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Abstract: An Isolated Microgrid (IMG) is an electrical distribution network combined with modern
information technologies aiming at reducing costs and pollution to the environment. In this article, we
implement the Bacterial Foraging Optimization Algorithm (BFOA) to optimize an IMG model, which
includes renewable energy sources, such as wind and solar, as well as a conventional generation unit
based on diesel fuel. Two novel versions of the BFOA were implemented and tested: Two-Swim
Modified BFOA (TS-MBFOA), and Normalized TS-MBFOA (NTS-MBFOA). In a first experiment,
the TS-MBFOA parameters were calibrated through a set of 87 independent runs. In a second
experiment, 30 independent runs of both TS-MBFOA and NTS-MBFOA were conducted to compare
their performance on minimizing the IMG using the best parameter tuning. Results showed that
TS-MBFOA obtained better numerical solutions compared to NTS-MBFOA and LSHADE-CV, an
Evolutionary Algorithm, found in the literature. However, the best solution found by NTS-MBFOA
is better from a mechatronic point of view because it favors the lifetime of the IMG, resulting in
economic savings in the long term.

Keywords: optimization; Bacterial Foraging algorithm; Swarm Intelligence algorithm; Isolated
Microgrid

1. Introduction

Currently, one of the most critical issues is the efficient use of available energy sources. Therefore,
in rural or remote geographic locations, the generation and distribution of energy is a significant
challenge for many areas of engineering such as control, power electronics or planning, among others.
In recent years, microgrids (MGs) have been a reliable solution for the power supply in separate areas,
provided that there is adequate operational planning of the MG energy sources [1].

In general, an MG is composed of energy storage systems (ESS),hybrid power generation systems
(HPGS) from renewable energy sources (RES) and conventional generation systems (CGS); with all
elements working in a coordinated way for the power generation. It is important to highlight that
CGSs have a high operating cost due to the materials and transportation logistics. Moreover, ESSs are
integrated by costly devices requiring a safe manner operation, thus guaranteeing a long service life.
Finally, uncertainty in the appropriate operation of the RES due to the origin of wind and sunlight must
take into account. These theoretical considerations are some of the reasons why optimal management
of power generation resources for the appropriate operation of the MG is required.
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In isolated microgrids (IMGs), a hybrid power generation system (HPGS) is responsible for the
generation of reliable energy. This is done by integrating into the IMG at least one of the RES, CGS,
and ESS systems such as a wind turbine generator, solar generator, diesel generator, or battery storage
systems. However, due to the RES generation intermittency, the ESS become the main factor in the
steady performance of the IMGs [2–4]. When a steady state is reached, the best performance of the
whole system is obtained. HPGSs have been studied by several authors [5–7], describing conditions of
remote localities having variable demand and power dispatch by generators minimizing the cost of
generation, while maintaining a balance between the generation of energy and the load.

Usually, the power supply to the load in an IMG can be calculated as an economic dispatch
function for generators at a large-scale power level [8]. This cost function should be minimized, subject
to constraints related to the generator’s capacity and the energy balance between generation and load
demand. The load demand must be computed for a 24 h period in an IMG, and several scenarios
can be presented in the HPGS such as: (1) RESs cannot produce energy for 24 h; (2) all the RES in the
IMG can always dispatch energy, but not the total demand capacity of the load; (3) the main costs are
the fuel costs and the generation of the diesel generator; and (4) the operation cost of the HPGSs are
non-linear, generally due to the cost of the diesel generator.

On the other hand, there is a kind of problems, specifically in real-world applications, where it
is impossible to find an optimal solution using a viable amount of resources employing traditional
techniques such as numerical methods or graphic analysis. These cases correspond to the hard
optimization category and have a similar nature to the NP (nondeterministic polynomial time) decision
problems since they can not be solved in an optimal way or up to a guaranteed point using deterministic
methods in polynomial time.

Metaheuristics are an alternative to find feasible and optimal solutions to NP problems, where
any problem modeled as a constrained numerical optimization problem (CNOP) can have at least one
optimal feasible solution. A CNOP also known as a general problem of non-linear programming can
be defined as: minimize f (~x) subject to: gi(~x) ≤ 0, i = 1, . . . , m or hj(~x) = 0, j = 1, . . . , p. Here, ~x ∈ Rn

such that n ≥ 1, is the solution vector ~x = [x1, x2, . . . , xn]T , where each xi, i = 1, . . . , n is delimited by
the lower and upper limit Li ≤ xi ≤ Ui; m is the number of inequality constraints and p is the number
of equality constraints (in both cases, the constraints can be linear or non-linear). If we denote by F the
feasible region (where all the solutions that satisfy the problem are found) and by S the entire search
space, then F ⊆ S.

Metaheuristics are well-known algorithms, most of them are inspired by nature, that have
successfully solved CNOPs. Metaheuristics are divided into two broad groups: (1) evolutionary
algorithms (EAs), whose operation is based on emulating the process of natural evolution and survival
of the fittest [9], and (2) swarm intelligence algorithms (SIAs) that base their operation on social and
cooperative behaviors of simple organisms such as insects, birds, and bacteria [10].

From the initial ideas of Bremermann [11], in 2002 Passino proposed a novel SIA called Bacterial
Foraging Optimization Algorithm (BFOA) [12], based on E.Coli bacteria foraging. In BFOA, each
bacterium E. Coli tries to maximize the energy obtained per unit of time spent on the foraging
process, while avoiding harmful substances. Moreover, bacteria can communicate with each other by
segregating certain substances. There are four main processes in BFOA: (1) chemotaxis (swim-tumble
movements), (2) swarming (communication between bacteria), (3) reproduction (cloning of the best
bacteria), and (4) elimination-dispersal (replacement of the worst bacteria). Bacteria are potential
solutions to the problem and their location represents the values of the problem decision variables.
Bacteria can move (generate new solutions) through the chemotaxis cycle; additionally, a movement
through the attraction of solutions in promising areas of the search space is generated (as it allows the
reproduction of the best solutions). Finally, those bacteria located in areas of low quality are deleted.

In 2009, a simplified BFOA version was proposed, called modified bacterial foraging optimization
algorithm (MBFOA) [13], which implements fewer parameters with respect to the original BFOA.
MBFOA includes a mechanism for the management of constraints based on feasibility rules, consisting
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of (a) between two feasible solutions, that with the best value in the objective function is selected, (b)
between a feasible solution and a non-feasible solution, the feasible one is selected, and (c) between
two non-feasible solutions, the one with the smallest amount of constraint violations is selected [14].
MBFOA has been used to solve a number of problems of a different nature. For example, solving a set
of chemical and mechanical engineering design problems, obtaining competitive results [13], and the
solution of a bi-objective mechanical design problem with constraints [15].

