
Section 4. Lastly, conclusions are given in Section 5.

2. Variables and Sample

The data used in this study were collected from Guangzhou FastPrint Technology Co., Ltd.
A total of 56 variables inherited from an enterprise resource planning system combined with
the derived variables were selected and specified in Table 1, in which variables 1 to 35 are the
product/process attributes, while 36 to 56 are the statistic variables. The delivery unit in a panel,
required quantity/panel/area, and delivery unit area, with No. 36, 38, 39, 47, and 46, respectively, can
not only be taken as statistic items, but also attribute candidates for prediction model establishment.
Set and unit are two types of delivery unit, whereas panel as a production unit will be partitioned
into either set or unit according to the customer’s requirement before delivery. If the number of final
qualified set/unit (feeding set/unit minus the scrap set/unit) is larger than the demand number, it brings
surplus sets/units; conversely, it causes supplemental feeding.
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Table 1. Variables specification.

No. Variable Name Symbol Description Value Range

Overall characteristics

1 PCB thickness (mil) Pt Thickness of the ordered PCB 0.3–8

2 Layer number Ln Number of copper layer. 4–20

3 Rogers material Ro Whether substrate material is Rogers. 0/1

4 Plating frequency Plfr Number of plating operation. 0–4

5 Number of operations Noo Number of operations to produce
the order. 16–71

6 Number of Prepreg NPP Number of Prepreg for lamination 1–50

7 Scrap units in a set Sus Allowed maximum scrap units in a set. 0–8

8 Photoelectric board Photb
Whether the order is the specified board.

0/1

9 High frequency board Highfb

10 Test board Semictb

11 Negative film plating Nflp Whether the order takes negative film
plating.

12 Tinning copper Tinc Whether the order has tinning copper.

13 IPCIII standard IPCIII Whether the order takes IPCIII or Huawei
standard.14 Huawei standard Huawei

Feature of internal/outer layer line

15 Minimum line width in internal
layer (mil) Mwil Minimum line width or space in core

boards
3–100

16 Minimum line space in internal
layer(mil) Mlsil 1–137.66

17 Minimum line width in outer
layer(mil) Mwol Minimum line width or space in outer

layer
1–157.5

18 Minimum line space in outer
layer (mil) Mlsol 1.2–290

19 Average residual rate Arcr Average residual rate of copper layer 0.15%–94.75%

Feature and operation information of hole

20 Solder resist plug hole Srph
Whether the order has the specified hole

related operation. 0/121 Plug hole with resin Phwr

22 Second drilling Secd

23 Back drilling Bcdr

Operation information of character/solder mask

24 Character print Chaprt
Whether the order has the specified

character/solder mask related operation. 0/125 White oil solder mask White

26 Blue oil solder mask Blue

27 Black oil solder mask Black

Surface finishing operation options

28 Hot-air solder leveling Hasl

Whether the order takes the specified
surface finishing operation. 0/1

29 Lead-free hot air solder leveling Lfhasl

30 Entek Osp

31 Cu/Ni/Au pattern plating Cnapp

32 Gold finger plating Gfig

33 Gold plating Godp

34 Soft Ni/Au plating Snap

35 Immersion Ag/Sn/Au Iasa
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Table 1. Cont.

No. Variable Name Symbol Description Value Range

Statistic items

36 Delivery unit in a panel Duap Number of delivery unit in a panel 1–262

37 Supplemental feeding frequency Supff Material feeding frequency minus 1 0–14

38 Required quantity Reqq
Demand quantity of delivery unit minus
delivery unit in inventory for the same

order No.
1–3000

39 Required panel Reqp Reqq/Duap rounded up to the nearest
integer 1–225

40 Feeding quantity Fedq Feeding number of delivery unit 2–6296

41 Least feeding panel Lfp Reqq/(1-scrap rate) rounded up to the
nearest integer 1–245

42 Feeding panel Fedp Number of feeding panel 1–308

43 Scrap quantity Scraq Scrap number of delivery unit 0–712

44 Qualified quantity Qualq Qualified number of delivery unit 1–6226

45 Surplus quantity Surpq Qualq–Fedq 0–3226

46 Delivery unit area(m2) Dunita Area of a delivery unit 0.001–0.393

47 Required area(m2) Reqa Reqq × Dunita 0.001–25.74

48 Feeding area(m2) Feda Fedq × Dunita 0.011–42.63

49 Scrap area(m2) Scraa Scraq × Dunita 0–15.39

