
applied  
sciences

Article

The Method of Fundamental Solutions for
Three-Dimensional Nonlinear Free Surface Flows
Using the Iterative Scheme

Cheng-Yu Ku 1,2 , Jing-En Xiao 1,* and Chih-Yu Liu 1

1 Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan;
chkst26@mail.ntou.edu.tw (C.-Y.K.); 20452003@email.ntou.edu.tw (C.-Y.L.)

2 Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan
* Correspondence: 20452002@email.ntou.edu.tw; Tel.: +886-2-2462-2192 (ext. 6159)

Received: 22 March 2019; Accepted: 22 April 2019; Published: 25 April 2019
����������
�������

Abstract: In this article, we present a meshless method based on the method of fundamental solutions
(MFS) capable of solving free surface flow in three dimensions. Since the basis function of the
MFS satisfies the governing equation, the advantage of the MFS is that only the problem boundary
needs to be placed in the collocation points. For solving the three-dimensional free surface with
nonlinear boundary conditions, the relaxation method in conjunction with the MFS is used, in which
the three-dimensional free surface is iterated as a movable boundary until the nonlinear boundary
conditions are satisfied. The proposed method is verified and application examples are conducted.
Comparing results with those from other methods shows that the method is robust and provides high
accuracy and reliability. The effectiveness and ease of use for solving nonlinear free surface flows in
three dimensions are also revealed.

Keywords: three–dimensional; tree surface; nonlinear; the method of fundamental solutions (MFS);
meshless method

1. Introduction

Accurate determination of the unknown phreatic line is regarded as one of the most important
considerations for affecting the safety of an embankment dam or weirs, since failure of the earth–filled
structure occurs because of piping and internal erosion mainly from seepage [1]. The determination
of the phreatic line in seepage flow is a nonlinear problem which needs to find the location of the
movable surface from the nonlinear boundary conditions [2]. The free surface problems can be solved
using mesh–based methods with an adaptive mesh [3–6] or a fixed mesh [7–12]. Among the methods,
the extended pressure method [13] based on finite differences is probably the simplest one for free
surface calculation. Computational techniques for calculating two–dimensional free surface flows are
well-established [14–21]. However, solving three-dimensional free surface flow problems needs to deal
with three-dimensional geometric complexity. Mesh-based methods for handling the complexity of
three-dimensional boundary conditions require sophisticated remeshing scheme. To have a successful
three-dimensional mesh generation algorithm is, therefore, quite a challenging task.

Comparing to conventional mesh-based methods, meshless methods are relatively simple because
only arbitrary collocation points need to be placed on the physical domain [22]. In particular,
the collocation points may be placed only on the boundary for the method of fundamental solutions
(MFS) [23–29] because the basis function is the fundamental solution which satisfies the governing
equation. The basic idea of the MFS is to represent the unknown as the linear combination of basis
functions which are the fundamental solutions using the addition theorem [28]. The solutions are
computed by fundamental solutions using many sources which must be collocated outside the domain
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of the problem. Since the boundary conditions are applied at boundary points, the intensities of source
points (or the coefficients) can be obtained by solving the system of simultaneous linear equations.
To avoid the treatment of singularities, the source points of the MFS must be collocated out of the
domain [30]. As a result, the MFS does not need to deal with the singularities, meshes, and numerical
integrations. With the advantage of the boundary-type meshless method, only the collocation points
on the moving surface have to be renewed during iteration for the computation of the position
of the three-dimensional nonlinear free surface [1]. It avoids the most difficult task for handling
the three-dimensional geometric complexity. As the problem of the free surface flow is nonlinear,
it is necessary to introduce the iterative strategies to solve the nonlinear problem. Two common
fundamental schemes are used. They are the fixed-point iteration [31,32] and the Newton type
schemes [33]. The relaxation scheme [34–36] based on the fixed-point iteration scheme with a relaxation
factor is adopted in this study for solving the nonlinear free surface problems in the three-dimensional
domain. For solving the nonlinear problem, the iterations are required to match the boundary
conditions on the moving surface.