In 2016, a recent algorithm based on MBFOA, called two-swim MBFOA (TS-MBFOA) [16], was
proposed. This version includes an operation similar to the mutation operator, used in EAs, as
a swimming operator within the chemotaxis process. It also implements a random swim in the
chemotaxis process, along with a skew mechanism for the initial population based on the variables
range. TS-MBFOA has been used to solve real-world problems of mechatronic design and also in the
nutrition field by generating successful healthy menus [17].

There is a number of proposals in the specialized literature using metaheuristics algorithms
to optimize particular mathematical models minimizing or maximizing an MG. Some of the EAs
employed are Differential Evolution and Genetic Algorithms. SIAs employed are limited to particle
swarm optimization (PSO) and BFOA. Other paradigms such as artificial neural networks, harmony
search, and hybridizations between harmony search and differential evolution have also been
used [18–20]. A common factor in this works is the management of constraints using the penalty
technique, which implies adding more parameters to be defined by the end user.

In Table 1, main proposals based on BFOA were grouped according to particular characteristics.
Moreover, other proposals were added—each proposal derived in several contributions. In the first row,
representing this work, BFOA is implemented in order to optimize a mathematical model minimizing
an IMG, including renewable energy sources such as wind and solar, as well as a conventional
generation unit based on diesel fuel. Two novel versions of the BFOA are implemented and tested:
TS-MBFOA, and a new proposal called NTS-MBFOA. Results showed that TS-MBFOA obtained better
numerical solutions compared to NTS-MBFOA and compared to LSHADE-CV, an EA found in the
literature solving the same problem. However, the best solution found by NTS-MBFOA is better from a
mechatronic point of view because it favors the lifetime of the IMG and therefore resulting in economic
savings in the long term.

In the second row of Table 1, Ahmad and others [21] proposed the bacterial foraging tabu search
(BFTS) technique, a hybridization of BFOA and tabu search (TS) using different operational time
interval (OTI) to schedule appliances while balancing user comfort (UC). His goal was to reduce both
the waiting time and electricity cost simultaneously. Real-time pricing (RTP) scheme was used to get
the total cost of electricity consumed. For simulations, they studied an average size modern home
with 11 appliances. The simulation results of BFTS-based scheduled clearly shows that the proposed
technique is better as compared to BFOA, TS, and unscheduled electricity consumption. The electricity
cost and waiting time were minimized thus increasing UC.

In the third row of Table 1, Hasan and others [22] implemented two algorithms aimed at
minimizing electricity cost and peak to average ratio (PAR) in a smartgrid by using BFOA and
strawberry algorithm (SBA). Real-time pricing (RTP) pricing scheme was used to calculate the electricity
cost. A single home with three types of appliances; fixed, shiftable and elastic appliances composed the
simulated model. Authors found that these optimization schemes reduce the total electricity cost and
peak to the average ratio by shifting the load from on-peak hours to off-peak hours. BFOA performed
better than SBA regarding electricity cost minimization. However, the authors concluded that trade-off
always exists between cost and user comfort.

In the fourth row of Table 1, Saadia and others [23] gained electricity cost reduction up to 40%
in a home energy management system (HEMS) with a single home using BFOA and pigeon inspired
optimization (PIO). Cost, PAR and waiting time of the appliances were calculated on the bases of a
120 h time slot. Two types of appliances were used: interruptible and non-interruptible. Critical peak
pricing (CPP) was used as a pricing signal to calculate the electricity bills. Simulation results showed
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that PIO was identified as the best technique as it performs well in reducing cost. PIO gives 37% more
waiting time than BFOA; it has 60% less cost by BFOA and PAR is 3% less by BFOA.

Table 1. Algorithms used for smartgrid optimization.

Author Algorithm Type of Electrical
Distribution Network Objective Experimental Scenario

Hernández-Ocaña et al. TS-MBFOA/NTS-MBFOA Isolated Micro grid (IMG)

Operation cost, balance
between energy
generation and its
demand by the load

Home area

Ahmad et al. (2018) [21] BFOA/Tabu Search Smart Grid Waiting time and
electricity cost

Single home with different
Operational time Interval

Hasan et al. (2018) [22] BFOA/Strawberry
Algorithm Smart Grid Electricity cost and Peak

to Average Ratio
Home Energy Management System
(Single home)

Saadia et al. (2018) [23] BFOA Smart Grid/Pigeon
Inspired Optimization

Electricity cost and Peak
to Average Ratio

Home Energy Management System
(Single home)

Wang et al. (2015) [24] Genetic Algorithm Smart Micro-Grid Operation cost

The building micro-grid system
with distributed generation, energy
storage device, electric vehicle and
various load resources

Ma et al. (2015) [25] PSO Islanded Micro-Grid Overall generating cost
Islanded microgrid with renewable
energy source, the diesel generator
and battery storage system

Wang et al. (2015) [26] Game theory Smart Grid Efficiency in the power
system and energy loss

The model was simulated and
analyzed in modified IEEE 37-bus
feeder system with DGs connected

Zhu et al. (2018) [27] PSO Battery Energy Storage

Optimization of both the
placement and controller
parameters for Battery
Energy Storage Systems
to improve power system
oscillation damping

New England 39-bus system
and a Nordic test system

In the fifth row of Table 1, Wang and others [24] implemented a genetic algorithm to optimize a
micro-grid operation considering distributed generation, environmental factors and demand response
(DR). Experiments were conducted on a smart micro-grid from Tianjin, China. The building micro-grid
system mainly includes distributed generation, energy storage device, electric vehicle, and various
load resources. Two prices mechanisms were used, fixed price and DR prices. The main finding of this
model is to optimize the cost in the context of considering demand response and system operation
without reducing user comfort. Also, the authors found that the natural gas price dramatically
influences both the operation cost of the micro-grid and demand response.

In the sixth row of Table 1, Ma and others [25] focus on minimizing the overall system generating
cost, including the depreciation cost, the operation cost, the pollutant emission cost, and economic
subsidies available for renewable energy source (RES) over the entire dispatch period of an IMG. For
experimentation, they use an actual IMG in Dongao Island, China. Authors applied a modified PSO
algorithm to solve this optimization problem. Results showed that this algorithm was able to minimize
both the fuel consumption cost and pollution emission cost.