50 Qualified area(m2) Quala Qualq × Dunita 0.009–37.49

51 Surplus area(m2) Surpa Surpq × Dunita 0–25.45

52 Supplemental feeding rate Supfr Supff in a certain period/number of orders
× 100% 18.83%

53 Scrap rate Scrar Scraa/Feda × 100% 0%–68.48%

54 Qualified rate Qualr Quala/Feda × 100% 31.52%–100%

55 Surplus rate Surpr Surpa/Reqa × 100% 0%–554.22%

56 Historical qualified rate Hquar The Qualr for the same order No. in the
past 2 years 8.824%–100%

Note: New orders having no Hquar are replaced by the Qualr for orders having the same layer number and
surface-finishing operation during the past 2 years.

On this basis, 30,117 samples of the orders were collected, multivariate boxplots [2] were conducted
to detect the outliers, and, finally, 29,157 samples were left for this study. Performances of the proposed
FCM–GABPN are compared to the other five approaches based on the same samples. Value range in
the last column of Table 1 is the statistic result of the 29,157 samples, and variables 40 to 56 are the
statistic results of the manual feeding adopted by FastPrint.

3. Methodology

The procedure of the proposed approach (FCM–GABPN) is shown in Figure 2, and various aspects
of FCM–GABPN are discussed in the following subsections.
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Figure 2. Procedure of the proposed FCM–GABPN.

3.1. Data Preparation and Template Classification with FCM

Data preparation is to collect the historical data of PCB templates for this study based on the
variables given in Table 1. Then, 0–1 normalization was conducted for each variable for the purpose
of reducing the influence of value-range difference. On this basis, the input attributes for FCM were
selected based on the experience of experts from PCB workshops. The 17 attributes marked with
boldface type in Table 1 were selected, in which the attributes of Ln and Noo represent the overall
characteristics of the template; the Mwil, Mlsil, Mwol, and Mlsol are the design requirements of the
hole and line; and the Reqq, Reqp, and Reqa are the production scale of each template order. Others are
surface-finishing operation options.

Samples of templates were pre-classified into K categories with the selected 17 attributes by
FCM before they were fed into the BPN. One recent example of FCM application is Tang et al. [27],
in which FCM combining with adaptive neural network was applied to predict the lane changes by
considering different simulation scenarios, and the results showed that the prediction performance
and stability was considerably improved when compared with ANN, SVM, and MLR. Besides, Rezaee
et al. [28] incorporated a dynamic FCM in ANN for the online prediction of companies in the stock
exchange. According to experimental results, Rezaee et al.’s algorithm was efficient at clustering
samples. In addition, Fathabadi [29] applied dynamic FCM clustering based ANN approach to
reconfigure power-distribution networks. Experimental results indicated that Fathabadi’s approach
has some benefits, such as a short process time, a very simple structure, and higher accuracy compared
to the others.
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FCM performs clustering by minimizing
C∑

c=1

n∑
i=1

µm
i(c)e

2
i(c), where C is the required number of

clusters; n is the number of samples; µi(c) represents the membership of sample i belonging to cluster

c; ei(c) measures the distance from samples i to the centroid of c; m ∈ (1,∞) is the hyper-parameter
that controls how fuzzy the cluster will be. The procedure of applying FCM to cluster samples is as
follows [31]:

(1) The cluster membership value, ui j (the coefficient giving the degree of xi being in the jth cluster),
are initialized randomly and establish an initial clustering result.

(2) (Iterations) obtain the centers of each cluster as x(c) =
{
x(c) j

}
, x(c) j =

n∑
i=1

um
i(c)xi j/

n∑
i=1

um
i(c), 1 ≤ j ≤ 17,

ui(c) = 1/
C∑

i=1
(ei(c)/e2

i(c))
2/(m−1), ei(c) =

√ ∑
all j

(xi j − x(c) j)
2, where xi j is the jth variable of the

selected 17 attributes of sample i, andx(c) is the centroid of cluster c.

(3) Re-measure the distance of each PCB template to the centroid of every cluster, and then recalculate
the corresponding membership value.

(4) Stop if the number of iterations is larger than a set value. Otherwise, return to Step (2).