To the best of the authors’ knowledge, the pioneering work which uses the proposed MFS
to solve the nonlinear free surface flows in three dimensions has not been reported in previous
studies yet. We therefore propose a moving meshless method based on the MFS capable of solving
three-dimensional free surface flow problems over arbitrary geometries in this article. Since the basis
function of the MFS is the solution derived from the governing equation, the MFS is categorized into
the meshless method in which only the domain boundary needs to be discretized by placing the
collocation points. For solving the three-dimensional free surface with nonlinear boundary conditions,
the relaxation method in conjunction with the MFS is used, in which the three-dimensional free surface
is iterated as the movable surface until the nonlinear boundary conditions are satisfied. The proposed
method is verified and application examples are performed.

The remainder of this paper is as follows. We introduce the governing equation of the
three-dimensional free surface flow in Section 2. Section 3 is devoted to give the formulation of
the MFS and the iterative scheme for finding the free surface are also presented. In Section 4, validation
examples of the proposed method are conducted. In Section 5, application examples are also carried
out to evaluate the performance of the proposed MFS. In Section 6, a specific discussion of this paper is
given. Finally, conclusions are presented in Section 7.

2. The Governing Equation

The governing equation in three dimensions for the seepage flow through a homogenous porous
media is as follows:

∆h(x, y, z) = 0 in Ω, (1)

with
h(x, y, z) = g on ΓD, (2)

∂h(x, y, z)
∂n

= f on ΓN, (3)

where h is the total head, ∆ is the Laplacian, Ω represents the boundary of the problem, n denotes the
normal vector, Γ ∈ ΓD ∪ ΓN is the boundary of Ω, g and f denote the Dirichlet and Neumann boundary
values, ΓD denotes the Dirichlet boundary, and ΓN denotes the Neumann boundary. As demonstrated
in Figure 1, the boundary conditions of the free surface flow in three dimensions through a rectangular
dam can be presented by Γabcd, Γbce f , Γ f egh, Γhgij, Γadi j, Γabhj and Γdcgi. The Dirichlet boundary conditions
are imposed on the Γbce f and Γadi j, respectively.

h = H2 on Γadi j, (4)

h = H1 on Γbce f . (5)



Appl. Sci. 2019, 9, 1715 3 of 20

Appl. Sci. 2019, 9, x FOR PEER REVIEW 3 of 19 

1H=h  on bcefΓ . (5) 

According to the Bernoulli equation, the total head can be expressed as 

γ
pzh += , (6) 

where z  is the head above the sea level, p  is the pore water pressure, and γ  is the water unit 

weight. On the free surface boundary, hgijΓ , the boundary conditions are given as follows: 

0=
∂
∂
n
h

, zh =  on hgijΓ .  (7) 

On the seepage face boundary, feghΓ , the boundary condition is depicted as 

zh =  on feghΓ . (8) 

On boundaries, abcdΓ , abhjΓ  and dcgiΓ , the Neumann boundary conditions may be given as 

follows: 

0=
∂
∂
n
h

 on abcdΓ , abhjΓ  and dcgiΓ .  (9) 

Since zh =  is unknown and needs to be computed iteratively, we adopt the MFS to solve the 
governing equation for the nonlinear free surface seepage flow.  

 
Figure 1. Three-dimensional nonlinear free surface flow through a dam. 

3. The Method of Fundamental Solutions 

To obtain the three-dimensional free surface with nonlinear boundary conditions, the relaxation 
method in conjunction with the MFS was used. The formulation of the MFS and the relaxation method 
for finding the free surface are described in the following section. 

3.1. The Fundamental Solution of the Laplace Equation 

A fundamental solution for a linear partial differential equation with regard to the Dirac delta 
function is the solution of the inhomogeneous equation. 

)(),( y-xyx δ=ΔG ,  (10) 

Figure 1. Three-dimensional nonlinear free surface flow through a dam.