In the seventh row of Table 1, Wang and others [26] proposed a distributed locational marginal
pricing (DLMP)-based unified energy management system (uEMS) model, which considers both
increasing profit benefits for distribution generations (DGs) and increasing stability of the distributed
power system (DPS). The model contains two parts: (1) a game theory-based loss reduction allocation
(LRA); and (2) a load feedback control (LFC) with price elasticity. Simulation results based on a
modified IEEE 37-bus system show that uEMS can lead to a more fairly competitive environment for
DGs, where the model can increase DGs’ benefits, reduce system losses, and improve stability.

In the last row of Table 1, Zhu and others [27] aimed to find the optimal placement and control
parameter settings of multiple battery energy storage System (BESS) units to improve oscillation
damping in a power transmission system. They formulated a mixed-integer optimization problem and
solved it using PSO. Experiments were conducted on two power systems, the New England 39-bus
system, and a Nordic test system. This optimization design can be adapted to seasonal load changes
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and the minimum number of BESS units to be placed. The superiority of the proposed model was
validated with another typical type of controllers in the existing literature.

On the other hand, Aziz and others [28] investigated the techno-economic and environmental
performance of a hybrid energy system (HES) under the load following (LF) and cycle charging (CC)
strategies using HOMER software as a tool for optimization analysis. Experiments were conducted in
a photovoltaic (PV)–diesel–battery configuration. Results show that variations in critical parameters,
such as battery minimum state of charge, time step, solar radiation, diesel price, and load growth have
considerable effects on the performance of the proposed system.

In summary, the problem of optimal management of energy sources in an IMG can be solved as a
dispatch control problem, which deals with the energy flow management from the various sources to
load for cost minimization.

This document is organized as follows: Section 2 presents the mathematical modeling of the
Isolated Microgrid proposed. Sections 3 and 4 briefly describe TS-MBFOA and the normalized version
called NTS-MBFOA. In Section 5, results obtained and the discussion of these are presented. Finally, in
Section 6, the conclusions and future works are presented.

2. Description of the Isolated MicroGrid

An IMG is composed of a set of AC loads and an HPGS. In this work, the HPGS is integrated
by a solar photovoltaic generator (PV), a wind turbine generator (WT), a diesel generator (DG) and a
battery storage system (BS), as shown in Figure 1.

Figure 1. Hybrid power generation system components.

The aim of the optimal management of energy sources in an IMG is to assign the load demands
among its distributed generation units securely and reliably, to minimize the overall system generating
cost, subject to a set of constraints. Thus, it is essential to compute the operation cost of each of such
generation units. In this work, the cost function and data for the BS, PV and WT generators were taken
from [29] (2014 prices). In that work, the authors computed the corresponding cost function of the BS,
PV, and WT considering the rate of return of the initial investment using a factor of capital recovery in
a regular series of equal annual payments. Figure 2 depicts the overall optimization process proposed.

2.1. DG Generation Cost

The mathematical relationship associated with this kind of systems is related to the generator
power. Without loss of generality, we established the cost function as:

Fi(Pi) = αi + βiPi + γiP2
i (1)

where Fi and Pi are the i-th generation source and its output power, respectively. Also, α, β and γ are
the cost coefficients. Therefore, in this work the cost function for the DG systems is given by:

F1(P1) = 1488 + 0.3P1 + 0.000435P2
1 (2)
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Output solution: 
 Minimum cost per hour 

τ = 0

Solve the economic dispatch problem at time τ according to  
Eq. 18 s.t. Eq. 19 

 

yes
τ < 24

Compute the generation cost of the Hybrid Power Generation System: 
 

  Diesel Generator (DSτ) using Eq. 2
  Battery Storage System (BSτ) using Eq. 5
  Solar Generator (PVτ) using Eq. 6
  Wind Turbine Generator (WTτ) using Eq. 7

 

Implement  
TSMBFOA

Implement  
NTSMBFOA

Figure 2. Isolated microgrid optimization process.

2.2. BS Generation Cost

The general cost function, proposed in [29], is given by:

F(P) = aIpP + GEP (3)

where P is the generator output power, a is the rate of return of the initial investment, Ip is the inversion
cost per installed unit and GE is the operation and maintenance costs per unit of generated power.

Also, the rate of return of the initial investment is computed by:

a =
r

1− (1 + r)−N (4)
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where r the interest rate (we set a value of 0.09 for the base case) and N the useful life (we propose
20 years), respectively.

In this work, we set a 2 kWh battery storage bank as the ESS system of the IMG. Therefore, the
inversion cost per storage unit installed is established as [Ip = 1000 $/kW]. Also, the operation and
maintenance costs per unit is given by [GE =¢1.6/kW]. Finally, the cost function is given by:

F2(P2) = 119P2 (5)

2.3. PV Generation Cost

The PV generation cost was computed using a inversion cost per installed unit of [Ip =

5000 $/kW] and the operation and maintenance costs per unit given by [GE =¢1.6/kW]. Therefore,
the PV generation cost is computed by:

F3(P3) = 545.016P3 (6)

2.4. WT Generation Cost

To compute the cost function of the WT generator we use an inversion cost per installed unit
given by [Ip = 5000 $/kW], and an operation and maintenance costs per unit given by [GE =¢1.6/kW].
Thus, the cost function is computed by:

F4(P4) = 152.616P4 (7)

2.5. Optimization Strategy

In order to obtain an optimal power generation in an IMG, an economic dispatch problem must
be solved. In this problem, the output power of each one of the IMG’s sources must be computed at
every hour of the day, so that the generation cost is the lowest possible. In this study, the vector of
design variables is related to the sources, therefore:

~p = [P1, P2, P3, P4] (8)

where Pi with i = 1, . . . , 4 is the output power of the i-th generation source.

2.6. Objective Function

The classical economic dispatch problem is established with:

min F =
n

∑
i=1

Fi(Pi) (9)

subject to the following constraints:

n

∑
i=1

Pi = PL (10)

Pmin
i ≤ Pi ≤ Pmax

i (11)

where n is the number of generation sources, Pmin
i and Pmax

i are the minimum and maximum values of
the output power of the i-th generation source, PL is the total load demanded by the system, and Fi is
the generation cost of the i-th generation source.

In this work, the objective function at τ-hour is given by:
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F(~pτ) = ω1C f F1(P1(τ)) + ω2F2(P2(τ))

− ω3F3(P3(τ)) − ω4F4(P4(τ)) (12)

where ω1, ω2, ω3 and ω4 are the weights related with each one of the sources generation. These weights
were fixed to 0.25 while the fuel cost was set to USD $1.