After clustering, samples of different categories (clusters) are then trained with different BPNs.
First, a membership threshold value µL for selecting samples in network learning has to be determined.
Only samples with µi(c) ≥ µL will be taken in training the BPN to obtain the weights and bias geared to

the cth category. As a result, a sample might be selected by multiple categories.

3.2. Attributes Selection for Each BPN Prediction Model

It is necessary to remove irrelevant and redundant attributes to reduce the complexity of analysis
and the generated models, and also improve the efficiency of the whole modelling processes [2,32].
In this study, LC [20], MIC [21], RFE [22], LR [23], lasso regression [24], ridge regression [23], and
RFR [24] seven feature selection approaches were employed to select critical attributes related to the
scrap rate for each category of samples. The scarp rate can be taken as the dependent variable, and
the independent variables are the attributes with No. 1–36, 38, 39, 46, and 47, given in Table 1. The
score of independent variables obtained by each feature selection method were calculated and whose
average score is greater than a certain threshold (e.g., 0.15) were taken as the input attribute of the
prediction model.

The LC uses the linear correlation coefficient lcc(x, y) = cov(x, y)/
√

var(x)var(y) to measure the
relationship between the (independent) variable x and variable y, where var is the variance of a variable
and cov(x, y) denotes the covariance between x and y (namely scrap rate here) [20]. MIC is based on
the idea that if a relationship exists between two variables, then a grid can be drawn on the scatterplot
of the two variables that partition the data to encapsulate the relationship. To calculate the MIC of a set
of two-variable data, all grids up to a maximal grid resolution are explored by computing for every
pair of integers (x, y) the largest possible mutual information achievable by any x-by-y grid applied
to the data. Then these mutual information (MI) values are normalized to ensure a fair comparison
between grids of different dimensions and to obtain modified values between 0 and 1. Finally, the
highest normalized MI achieved by any x-by-y grid as the value of MIC [21]. The main idea of RFE
is to train an estimator based on the initial set of variables and weights are assigned to each one of
them at first. Then, variables whose absolute weights are the smallest are pruned from the current set
of variables. That procedure is recursively repeated on the pruned set until the desired number of
variables to select is eventually reached [22].

The LR is to establish the regression equation of the dependent variable based on the independent
variables, in which the importance of independent variables will be determined according to F-test.
The smaller the value of F-test, the more important the variable is to the regression equation [21].
The lasso regression is a regularized LR by putting a L1 norm penalty on the regression coefficients.
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Lasso regression will drive more coefficients of weak correlated independent variables to zero, and
then facilitate the selection of variables with strong correlation [24]. The ridge regression is similar
to lasso regression by putting a L2 norm penalty on the regression to penalize the weak correlated
variables for the regression model establishment [25]. RFR is an ensemble of unpruned classification
or regression trees, in which each branch of the trees will calculate the importance of each unused
attribute in previous steps and then facilitate important-attribute selection simultaneously [26]. The
above seven approaches were realized by the encapsulated functions in the machine learning library
“sklearn” in this study.

3.3. GABPN-Based Scrap Rate Prediction for Each Category

The configuration of the BPN is established as follows:

(1) Input: the 0–1 normalized data of the selected attributes for each category.
(2) Architecture: Single hidden layer (number of nodes in the input layer + number of nodes in the

output layer)/2 is one of the commonly used ways to determine the suitable number of neurons
in the hidden layer. Therefore, the number of nodes in hidden layer is depended on the number
of selected attributes in this study. In order to achieve better prediction accuracy (a large number
of the hidden-layer nodes are theoretically conducive to improve the predicting accuracy) and to
keep the consistency, the number of neurons in the hidden layer of each BPN was set to 12 for
each category in the proposed approach, considering the number of selected attributes (up to
23 selected attributes for the samples that will be discussed in Section 4).

(3) Output: normalized scrap rate forecast of the template.
(4) Learning rule: Delta rule (the adjustment of weight and bias is proportional to the negative

gradient of the error during the backward-propagation procedure).
(5) Propagation function: sigmoid activation function, f (x j) = 1/(1 + e−x j).
(6) Learning rate: 0.05.
(7) Number of iterations: 25,000.