According to the Bernoulli equation, the total head can be expressed as

h = z +
p
γ

, (6)

where z is the head above the sea level, p is the pore water pressure, and γ is the water unit weight.
On the free surface boundary, Γhgij, the boundary conditions are given as follows:

∂h
∂n

= 0, h = z on Γhgij. (7)

On the seepage face boundary, Γ f egh, the boundary condition is depicted as

h = z on Γ f egh. (8)

On boundaries, Γabcd, Γabhj and Γdcgi, the Neumann boundary conditions may be given as follows:

∂h
∂n

= 0 on Γabcd, Γabhj and Γdcgi. (9)

Since h = z is unknown and needs to be computed iteratively, we adopt the MFS to solve the
governing equation for the nonlinear free surface seepage flow.

3. The Method of Fundamental Solutions

To obtain the three-dimensional free surface with nonlinear boundary conditions, the relaxation
method in conjunction with the MFS was used. The formulation of the MFS and the relaxation method
for finding the free surface are described in the following section.

3.1. The Fundamental Solution of the Laplace Equation

A fundamental solution for a linear partial differential equation with regard to the Dirac delta
function is the solution of the inhomogeneous equation.

∆G(x, y) = δ(x− y), (10)
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where G(x, y) is the three-dimensional fundamental solution for the Laplace equation, x is the spatial
coordinate which is collocated on the boundary, y is the coordinate of source points, and δ(x− y) is the
Dirac delta function. In the MFS, the unknown is assumed to be the linear combination of fundamental
solutions of the governing equation using source points. The solution of the Laplace equation in three
dimensions is approximated as follows:

h(x) ≈
N∑

j=1

α jG(x, y j), x ∈ Ω, (11)

where α j is the coefficient or the intensity of source points, y j is the source placed outside the domain,
and N is the source number. The fundamental solution of three-dimensional Laplace equation is then
expressed as

G(x, y j) =
1

4πr j
, (12)

where r j =
∣∣∣∣x− y j

∣∣∣∣ is the distance between the x and j-th sources y j. Applying the boundary conditions,
the following equations can be obtained:

h(xk) ≈
N∑

j=1

α jG(xk, y j) = g(xk), (13)

∂h(xk)

∂n
≈

N∑
j=1

α j
∂
∂n

G(xk, y j) = f (xk), (14)

where k = 1, . . . , Q, Q is the boundary point number, g(xk) and f (xk) are the Dirichlet and Neumann
boundary values given at boundary points, respectively. In order to determine the coefficients,
α j, we may collocate the boundary collocation and source points using Equations (13) and (14).
Then, the following simultaneous linear equations may be obtained as

Aα = b, (15)

where A = 1
4π



1/r11 1/r12 1/r13 1/r14 · · · 1/r1N
1/r21 1/r22 1/r23 1/r24 · · · 1/r2N

...
...

...
... · · ·

...
1/ri1 1/ri2 1/ri3 1/ri4 · · · 1/riN

r11·
→
n11/r3

11 r12·
→
n12/r3

12 r13·
→
n13/r3

13 r14·
→
n14/r3

14 · · · r1N·
→
n1N/r3

1N
r21·
→
n21/r3

21 r22·n22/r3
22 r23·

→
n23/r3

23 r24·
→
n24/r3

24 · · · r2N·
→
n2N/r3

2N
...

...
...

... · · ·
...

r j1·
→
n j1/r3

j1 r j2·
→
n j2/r3

j2 r j3·
→
n j3/r3

j3 r j4·
→
n j4/r3

j4 · · · r jN·
→
n jN/r3

jN



,

α = [ α1,α2, . . . ,αN]
T, b =

[
g1, g2, . . . , gi, f1, f2, . . . , f j

]T
. In the above equations, A is a Q × S

matrix, S is the source number, α is a vector (size of S× 1) of unknown coefficients, b is a vector (size
of Q × 1) of given values from boundary conditions at collocation points. i and j are the boundary
point number for Dirichlet and Neumann values, respectively, α1,α2, . . . ,αN are unknowns which
need to be determined, r11, r12, . . . , r jN are distances,

→
n11,

→
n12, . . . ,

→
n jN are outward normal directions,

g1, g2, . . . , gi and f1, f2, . . . , f j are the boundary data.