Finally, considering that the generation cost must be computed at every hour of the day, the total
objective function for all the day is:

Φ =
24

∑
τ=1

F(~p(τ)) (13)

2.7. Design Constraints

In order to produce a proper management of the power generation in the IMG, we considered
some design constraints.

• Power Balance: The sum of the generation power of all sources must be equal to the total load
demanded by the system:

P1 + P2 + P3 + P4 = PL (14)

• BS Model: The output power of the solar PV generator and the load demanded at time t by the
system, determine the state of charge (SOC) of the battery storage system BS. On the other hand,
the SOC of the BS system at hour t, SOC(t), is related to the previous hour SOC, SOC(t− 1) [6]:

SOC(t) = SOC(t− 1)− αDP2(t) + αCP3(t) + αCP4(t) (15)

where αD = ηD/Bmax
C and αC = ηC/Bmax

C , in which ηD and ηD are the battery charging efficiency
and the battery discharging efficiency, respectively. Also, Bmax

C is the maximum battery capacity.

Using Equation (15), a general mathematical equation by the battery dynamics can be
established as:

SOC(t) = SOC(0)− αD

t

∑
τ=1

P2(τ) + αC

t

∑
τ=1

P3(τ)

+αC

t

∑
τ=1

P4(τ) (16)

where SOC(0) is the initial state of charge of the battery, αC ∑t
τ=1 P3(τ) + αC ∑t

τ=1 P4(τ) is the
input power by the battery and αD ∑t

τ=1 P2(τ) is the power discharged by the battery at time
t, respectively.

Finally, at time t the state of charge of the battery must be between the minimum (SOCmin) and
maximum (SOCmax) possible capacity:

SOCmin ≤ SOC(t) ≤ SOCmax (17)

In this work, the BS parameters are shown in Table 2.

Table 2. Energy Storage System parameters.

ESS Parameter %

Round Trip efficiency 85
Charge efficiency 85

Discharge efficiency 100
Maximum state of charge 95
Minimum state of charge 40
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2.8. Optimization Problem

We defined the mono-objective optimization problem associated with the optimal power
generation as:

min Φ =
24

∑
τ=1

F(~p(τ)) ~p(τ) ∈ R4 (18)

subject to the constraints:

h1(~p(τ)) = P1(τ) + P2(τ) + P3(τ) + P4(τ) = PL

g1(~p(τ)) = SOCmin − SOC(τ) ≤ 0 (19)

g2(~p(τ)) = SOC(τ)− SOCmax ≤ 0

with the bounds:

0 ≤ P1(τ) ≤ DGnominal

0 ≤ P2(τ) ≤ SOC(0)× Bcmax − SOCmin × Bcmx

0 ≤ P3(τ) ≤ Ppv(τ) (20)

0 ≤ P4(τ) ≤ Pwind(τ)

where DGnominal is the nominal capacity of the DG system and Bcmax is the maximum capacity of the
battery system; with proposed values of 5000 kW and 2000 kW, respectively. Values of Ppv and Pwind
were taken from [30]. Indeed, values of Ppv(τ) and Pwind(τ) (where Ppv is the photovoltaic output
power and Pwind is the wind output power) are based on studies conducted on real data. For the
photovoltaic resource, two-day solar irradiation data collected in Celestún (México) was used. For the
wind resource, data collected in Celestún (México), Ambewela (Sri Lanka), and Madrid (Spain) for
several heights was used. In this study, these ranks are used as input values for the TS-MBFOA and
NTS-MBFOA at each run to find the minimum value optimizing the IMG.

Table 3 summarizes the initial power in Watts (W) and percentages (for the ESS) of each resource
in the IMG per hour.

Table 3. Starting conditions (in Watts and percentages) of the resources included in the IMG. LP = Load
power, P1 = Diesel power, P2 = ESS, P3 = Solar power and P4 = Wind power.

Time LP P1 P2 P3 P4

Watts Watts % Watts Watts

00:00 2500 5000 0.950 1 1
01:00 2500 5000 0.949 1 500
02:00 2850 5000 0.737 1 750
03:00 2950 5000 0.630 1 600
04:00 2850 5000 0.482 1 1000
05:00 2500 5000 0.629 1 700
06:00 2150 5000 0.653 1 350
07:00 2250 5000 0.480 266 1
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Table 3. Cont.

Time LP P1 P2 P3 P4

Watts Watts % Watts Watts

08:00 2300 5000 0.480 70 1
09:00 2320 5000 0.480 560 1
10:00 2350 5000 0.551 700 1
11:00 2950 5000 0.656 126 600
12:00 2250 5000 0.585 840 1700
13:00 2320 5000 0.950 840 2500
14:00 2350 5000 0.950 700 3000
15:00 2350 5000 0.950 560 5000
16:00 2450 5000 0.950 406 7000
17:00 3150 5000 0.950 63 7000
18:00 3310 5000 0.950 1 4000
19:00 4250 5000 0.950 1 1000
20:00 4250 5000 0.525 1 500
21:00 3000 5000 0.525 1 550
22:00 2950 5000 0.592 1 6500
23:00 2650 5000 0.950 1 5700

3. Two-Swim Modified Bacterial Foraging Optimization Algorithm (TS- MBFOA)

TS-MBFOA is an algorithm derived from MBFOA proposed to solve CNOPs [16]. In this
metaheuristic, a bacterium i represents a potential solution to the CNOP (i.e., a n-dimensional real-value
vector identified as ~x), and it is defined as θi(j, G), into a population of bacteria (Sb), where j is the
chemotaxis loop (Nc). G is the generational loop that ends up reaching a maximum number of
generations (GMAX) or using a number of evaluations, defined by the user, calculated as:

GMAX =
Number of evaluations

Sb × Nc
. (21)

A generation includes the following processes: (1) a chemotaxis process with Nc loops; (2) a
swarming towards the best bacterium of the swarm θB(G); (3) a reproduction process, if the frequency
parameter RepCycle (defined by the user) allows it, with the best bacteria of the swarm Sr; and finally
(4) an elimination-dispersal process that eliminates the worst bacterium of the swarm.

Chemotaxis: In this process, two swims are interleaved in each generation: either the exploitation
swim or exploration swim is performed. The process starts with the exploitation swim (classical swim).
Yet, a bacterium will not necessarily interleave exploration and exploitation swims, because if the new
position of a given swim θi(j + 1, G) has better fitness (based on the feasibility rules) than the original
position θi(j, G), another swim at the same direction will take place in the next loop. Otherwise, a new
tumble is computed. The process stops after Nc attempts.