The performance of a BPN is sensitive to the initial condition. Therefore, the optimization of the
initial weights and biases of BPN with GA was conducted. The design and configuration of GA is
as follows:

(1) Encoding and decoding: The individual chromosome in the population was encoded as
[W1, Φ1, W2, Φ2] in which W1 = [w1,1, w1,2, .., w1,12, w2,1, w2,2, .., w2,12, wi,1, wi,2, .., .., wi,12] (selected
i attributes as input and the number of neurons in the hidden layer is 12) represents the weights
between nodes in input layer and hidden layer; W1 = [w1,1, w2,1, ..., w12,1] represents the weights
between the nodes in hidden layer and output layer; Φ1 = [θ1,θ2, ...,θ12] is the bias vector
of nodes in the hidden layer; and Φ2 is the bias of output node. The decoding is to assign
corresponding weights and bias to each node based on the BPN structure, and then conduct the
forward propagation to compute the output of each BPN.

(2) Population initialization: Each individual chromosome in the population was initialized randomly
with its elements between −3 and 3, based on the encoding principle.

(3) Fitness evaluation: The sum of absolute error between reversely normalized scrap rate forecast ôk
and actual scrap rate ok was taken as the fitness F =

∑
|ôk − ok| for each individual. The smaller the

fitness is, the more accurate prediction result it can obtain. Thereafter, the minimization objective
function, which the problem seeks to optimize, is the same as the fitness function.

(4) Reproduction, crossover and mutation operation:

Reproduction: The roulette wheel selection was taken to select individuals for reproduction in
which the fittest individuals have a greater chance of survival than weaker ones. The probability of
each individual being selected is pi = (1/Fi)/

∑N
j=1 (1/F j), where Fi is the fitness of the ith individual

and N is the number of individuals.
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Crossover: Two empty offspring chromosomes, O1 and O2, were initialized first, and two
chromosomes, P1 and P2, were randomly selected from the reproduced population. The crossover
location was randomly selected, and then the offspring O1 consisted of the genes of P1 before the
crossover location and genes of P2 after the crossover location; while offspring O2 consisted of the
genes of P2 before the crossover location and genes of P1 after the crossover location.

Mutation: One-point mutation was utilized as the mutation operator. The chromosome in the
population was randomly selected, and one gene was chosen randomly from the selected chromosome.
Then, a random r with the value in (0, 1) was generated to mutate the value. If r > 0.5, then
a j = a j + (a j − amax) × r, otherwise a j = a j + (amin − a j) × r, where a j is value of the jth position in
the chromosome selected for mutation, and amax and amin are the maximum and minimum of the jth

position of all chromosomes in current generation, respectively.

(5) Number of iterations: 100.

After the templates were clustered, a portion of the templates in each category were taken as “training
samples” into the GABPN to determine the weights and bias values for the category. Three phases
were involved at the training stage. First, the initial weight and bias were optimized according the GA.
Second, the forward propagation is conducted, in which the inputs (selected attributes with bias) were
multiplied with weights (weights of bias are 1), summated, and transferred to the hidden layer. The
results of nodes in the hidden layer were further processed by sigmoid function and also transferred
to the output layer with the same procedure. Finally, the output of GABPN was compared with the
accurate scrap rate, and the accuracy of the GABPN, represented with mean squared error (MSE),
was evaluated.

Subsequently, the backward pass which propagates derivatives (error between prediction and the
actual value) from the output layer to hidden layers was conducted. The backward pass for a 3-layer
BPN starts by computing the partial derivative for the output node (only one node here), and the error
terms δ j of nodes j in the hidden layers can be calculated according to δ j = eW j f ′(x j), in which e is
error of the output node, W j is the weight connecting node j to the output node, and f ′(x j) is the
derivative of the sigmoid activation function with the input x j. On this basis, adjustments were made
to the connection weights and bias to reduce the MSE. Network-learning stops when the iteration is
greater than a given number in this study.

The trained GABPN was tested by the remaining portion of the templates in each category with
the same performance indicator, MSE. Finally, the GABPN was used to predict the scrap rate of new
templates that “completely” belonged to the clustered category. However, complete assignment of
template to only a category is usually impossible. When a new template order is coming, the selected
attributes associated with the new template are recorded, and the membership belonging to each
category is calculated. Then, an ensemble predictor formed with all GABPNs can be taken to predict
the scrap rate for the new template.

3.4. Nonlinear Aggregation with Another BPN and Transformation

For aggregating the predicted results from the component GABPNs into a single value representing
the predicted scrap rate of the template, another BPN was employed in this study to conduct nonlinear
aggregation, and the configuration is set as follows:

(1) Input: 2K parameters consisted of the predicted results of each component GABPNs for the
template and the membership values of the template belonging to each category.