3.2. The Relaxation Scheme

As the problem of the free surface flow is nonlinear, it is necessary to introduce iterative strategies
to solve the nonlinear problem. The nonlinearity of the free surface flow is rooted from the boundary
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conditions of the moving surface, since the governing equation is the linear Laplace equation. To obtain
the location of the nonlinear free surface, the iterative method is used to generate a sequence of
approximated locations of the free surface from the previous one until the termination criterion is
reached. In the iterative process, the position of the boundary and the source points in the MFS must be
renewed together with the free surface boundary. In 2006, Mehl [37] adopted the Picard method, which is
one of the fixed-point iteration schemes for the seepage problems with the nonlinear phenomenon.
Though the most successful technique for solving nonlinear problems is based on Newton’s method,
it is sometimes difficult to use to obtaining the Jacobian for certain problems. As a result, the relaxation
scheme based on the fixed-point iteration scheme with a relaxation factor is adopted in this study
for solving the nonlinear free surface problems in the three-dimensional domain. Over-relaxation
and under-relaxation factors are often used in the iteration scheme. The relaxation scheme with the
under-relaxation factor is adopted in this study because it may be useful for convergence. The value of
the under-relaxation factor is from 0 to 1. We used the relaxation scheme for the solutions only on the
moving surface. The following equation may be obtained:

h̃(J)(xk) = h(J−1)(xk) + β(h(J)(xk) − h(J−1)(xk)), (16)

where β is the factor of under-relaxation, and h̃(J)(xk) is the head of the boundary point on the moving
surface to be updated. After h̃(J)(xk) is obtained, it is adopted as the guess of the head for the
computation of the next iteration. In addition, the heads for the collocation points on the moving
surface need to be updated using the following equation:

h(J)(xk) ≈
N∑

j=1

c(J)
j F(x(J)

k , y(J)
j ), (17)

where J is the iteration counter. The iteration terminates while the following convergence criterion
is achieved:

ε =

√
ni∑

k=1
(hJ(xk) − hJ−1(xk))2

√
ni∑

k=1
(hJ−1(xk))2

≤ 10−4, (18)

where ni is the collocation point number on the free surface. The flow chart of the procedure is shown
in Figure 2.
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4. Validation Examples

4.1. Analysis of Three-Dimensional Seepage Flow Problem

A three-dimensional problem [38] with the peanut-shaped boundary was solved. The domain, Ω,
is peanut-shaped, as shown in Figure 3. The boundary in three dimensions is defined as

Ω =
{
(x, y, z)

∣∣∣x = ρ(θ) sinθ, y = ρ(θ) sinθ, 0 ≤ z ≤ 1
}
, (19)

where ρ(θ) = (cos(2θ) +
√

1.1− sin2(2θ))
1/2

, 0 ≤ θ ≤ 2π.
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The exact solution is
h = z cos x cosh y + z sin xsinhy. (20)

To find the satisfactory source points for three-dimensional problems, we conducted a sensitivity
study [39]. The boundary points are expressed as follows:

xk = (ρk cosθk,ρk sinθk, zk), k = 1, . . . , Q. (21)

The source points are represented by multiply a dilation parameter η from the above equation.

yl = η(ρl cosθl,ρl sinθl, zl), l = 1, . . . , Q, (22)

where η is the dilation parameter for determining the positon of the source points and is greater than
one. θk and θl are the azimuths. ρk and ρl are the radial distances. zk and zl are the vertical distances.
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The Dirichlet data are given from Equation (20). From Figure 4, it is significant that we obtain the best
accuracy while η = 18. It is also found that the maximum absolute error (MAE) can reach up to the
order of 10−11. We conduct another example using η = 18. Figure 5 depicts the computed head of the
MAE to the source number. Good accuracy can be obtained after the source number greater than 1700.
Figure 6 demonstrates the comparison of the head with the exact solution on the profile of z = 0.5.
We obtain accurate numerical results with the MAE in the order of 10−12, as shown in Figure 7.Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 19 

 
Figure 4. Maximum absolute error (MAE) versus the order of η . 