The exploration swim uses the mutation between bacteria and is calculated by:

θi(j + 1, G) = θi(j, G) + (σ)(θr
1(j, G)− θr

2(j, G)) (22)

where θr
1(j, G) and θr

2(j, G) are two different randomly selected bacteria from the population.
Additionally, σ is a parameter defined by the user used in the swarming operator, which defines
the proximity of the new position of a bacterium with respect to the position of the best bacteria in the
population θB(G). In this operator, σ is a positive control parameter for scaling the different vectors in
(0,1), i.e., scales of the area where a bacterium can move.

The exploitation swim is calculated as:

θi(j + 1, G) = θi(j, G) + C(i, G)φ(i) (23)
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where φ(i) is calculated with the original tumble operator of BFOA:

φ(i) =
∆(i)√

∆(i)T∆(i)
(24)

where ∆(i)T is a random vector with elements within the range [−1, 1].
C(i, G) is the random step size of each bacterium updated by:

C(i, G) = R ∗Θ(i) (25)

where Θ(i) is a randomly generated vector of size n with elements within the range of each decision
variable: [Ux, Lx], x = 1, . . . , n, and R is a user-defined parameter for scaling the step size (this
value must be close to zero, for example 5.00E-04). The initial C(i, 0) is generated using θ(i).
This random step size allows bacteria to move in different directions within the search space and
prevents premature convergence, as suggested in [31]. Step size R can be randomly, statically, and
dynamically adjusted [32].

Swarming: At the half number of the chemotaxis process, the swarming operator is applied with
(where σ is a user-defined positive parameter between (0,1)):

θi(j + 1, G) = θi(j, G) + σ(θB(G)− θi(j, G)) (26)

where θi(j + 1, G) is the new position of the bacterium i, θB(G) is the current position of the best
generational bacterium and σ, is a parameter called scaling factor, which regulates how close the
bacterium i will be from the best bacterium θB. In this proposal, if a solution violates the boundary
of decision variables then a new solution of xi is randomly generated between the lower and upper
limits Li ≤ xi ≤ Ui of the decision variables. The swarming operator movement applies twice in a
chemotaxis loop, while in the remaining steps the tumble-swim movement is carried out.

Reproduction: In this process, bacteria are ordered based on the handling constraint technique,
duplicating the best bacteria Sr, and eliminating the same number of worst bacteria to maintain the
size of the population. The process is carried out once every certain number of cycles which is a
user-defined parameter 1 ≤ RepCycle ≤ GMAX, it aims to allow the diversity in the swarm.

Elimination-dispersal: Finally, the worst bacterium of the population θw(j, G) is eliminated based
on the feasibility rules, and a new one is randomly generated.

The original proposal of TS-MBFOA includes a skew mechanism to generate the random initial
population and a local search engine. However, in this study we did not include this mechanism in
order to reduce computational cost. The pseudocode of TS-MBFOA is presented in Algorithm 1.



Appl. Sci. 2019, 9, 1261 12 of 23

Algorithm 1: TS-MBFOA pseudocode. Sb is the number of bacteria, Nc is the number of
chemotaxis cycles, σ is the scaling factor, R is the stepsize, Sr is the number of bacteria to
reproduce, Repcycle is the reproduction frequency and GMAX is the number of generations.

1 Create an initial population of random bacteria θi(j, 0) ∀i, i = 1, . . . , Sb
2 Evaluate f (θi(j, 0)) ∀i, i = 1, . . . , Sb
3 for G=1 to GMAX do
4 for i=1 to Sb do
5 for j=1 to Nc do
6 Perform the chemotaxis process by interleaving swims using Equations (22) and

(23).
7 Apply the swarming operator using Equation (26) and σ for the bacteria θi(j, G).
8 end
9 end

10 if G mod RepCycle == 0 then
11 Perform the reproduction process by ordering the population according to the

feasibility rules.
12 Duplicate the best bacteria Sr and the same number of worst bacteria are eliminated to

maintain the size of the population.
13 end
14 Perform the elimination-dispersal process eliminating the worst bacterium θw(j, G) from

the current population considering the technique of handling constraint.
15 Update the step size vector using Equation (25).
16 end

4. Normalized Two-Swim Modified Bacterial Foraging Optimization Algorithm (NTS-MBFOA)

Normalization is the operation in which a set of values of a certain magnitude are transformed into
another one, on a predetermined scale. In this work, normalization represents a change of magnitude
at a fixed scale to map the search space of the TS-MBFOA to a range of [−1, 1], and so obtain a better
performance of the algorithm solving the IMG problem [33]. We employ the following to normalize
the bacterial population, as proposed in [34]:

θi
x(j, 0) =

θi
x(j, 0)
Ux

, x = 1, . . . , n (27)

where xi is a decision variable, θi
x(j, 0) is the value to normalize the bacterium’s current position, and

Ux is the upper limit of the variable xi.
Denormalization of results consists of the inverse operation, which is a simple multiplication as is

defined in:
θi

x(j, G) = θi
x(j, G)×Ux, x = 1, . . . , n (28)

The pseudocode of NTS-MBFOA is presented in Algorithm 2. The new bacterium generated in the
elimination-dispersal process is also normalized using Equation (27). The best and worst bacterium are
selected according to the feasibility rules of Deb [14], using the objective function value and the sum
of violated constraints. In this algorithm, bacteria are ordered from best to worst. First, bacteria are
denormalized and evaluated both in the objective function and the problem constraints. Subsequently,
bacteria are ordered. The set of ordered bacteria is again normalized to continue with the following
algorithm processes. Figure 3 describes the TS-MBFOA operation.
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Figure 3. [Normalized] Two-Swim Modified BFOA.
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Algorithm 2: NTS-MBFOA pseudocode. Sb is the number of bacteria, Nc is the number of
chemotaxis cycles, σ is the scaling factor, R is the step size, Sr is the number of bacteria to
reproduce, Repcycle is the reproduction frequency and GMAX is the number of generations.