(2) Architecture: Single hidden layer and the number of nodes in the hidden layer were set to the
same as that in the input layer, 2K.

(3) Output: normalized scrap rate forecast of the template.
(4) Learning rule: Delta rule.
(5) Propagation function: sigmoid activation function.
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(6) Learning rate: 0.05.
(7) Number of iterations: 10000.

The BPN also underwent training and testing. Then, the network output (i.e., the aggregation
result) determined the normalized scrap-rate prediction of the template. Finally, the transformation of
scrap rate to surplus rate and supplemental feeding rate were carried out. The reverse normalization
was conducted for the output of the aggregation BPN and taking it as the predicted scrap rate
(Scrar_Pd). Thereafter, the transformation for predicted feeding panel (Fedp_Pd) was conducted by
Fedq_Pd = 100×Reqq/(100− Scrar_Pd) and Fedp_Pd =

⌈
Fedq_Pd/Duap

⌉
, where Reqq is the required

quantity, Duap is the delivery unit in a panel, and Fedp_Pd is the predicted panel.

3.5. Performance Indicators

In order to evaluate the effectiveness of the model, the MSE, mean absolute error (MAE), and mean
absolute percentage error (MAPE) were adopted as the indicators to evaluate the performance of the
approaches, in which the predicted data ôi are the predicted least feeding panel and the original data oi

are the least feeding panel. The MSE, MAE, and MAPE can be described as MSE =
N∑

i=1
(ôi − oi)

2/N,

MAE =
N∑

i=1
|ôi − oi|/N, and MAPE = 1

N

N∑
i=1

∣∣∣∣ ôi−oi
oi

∣∣∣∣× 100, respectively, where N is the number of samples.

The indicators surplus rate (Surpr) and supplemental feeding rate (Supfr) in the PCB template
workshop were also considered. The predicted surplus rate (Surpr_Pd) and predicted supplemental
feeding rate Supfr_Pd can be computed with Equations (10) and (11) in [2], respectively. The final
performance is evaluated by the MSE, MAE, MAPE, Supfr_Pd, and Surpr_Pd.

4. Experimental Results and Discussions

The proposed FCM–GABPN was implemented by Python 3.6. The number of clusters was set to
three while conducting FCM for the purpose of reducing the number of training, testing, and model
maintenance in the workshop, but also to achieve good enough prediction accuracy based on some
initial test. The hyper-parameter m that controls how fuzzy the cluster was commonly set to 2 [31], and
it was adopted here. The maximum number of iterations of FCM was set to 800.

If FCM cluster samples fall into the category with the highest membership value, the templates
will be cluster into C1, C2, and C3, with 20,773, 1354, and 7030 samples, respectively. The membership
value giving the membership degree of each sample (samples were clustered into C1, C2, and C3 here
for visualization) being in the three categories is illustrated in Figure 3. The membership degree of
each sample will be taken as part of the input of the aggregator BPN to perform nonlinear aggregation,
as shown in Figure 1.

The mean values of input attributes in the three categories are given in Figure 4. The mean values
of Reqq, Reqp, and Reqa are comparatively different in the three categories; and they are the main
attributes to distinguish and identify samples within each category, which is consistent with practice in
which the workshop also regards order scale (Reqq, Reqp, and Reqa) as important variables to classify
orders. Meanwhile, the mean values of Mwil, Mlsil, and Mwol in C2 is lower than the corresponding
values in C1 and C3, but the Ln is higher, which indicates that, the higher Ln is, the denser the lines
that coincide with the actual situation are.
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The membership threshold µL should be specified for adopting samples in network learning. The
numbers of samples within the three categories with different µL are given in Table 2. The 0.4 was
selected as the threshold to generate training and testing samples, not only to make sure there were
enough training and testing samples for each category, but also in case a template was clustered into
multiple categories with different membership degrees. Then 2/3 and 1/3 of mutually exclusive samples
were randomly selected as training and testing data for each category at each run. The unclassified
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samples were not taken as the input to train each GABPN; however, they will be taken as the samples
for final test. The numbers of training and testing samples for each category are given in Table 3.

Table 2. Numbers of samples within the three categories with different µL .