 

 
Figure 5. MAE versus the source number. 

2 4 6 8 10 12 14 16 18 20 22 24 26 28

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

M
ax

im
um

 ab
so

lu
te

 e
rro

r

This study

η

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
The number of source points

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
ax

im
um

 ab
so

lu
te

 e
rro

r

This study

Figure 4. Maximum absolute error (MAE) versus the order of η.



Appl. Sci. 2019, 9, 1715 9 of 20

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 19 

 
Figure 4. Maximum absolute error (MAE) versus the order of η . 

 

 
Figure 5. MAE versus the source number. 

2 4 6 8 10 12 14 16 18 20 22 24 26 28

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

M
ax

im
um

 ab
so

lu
te

 e
rro

r

This study

η

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
The number of source points

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
ax

im
um

 ab
so

lu
te

 e
rro

r

This study

Figure 5. MAE versus the source number.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 19 

 
Figure 6. Comparison of the computed head with the exact solution on profile 50.z = . 

 

 

Figure 7. Absolute error of example 4.1. 

4.2. Analysis of Laminar Flow Around a Cylinder in Three Dimensions 

The second example for the validation is the analysis of laminar flow around a cylinder in three 
dimensions, as depicted in Figure 8. The dimensions of the example are 8, 1 and 4 m in length, width 
and height, respectively. The radius of the cylinder at the center is 1 m. As the geometry of the problem 
is symmetrical, only the upper half part of the symmetry model is considered. The exact solution of the 
problem can be written as 

Figure 6. Comparison of the computed head with the exact solution on profile z = 0.5.



Appl. Sci. 2019, 9, 1715 10 of 20

Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 19 

 
Figure 6. Comparison of the computed head with the exact solution on profile 50.z = . 

 

 

Figure 7. Absolute error of example 4.1. 

4.2. Analysis of Laminar Flow Around a Cylinder in Three Dimensions 

The second example for the validation is the analysis of laminar flow around a cylinder in three 
dimensions, as depicted in Figure 8. The dimensions of the example are 8, 1 and 4 m in length, width 
and height, respectively. The radius of the cylinder at the center is 1 m. As the geometry of the problem 
is symmetrical, only the upper half part of the symmetry model is considered. The exact solution of the 
problem can be written as 

Figure 7. Absolute error of example 4.1.

4.2. Analysis of Laminar Flow Around a Cylinder in Three Dimensions

The second example for the validation is the analysis of laminar flow around a cylinder in three
dimensions, as depicted in Figure 8. The dimensions of the example are 8, 1 and 4 m in length,
width and height, respectively. The radius of the cylinder at the center is 1 m. As the geometry of
the problem is symmetrical, only the upper half part of the symmetry model is considered. The exact
solution of the problem can be written as

h = ey cos x + ex sin z. (23)
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The Dirichlet data are from Equation (23) for the problem. As depicted in Figure 8, the boundaries
of the three-dimensional laminar flow around a cylinder can be presented by Γabcd, Γade f , . . . , Γd f gikc.
In this example, the dilation parameter, η, is set to be 2. In total, 3200 boundary points were collocated
on the entire boundary, as demonstrated in Figure 9. To obtain the field solutions, we placed 400 points
within the domain. Figure 10 depicts the head distribution of computed result versus the analytical
solution. We obtain accurate numerical results with the order of 10−5 for the MAE, as shown in Figure 11.
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5. Application of the Proposed Method

5.1. Flow Through a Rectangular Dam in Three Dimensions

The flow through a rectangular dam with a moving surface in three dimensions is presented
in Figure 1. The three-dimensional moving surface is the surface of the barometric pressure and an
unsaturated zone is above the moving surface. The problem is regarded as an inverse problem solved
by the relaxation scheme for finding free surface. The dimensions of the example are 16, 5 and 24 m in
length, width and height, respectively. In addition, the upstream water elevation H2 = 24 m and the
downstream water elevation H1 = 4 m. This example is also regarded as a typical problem which has
been comprehensively studied in the past [1,40,41].