1 Create an initial population of random bacteria θi(j, 0) ∀i, i = 1, . . . , Sb
2 Evaluate f (θi(j, 0)) ∀i, i = 1, . . . , Sb
3 Normalize θi(j, 0) ∀i, i = 1, . . . , Sb between [−1, 1] using (27)
4 for G=1 to GMAX do
5 for i=1 to Sb do
6 for j=1 to Nc do
7 Perform the chemotaxis process by interleaving swims using Equations (22) and

(23).
8 Apply the swarming operator using Equation (26) and σ for the bacteria θi(j, G).
9 end

10 end
11 if G mod RepCycle == 0 then
12 Perform the reproduction process by ordering the population according to the

feasibility rules.
13 Duplicate the best bacteria Sr and the same number of worst bacteria are eliminated to

maintain the size of the population.
14 end
15 Perform the elimination-dispersal process eliminating the worst bacterium θw(j, G) from

the current population considering the technique of handling constraint. The new
bacterium generated is normalized with Equation (27).

16 Update the step size vector using Equation (25).
17 end
18 Denormalize θi(j, 0) ∀i, i = 1, . . . , Sb between [−1, 1] using Equation (28).

5. Results

We implemented TS-BFOA and NTS-MBFOA to solve the IMG problem on three computers
with the following characteristics: a PC with 4 GB RAM, 2.3 Ghz processor; and two PCs with 8.0 GB
RAM, 2.4 GHz processor. We use the Matlab R2018b development platform over a 64 bit Windows
operating system.

5.1. First Experiment

First, we calibrate the parameters for TSM-BFOA and NTS-MBFOA via 87 independent runs with
a diverse combination of parameters and 15,000 generations. The ranges tested for each parameter
were: Sb between [10, 200], Nc between [5,100], Sr between [1, Sb/2], RepCycle between [10, 200], R, B
between [0,1] and GMAX between [5000,15,000]. The best result obtained from all the independent
runs was the value −564,959.112. During the calibration phase, we noticed that the higher the number
of bacteria and chemotaxis cycles, the execution time of both algorithms increased from an order
of seconds to minutes, due to the number of evaluations needed (number of times that a solution
is evaluated in the objective function and constraints), which is calculated by Sb × Nc × GMAX.
TS-MBFOA takes ∼14 min, on average, using the best combination of parameters. In the case of
NTS-MBFOA, the algorithm takes ∼16 min on average. This time can be improved using a computer
with a better processor.

We found that, by increasing the reproduction frequency (RepCycle) to values greater than 60, the
results quality of the algorithm decreased, that is, the population of bacteria loses diversity. Therefore,
a lower number of bacteria Sr favors the performance of the algorithm.
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Finally, values close to zero for the step size R and scaling factor B allow a better balance between
exploitation and exploration of the search space and have a positive impact on the performance of the
algorithm when generating higher quality solutions according to the objective function.

From these experiments, the best parameter calibration is presented in Table 4.

Table 4. Parameters of TS-MBFOA and NTS-MBFOA.

Parameter TS-MBFOA/NTS-MBFOA

Sb 10
Nc 8
Sr 5
R 0.015
σ 0.040

RepCycle 60
GMAX 15,000

5.2. Second Experiment

We ran independently both TS-MBFOA and NTS-MBFOA 30 times with the parameter
configuration obtained in the previous experiment. The statistical results of both algorithms are
shown in Table 5. The standard deviation is calculated using the best solution found in each of the
30 independent runs, where the best solution is the sum of the 24 objective functions in a run.

Table 5. Basic Statistics of the results obtained by TS-MBFOA and NTS-MBFOA compared against an
Evolutionary Algorithm. Std is the standard deviation.

Statistic LSHADE-CV TS-MBFOA NTS-MBFOA

Best −5.33E+05 −5.52E+05 −5.49E+05
Median −5.32E+05 −4.98E+05 −4.92E+05
Average −5.32E+05 −4.81E+05 −4.89E+05

Worst −5.32E+05 −3.45E+05 −3.78E+05
Std. 8.73E+01 4.86E+04 4.40E+04

Evaluations 2.88E+05 1.20E+06 1.20E+06

TS-MBFOA obtained the best solution with a value of −551,960.121 followed by NTS-MBFOA
with a value −549,369.785 in the objective function. Values are negative because they represent an
economic saving when operating with RES, instead of using only the diesel generator and the ESS
(battery). The more energy supplied by the RES and the less supplied by the DG and the ESS, the
higher the savings.

A convergence graph was generated for TS-MBFOA and NTS-MBFOA using the data of the
independent run number 15 (representing the median). In Figure 4, we can observe the behavior of
each algorithm during the 24 h, both algorithms starting with infeasible solutions. For the NTS-MBFOA,
feasible solutions arise in the first ∼10 generations, except for hours 16:00, 17:00, and 23:00, where the
algorithm requires more generations. For the TS-MBFOA, solutions are found beyond 200 generations.
As can be observed in Figure 4, the NTS-MBFOA converges more quickly on feasible solutions, which
indicates a lower computational cost than TS-BFOA.

With respect to the quality of the solutions found by the algorithms in each of the 24 h, the
convergence graphs indicate that both algorithms behave differently along the day, but in hours 00:00,
02:00–04:00, 06:00–07:00, 13:00–14:00, 16:00–18:00 and 22:00–23:00 the TS-MBFOA algorithm generates
better feasible solutions. In the rest of the hours, NTS-MBFOA generates a better solution to the
objective function. In run number 15, the TS-MBFOA obtained a value of −525,869.49 in the objective
function, in the case of NTS-MBFOA the value found was −422,989.41.
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Figure 4. Convergence graph of TS-MBFOA and NTS-MBFOA in the independent run number 15.

Results of bacterial foraging-based algorithms are better when compared against the LSHADE-CV
algorithm. However, a higher number of evaluations is required. Parameters reported by the authors
of LSHADE-CV algorithm are presented in Table 6. LSHADE-CV dynamically tuned the parameters
using operators such as parameter memory and linear population reduction [35]. The best numeric
solution was −532,508.057. Besides, BFOAs obtained a better median, average, standard deviation and
the worst value found is close to the average.

Table 6. Parameters of LSHADE-CV. D is the number of decision variables of the problem, in this case
D = 4.

Parameter LSHADE-CV

NP (Population) 90 (dynamic)
Generations 334

PCV 0.1
H 6

Ninit D × rNinit

Nmin 4
rNinit

18

Analyzing the results of the TS-MBFOA and the NTS-MBFOA, we observed that NTS-MBFOA
has a lower standard deviation than the TS-MBFOA because it finds the better among the worst
results, that is, results closer to the average. To know if there is a significant difference between the
NTS-MBFOA and TS-MBFOA algorithms, we conducted the non-parametric Wilcoxon Signed Rank
Test, with a confidence level of 95% to the set of the 30 best solutions obtained of the 30 independent
runs of each algorithm. The result obtained by this test was a p value of 0.00112, which implies that
there is a significant difference between the results of both algorithms.