µL C1 C2 C3 Unclassified

0 29,157 29,157 29,157 0
0.1 29,156 27,608 29,157 0
0.2 28,922 3434 28,815 0
0.3 29,157 2193 15,529 0
0.4 21,230 973 7037 1355
0.5 17,717 393 3097 7951
0.6 8455 184 446 20,072
0.7 408 18 8 28,723
0.8 0 0 0 29,157
0.9 0 0 0 29,157
1 0 0 0 29,157

Table 3. Number of samples selected for training and testing.

Training Samples Testing Samples

C1 14,153 8432
C2 649 1679
C3 4691 3701
All 19,448 9709

On the basis of the selected training samples and the 41 (variables No. 1–35, 36, 38, 39, 47, and 46
in Table 1) input attributes, the aforementioned seven feature selection mechanisms were employed to
calculate the importance of each attribute on scrap rate. The importance (mean) score of each attribute
for the three categories and all samples are given in Figure 5, and the corresponding No. is given in
Table 4. The importance scores of attributes greater than 0.15 were chosen as the input of GABPN
considering the number of selected attributes and confirmed by experts from the factory, and 23, 9, 20,
and 16 attributes were selected for C1, C2, C3, and all data, respectively, that were marked with “N” in
Table 4. It can be seen that the critical attributes for different categories of samples are different, and
one of the reasons is that the samples may have multiple complex distributions.
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Table 4. Selected attributes for each category/all samples.

No. Attributes C1 C2 C3 All No. Attributes C1 C2 C3 All

1 Pt N 22 Secd
2 Ln N N N N 23 Bcdr N N N N
3 Ro N N 24 Chaprt
4 Plfr 25 White N
5 Noo N N N N 26 Blue
6 NPP N N 27 Black
7 Sus 28 Hasl N N
8 Photb N N 29 Lfhasl N
9 Highfb 30 Osp
10 Semictb N N 31 Cnapp N N N
11 Nflp 32 Gfig N
12 Tinc 33 Godp N N
13 IPCIII 34 Snap
14 Huawei N N N N 35 Iasa N
15 Mwil N 36 Duap N N N
16 Mlsil 37 Reqa N N N N
17 Mwol N N 38 Reqq N N N N
18 Mlsol 39 Reqp N N N
19 Arcr N 40 Hquar N N N N
20 Srph N N 41 Dunita N N N N
21 Phwr N N N

Each GABPN model was trained by the training samples and the selected attributes given in
Table 4. All samples belonging to a category compete in the same way in training the GABPN geared to
the category. Prediction models of GABPN were trained and tested for each category separately, while
the aggregator BPN was trained with all the training samples and tested by all the testing samples.

The GA parameters of population size, crossover probability, mutational probability, and the
number of iterations of the three GABPNs were set to 100, 0.8, 0.05, and 100, according to some initial
test. The convergences of GA for the initial parameter optimization of the three BPNs are illustrated in
Figure 6. On the basis of the optimized parameters, the three BPNs were trained in parallel, and the
output of the three prediction models was set into the aggregator BPN, with the membership degree of
each sample obtained by FCM given in Figure 3. The predicted feeding panel of each sample can be
determined according to the transformation described in Section 3.4, based on the reversely normalized
output of the aggregator BPN.
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The regression of the predicted feeding panel versus the least feeding panel is given in Figure 7.
Results indicated that the predicted feeding panel coincides well with the least feeding panel, and,
therefore, the waste of surplus quantity and area can be reduced.

Appl. Sci. 2019, x, x FOR PEER REVIEW  14 of 18 

5 Noo ▲ ▲ ▲ ▲ 26 Blue     

6 NPP ▲  ▲  27 Black     

7 Sus     28 Hasl ▲  ▲  

8 Photb ▲  ▲  29 Lfhasl ▲    

9 Highfb     30 Osp     

10 Semictb ▲   ▲ 31 Cnapp ▲  ▲ ▲ 

11 Nflp     32 Gfig   ▲  

12 Tinc     33 Godp ▲  ▲  

13 IPCIII     34 Snap     

14 Huawei ▲ ▲ ▲ ▲ 35 Iasa  ▲   

15 Mwil ▲    36 Duap ▲  ▲ ▲ 

16 Mlsil     37 Reqa ▲ ▲ ▲ ▲ 

17 Mwol ▲  ▲  38 Reqq ▲ ▲ ▲ ▲ 

18 Mlsol     39 Reqp ▲  ▲ ▲ 

19 Arcr ▲    40 Hquar ▲ ▲ ▲ ▲ 

20 Srph   ▲ ▲ 41 Dunita ▲ ▲ ▲ ▲ 

21 Phwr ▲  ▲ ▲       

 

Figure 6. Convergences of GA for the initial parameter optimization of the three BPNs. 