To analyze results from the mechatronic point of view, we used the values of the best solution
generated by TS-MBFOA, NTS-MBFOA, and LSHADE-CV, respectively, for the IMG during the 24 h.
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Values presented in Tables 7–9 were used to generate the IMG behavior graphs shown in Figure 5,
respectively. In these graphs, each resource is marked with different lines. In the case of the BFOAs, it
is important to highlight that the conditions established for the use of solar and wind energy favor the
high demand for diesel consumption (see Table 3).

Figure 5. Visualization of the power supply during the 24 h of the day for the operation of the NIR-MG,
obtained by the TS-MBFOA, NTS-MBFOA and LSHADE-CV.
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Table 7. Details of the best solution found by the TS-MBFOA.

Time P1 (Diesel) P2 (ESS) P3 (Solar) P4 (Wind) Load Objective F.

00:00 2496.3651 1.6701 1 0.9649 2500 745.2825
01:00 1575.6793 423.8042 0.5166 500 2500 −6147.3127
02:00 2318.9864 15.5409 1 514.4727 2850 −18,540.63612
03:00 1620.3690 729.4394 0.1916 600 2950 −806.8983
04:00 1726.7810 122.2190 1 1000 2850 −34,196.74276
05:00 2260.0548 44.1808 0.9957 194.7687 2500 −5523.7952
06:00 1592.7925 505.2331 0.5558 51.4187 2150 13,392.21051
07:00 1962.2575 20.7425 266 1 2250 −35,095.00219
08:00 2190.8451 38.9401 70 0.2148 2300 −7697.4964
09:00 1752.4745 240.1307 327.14 0.2548 2320 −36,970.82458
10:00 1916.7460 195.5353 237.5564 0.1623 2350 −26,010.00763
11:00 2203.3221 487.8177 126 132.8602 2950 −7027.6669
12:00 1179.4551 480.6729 589.8720 7.61E-05 2250 −65,828.93738
13:00 665.9984 1094.7179 535.9387 23.3450 2320 −41,244.7373
14:00 0.0081 1079.7260 700 570.2659 2350 −85,010.15548
15:00 0.0038 1079.7280 560 710.2682 2350 −71,276.1857
16:00 71.2158 1092.9549 405.9995 879.8298 2450 −56,363.05636
17:00 755.8825 1099.9999 63 1231.1175 3150 −22,708.51646
18:00 915.8824 1100 0.9084 1293.2093 3310 −16,576.23946
19:00 2399.4340 850.26 0.3059 1000 4250 −12,090.66619
20:00 3562.3782 187.5911 0.0307 500 4250 −11,849.35186
21:00 2449 2.67E-14 1 550 3000 −20,281.31989
22:00 2422.4054 63.8122 0.1824 463.6 2950 −14,991.08009
23:00 1474.9268 1100 0.7396 74.3335 2650 30,139.01468

Table 8. Details of the best solution found by the NTS-MBFOA.

Time P1 (Diesel) P2 (ESS) P3 (Solar) P4 (Wind) Load Objective F.

00:00 2497.9398 0.9465 1 0.1135 2500 757.2053
01:00 1573.9146 425.4661 0.6192 500 2500 −6112.5895
02:00 1887.5926 212.4112 1 748.9960 2850 −21,861.4483
03:00 2050.6453 298.9427 0.4118 600 2950 −13,440.1448
04:00 2139.6755 165.0924 0.6572 544.5747 2850 −15,293.68
05:00 1850.0542 455.7456 1 193.2001 2500 6565.5218
06:00 1440.1282 362.7909 0.0617 347.0190 2150 −2118.2733
07:00 1983 9.74E-15 266 1 2250 −35,701.6365
08:00 2229 3.86E-12 70 1 2300 −8864.7210
09:00 1894.1196 147.9505 276.9766 0.9530 2320 −32,838.0707
10:00 1899.1742 280.8999 169.2419 0.6838 2350 −14,190.8007
11:00 2244.2556 458.7640 65.01756 181.9627 2950 −1433.49856
12:00 1069.9749 553.1234 626.9016 2.09E-11 2250 −68,753.9706
13:00 570.1086 1099.4087 645.9181 4.5644 2320 −55,393.8553
14:00 0.0040 1079.7278 700 570.2681 2350 −85,010.1842
15:00 1.18E-13 1079.7297 560 710.2702 2350 −71,276.2124
16:00 327.6886 975.1160 406 741.1953 2450 −54,549.0147
17:00 755.8823 1100 57.2461 1236.8715 3150 −22,144.0646
18:00 915.8823 1100 0.3844 1293.7331 3310 −16,524.8488
19:00 2399.9492 850.0232 0.0274 1000 4250 −12,059.4515
20:00 3749 5.47E-14 1 500 4250 −17,399.8776
21:00 2581.0778 0.5378 0.9855 417.3987 3000 −15,121.9325
22:00 2191.6068 383.0271 0.8398 374.5261 2950 −2318.6164
23:00 1099.3798 1100 0.3595 450.2606 2650 15,714.3807
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Table 9. Details of the best solution found by LSHADE-CV.

Time P1 (Diesel) P2 (ESS) P3 (Solar) P4 (Wind) Load Objective F.

00:00 2496.2999 1.7 1 1 2500 744.7866
01:00 1573.6435 425.3572 0.9999 499.9992 2500 −6167.8006
02:00 1887.2143 211.7856 1 750 2850 −21,918.5478
03:00 2049.9383 299.063 0.9999 599.9985 2950 −13,517.0085
04:00 2145.3657 162.0959 0.9999 541.5383 2850 −15,310.5979
05:00 1850.8365 458.4619 1 189.7014826 2500 6780.1853
06:00 1448.8134 350.1865 1 350 2150 −2731.4501
07:00 1982.9999 1.59E-15 266 1 2250 −35,701.6365
08:00 2228.9999 3.15E-17 70 1 2300 −8864.721
09:00 1897.5368 160.1119 262.3511 2.56E-14 2320 −30,445.4635
10:00 1862.9841 298.6488 188.367 6.16E-17 2350 −16,260.0739
11:00 2086.0154 512.6329 126 225.351533 2950 −9881.8426
12:00 1272.2539 374.6484 603.0976 6.02E-14 2250 −70,753.5073
13:00 779.237 1100 440.7629 5.38E-14 2320 −27,202.5115
14:00 2.86E-12 1080 700 570.2702 2350 −85,010.2124
15:00 5.63E-13 1080 560 710.2702 2350 −71,276.2124
16:00 55.8823 1100 406 888.1176 2450 −56,471.1139
17:00 755.8823 1100 62.9915 1231.126 3150 −22,707.6927
18:00 915.8823 1100 1 1293.1176 3310 −16,585.2296
19:00 2398.1499 850.85 1 1000 4250 −12,168.4505
20:00 3748.9999 4.11E-16 1 500 4250 −17,399.8776
21:00 2405.6499 43.35 1 550 3000 −19,017.7949
22:00 2451.0823 205.8 1 292.1176 2950 −4318.2607
23:00 1307.8823 1100 1 241.1176 2650 23,676.9774