The regression of the predicted feeding panel versus the least feeding panel is given in Figure 7. 

Results indicated that the predicted feeding panel coincides well with the least feeding panel, and, 

therefore, the waste of surplus quantity and area can be reduced. 

 

Figure 7. Regression of predicted feeding panel versus least feeding panel. 

The FCM–BPBPN was compared to manual feeding, BPN, MSC–ANN, FCM–GABPN without 

aggregation (indicated with FCM–GABPN w/o aggregation), and FCM–BPN five approaches to 

quantify its performance. Manual feeding is to determine the feeding panel for each template based 

on worker in PCB factory. BPN is to establish a single BPN prediction model without 

Figure 7. Regression of predicted feeding panel versus least feeding panel.

The FCM–BPBPN was compared to manual feeding, BPN, MSC–ANN, FCM–GABPN without
aggregation (indicated with FCM–GABPN w/o aggregation), and FCM–BPN five approaches to quantify
its performance. Manual feeding is to determine the feeding panel for each template based on worker
in PCB factory. BPN is to establish a single BPN prediction model without pre-classification and takes
the selected 16 attributes marked with “N” in the column “All” of Table 4 as inputs. MSC–ANN [2]
considered only required panel to classify the records and divide the samples into six groups. The
FCM–GABPN w/o aggregation only applies the BPN to which the membership belonging is the highest
and no BPN aggregation will be conducted. FCM–BPN has no GA to optimize the initial parameters of
each BPN.

The testing samples were taken to evaluate the performance of the approaches, and the average
MSE, MAE, MAPE, Surpr_Pd, and Supfr Pd of five runs for BPN, MSC–ANN, FCM–GABPN-w/o
aggregation, FCM–BPN, and FCM–GABPN is given in Table 5. The improvement of different approaches
comparing to the manual feeding (actual results of the factory) according to the performance indicators
are also given, and the following discussions are made:

Table 5. Improvement of different approaches comparing to comparison basis—manual feeding.

Approaches MSE MAE MAPE Surpr_Pd(%) Supfr Pd(%)

Manual feeding 22.862 1.467 29.161 28.49 18.53

BPN 2.143 (−90.63%) 0.759 (−48.26%) 17.962 (−38.40%) 16.85 (−40.86%) 13.02 (−29.74%)

MSC–ANN 1.272 (−94.44%) 0.396 (−73.01%) 5.542 (−81.00%) 12.25 (−57.00%) 12.78 (−31.03%)

FCM—GABPN-w/o
aggregation 1.031 (−95.49%) 0.364 (−75.19%) 4.537 (−84.44%) 11.88 (−58.30%) 11.34 (−38.81%)

FCM–BPN 0.984 (−95.70%) 0.305 (−79.21%) 3.423 (−88.26%) 9.05 (−68.23%) 13.86 (−25.20%)

FCM–GABPN 0.935 (−95.91%) 0.249 (−83.03%) 3.041 (−89.57%) 8.50 (−70.16%) 12.78 (−31.03%)

(1) The prediction accuracy (measured with MSE, MAE, and MAPE) of the FCM–GABPN approach
was significantly better than those of the other approaches, in most cases by achieving a 95.91%, 83.03%m
and 89.57% reduction in MSE, MAE, and MAPE, respectively, over manual feeding. Meanwhile, the
proposed FCM–GABPN exhibited superiority in the reduction of surplus and/or supplemental feeding
in most of the case comparing to other methods by reducing 70.16% Surpr_Pd and 31.03% Supfr Pd
over manual feeding.

(2) The advantages of FCM–GABPN over BPN without performing pre-classification were 5.28%,
34.77%, 51.17%, 29.30%, and 1.29% by reduction in MSE, MAE, MAPE, Surpr_Pd, and Supfr Pd,
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respectively, and the superiority of MSC–ANN over BPN was 3.79%, 24.75%, 42.60%, 16.14 %, and
1.29%. The advantages of FCM–GABPN-w/o aggregation over BPN were 4.86%, 26.93%, 46.04%,
17.44%, and 9.07%, and the FCM–BPN over BPN were 5.28%, 30.95%, 49.86%, and 27.37% by reduction
in MSE, MAE, MAPE, and Surpr_Pd, but with only a 4.54% increase in Supfr. Pre-classification and
critical attribute selection for each category before prediction model establishment seem to have
significant effect on the performance of material feeding prediction.

(3) The superiority FCM–GABPN-w/o aggregation, FCM–BPN, and FCM–GABPN over MSC–ANN
according to the MSE, MAE, MAPE, and Surpr_Pd with only 5.83% inferiority in Supfr Pd for FCM–BPN
approach and the same value for FCM-GABPN indicates that the pre-classification by clustering, which
considers many attributes, surpassed the MSC classification, which considers only one attribute. In
addition, the FCM–GABPN-w/o aggregation, FCM–BPN and FCM–GABPN only established three
BPNs for the three categories of samples, while MSC–ANN pre-classified the samples into six categories
and trained a prediction model for each category.

(4) FCM–BPN and FCM–GABPN achieved lower MSE, MAE, MAPE, and Surpr_Pd in comparison
to FCM–GABPN-w/o aggregation, which indicates that applying the aggregator BPN to derive the
representative value by considering the membership degree of each sample facilitates the prediction
improvement for the four performance indicators. The 13.61% and 7.78% increase in Surpr_Pd
for FCM–BPN and FCM–GABPN may be brought by the 9.07% and 11.86% reduction in Supfr Pd,
respectively. In practice, the reduction of surplus feeding and supplemental feeding is conflicted because
it is difficult to obtain the minimum value for both of them in the factory. However, the reduction of
the surplus rate is a goal with the greatest cost impact in the factory because the individualized surplus
template products can only be placed in inventory or directly destroyed, and the reduction of the
surplus production will reduce the comprehensive cost caused by the waste of material, production,
inventory, and disposal/ recycling.

(5) The FCM–GABPN surpassed FCM–BPN according to the five indicators that verify the
effectiveness of the initialization optimization based on GA. The reason is that BPN is sensitive to the
initial condition [30], especially for the samples in the three categories that were learned with different
BPNs that may be influenced greatly by the combination of the BPN’s initial parameters.

5. Conclusions

In order to enhance the accuracy of material feeding prediction of a PCB template, an ensemble
predictor FCM–GABPN was proposed. In the proposed approach, the input templates were firstly
clustered by FCM, and seven feature selection mechanisms were utilized to select critical attributes
related to the scrap rate for each category of templates. Then, a GABPN was trained to predict the
scrap rate for each category of templates, and the GABPNs for all the categories formed an ensemble
predictor with a nonlinear aggregator BPN. Finally, the predicted feeding panel for each template was
determined based on the predicted scrap rate with a transformation. The effectiveness and superiority
were validated with many experiments based on the actual data. On the basis of the experimental
results, conclusions and contributions are highlighted as follows:

(1) The accuracy of the proposed approach was better than those of the other approaches by
achieving a 95.91%, 83.03%, and 89.57% reduction in MSE, MAE, and MAPE, respectively, over the
comparison basis—manual feeding. Meanwhile, the FCM–GABPN’s performance was superior
to that of the other methods in the reduction of simulated surplus and/or supplemental feeding
in most of the cases, by achieving a 70.16% reduction in Surpr_Pd and a 31.03% reduction in Supfr
Pd over manual feeding.

(2) The material feeding prediction of PCB template problem considering category fuzziness of
samples and the diverse samples with different influence factors is different from the existing
production quality prediction and optimization problem, to the best of our knowledge. The
novelty of the proposed FCM–GABPN is that we fuzzily clustered samples into different categories
with FCM and specified a membership threshold to adopt samples for each category. Meanwhile,
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component GABPN prediction model for each category was established with separately selected
input attributes and GA optimized initial parameter. Furthermore, an aggregator BPN was
employed to aggregate the predicted results of each GABPN by considering the membership
values of each template.

Training an ensemble predictor with many sub-models that can extract shared attributes for
similar templates automatically without explicit pre-classification needs to be studied, in which we
do not have to divide samples, select critical attributes for each category, and build the prediction
model separately. Meanwhile, the rapid development and evolution of PCB template should also be
considered. The transfer and lifelong learning may be the mechanisms worthy of attempting, in order
to handle the aforementioned problem.
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