Analyzing the behavior graphs of the TS-MBFOA and the NTS-MBFOA, we can observe that both
algorithms produce similar results, i.e., both allow the consumption of solar and wind energy while
decreasing the use of the diesel generator and the intervention of the battery (ESS).

Specifically, the use of solar power increases from 07:00 h onwards and decreases after 17:00 h,
when the sun begins to hide. Concerning the wind power, both graphs show variations of peaks in the
first hours, reaching a maximum production of energy close to 1250 watts between the 13:00 and 19:00
h. The ESS operates in a considerable and constant way between 13:00 h and 18:00 h. However, in the
early hours of the day, the solution generated by TS-MBFOA presents several peaks (state transitions
of the battery operation) that fall and rise abruptly, which decreases the battery’s lifetime.

The behavior of the solar and wind power, as well as ESS, tends to reduce the diesel demand from
12:00 h. Moreover, diesel is even not used for one hour, between 14:00 and 15:00 h, in both algorithms.
However, when solar power is depleted, diesel power begins to rapidly increase. Analyzing the
behavior of the use of diesel in the early hours of the day, it is evident that the NTS-MBFOA solution
allows less diesel generator starts by having fewer peaks during the first hours of the day, which
increases the lifetime of the diesel generator.

TS-MBFOA obtained a better solution in numbers, with −551 960.121 in the objective function
value, compared to NTS-MBFOA, that obtained a value of −549, 369.785 in the objective function.
The behavior of the graph lines, which correspond to the resources used in the IMG, favors the
NTS-MBFOA because this solution increases the useful lifetime of the ESS and the DG, allowing
economic savings on the long term.

Comparing the behavior graphs of the NTS-MBFOA and LSHADE-CV, we observe similar
behavior in all the components of the IMG. Only from the hour 15:00 to 16:00 h it is evident how
the EA delays the start of the diesel generator. On the other hand, from the hour 21:00 to 22:00 h,
this algorithm starts the diesel generator slightly, something that does not happen in NTS-MBFOA.
Since the graphs are very similar, we can take the numerical values as a point of comparison, where the
best results of both algorithms were −549,369.785 and 532,508.057, respectively. We can conclude that
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both algorithms are competitive, but NTS-MBFOA obtains better results. However, the competitiveness
of the evolutionary algorithm is evident, even with fewer generations than our proposal.

6. Conclusions

Two algorithms, TS-MBFOA and NTS-MBFOA, based on the foraging of the E. Coli bacteria were
implemented to solve a CNOP minimizing an isolated microGrid (IMG). An IMG is an intelligent
energy network that uses distributed generators allowing the exploitation of renewable energy sources,
such as wind and solar, as well as fuels (e.g., diesel, petrol). The CNOP is based on a mathematical
model, wherein the optimum values of a network of power generation devices are computed to
supply a load during 24 h. In essence, every hour an optimization problem is solved, according to the
conditions and operation restrictions of the network. As a result, we generate behavior graphs of the
optimal powers, i.e., the sum of the 24 objective functions, which represents the best solution.

Two experiments were designed to monitor the behavior of the algorithms while minimizing
the IMG. In the first experiment, 87 independent runs were conducted with different values to the
parameters of the TS-MBFOA algorithm in order to obtain the best configuration of parameters that
allows the optimal performance of the algorithm. As a result of this experiment, we obtained that
the best performance of the algorithm was using a population of 10 bacteria, eight chemotaxis cycles,
five bacteria to reproduce every 60 generations with a step size of 0.015 and a scaling factor of 0.040.
We also noticed that, the higher the number of bacteria and chemotaxis cycles, the longer the execution
time required by the algorithm.

In the second experiment, 30 independent runs of both TS-MBFOA and NTS-MBFOA were
conducted, using the parameter tuning obtained in the previous experiment. The best solution
obtained by TS-MBFOA was −551,960.121 and by NTS-MBFOA was −549,369.785, where a lower
value is better, meaning economic savings. Both results are the sum of the 24 objective functions.

A non-parametric Wilcoxon signed rank test was conducted for the 30 best solutions of each of
the algorithms, resulting in a significant difference between both algorithms.

Results obtained by TS-MBFOA and NTS-MBFOA were compared against the LSHADE-CV
algorithm, where the best solution found by our proposals were better, although at a higher
computational cost.

According to results, TS-MBFOA found a better numerical solution to the problem. From the
mechatronic point of view, however, it is important to notice that NTS-MBFOA obtained a better result
because it favors the useful life both of the diesel generator and the energy storage system (battery).
This conclusion arises from a behavior analysis of each resource used by the IMG during the 24 h of
a day.

As future work, more experiments will be conducted on TS-MBFOA and NTS-MBFOA to
reduce the number of evaluations and find highly competitive solutions against other state-of-the-art
algorithms. We are motivated in advance in the study of IMG for a real implementation in a
low-consumption energy housing.
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Abbreviations

The following abbreviations are used in this manuscript:

BFOA Bacterial Foraging Optimization Algorithm
BS Battery Storage system
CGS Conventional Generation Systems
CNOP Constrained Numerical Optimization Problem
DG Diesel Generator
EAs Evolutionary Algorithms
ESS Energy Storage Systems
HPGS Hybrid Power Generation System
IMG Isolated Microgrid
MBFOA Modified Bacterial Foraging Optimization Algorithm
MGs Microgrids
NP Nondeterministic Polynomial time
NTS-MBFOA Normalized TS-MBFOA
PV Solar Photovoltaic generator
RES Renewable Energy Sources
SIAs Swarm Intelligence algorithms
SOC State of Charge (SOC)
TS-MBFOA Two-Swim Modified BFOA
W Watts
WT Wind Turbine generator
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