In this example, the dilation parameter η is set to 20. In total, 6300 points were collocated on the
whole boundary. The initial guess of the three-dimensional free surface is composed of 1800 boundary
collocation points, as depicted in Figure 12. A total of 280 iterations were used to achieve the stopping
criterion by the relaxation scheme. In order to verify the result with those from previous studies,
we select the profile on y = 2.5 and compared the computed free surface with other published
studies [1,40,41], as depicted in Figure 13. Table 1 demonstrates the comparison of the computed
location of the separation point with those from references [1,40,41]. The result of the separation point
is 12.75 m. We find that the computed result of the separation point is close to those from other studies.
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Table 1. Comparison of computed result of the separation point with those from references.

Reference Height (m)

This study 12.75
Aitchison [40] 12.79

Chen, Hsiao, Chiu and Lee [41] 12.68
Xiao, Ku, Liu, Fan and Yeih [1] 12.84

5.2. Flow Through a Trapezoidal Dam in Three Dimensions

The flow through a trapezoidal dam with a moving surface in three dimensions is presented in
Figure 14. The length, width and height of the trapezoidal dam are 7, 5, and 5 m, respectively. On Γadi j
and Γbce f , the Dirichlet data were assigned as H2 = 5 m on Γadi j and H1 = 1 m on Γbce f . The Neumann
data for no flow boundary were assigned on Γabcd, Γabhj and Γdcgi. On the moving surface, the following
boundary conditions are given as

∂h
∂n

= 0, h = z on Γhgij. (24)
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In this example, the dilation parameter η was set to be 15. In total, 6300 points were collocated
on the whole boundary. The initial guess of the three-dimensional free surface was composed of
1800 boundary collocation points, as depicted in Figure 15. In total, 70 iterations were used to achieve
the stopping criterion by the relaxation scheme. To verify the result with those from previous studies,
we selected the profile on y = 2.5 and compared the computed free surface with others published
studies [1,42–46], as shown in Figure 16.
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5.3. Flow Through an Earth Dam in Three Dimensions

The flow through an earth dam with a moving surface in three dimensions is presented in
Figure 17. The dimensions of the example are 100, 5 and 18 m in length, width and height, respectively.
The Dirichlet data were assigned as H2 = 18 m on Γadi j and H1 = 8 m on Γbce f . The no-flow Neumann
boundary condition to simulate the imperious boundary was given on Γabcd, Γabhj and Γdcgi. On the
moving surface, the following boundary conditions are given as

∂h
∂n

= 0, h = z on Γhgij. (25)
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Figure 17. Flow through an earth dam in three–dimensions.

In this example, the dilation parameter η was set to be 8. In total, 6300 points were collocated
on the whole boundary. The initial guess of the three-dimensional free surface was composed of
1800 boundary collocation points, as depicted in Figure 18. In total, 150 iterations were used to achieve
the stopping criterion by the relaxation scheme. To verify the result with those from previous studies,
we selected the profile on y = 2.5 and compared the computed free surface with others published
studies [1,47], as shown in Figure 19.
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6. Discussion

In this study, a meshless method based on the MFS for the nonlinear free surface flows in three
dimensions was investigated. Since the adjustment of the mesh generation for the mesh-based methods
during the iteration process is difficult, most application of the moving boundary problems are
also limited in two dimensions. To model the flow problems with a free surface, the over-specified
boundary conditions are assigned on the free surface boundary so that the relaxation method in
conjunction with the MFS can then be solved. The advantage of the MFS is that it avoids the difficult
three-dimensional mesh generation and the points are only collocated on the problem boundary.
Furthermore, the proposed method may especially advantageous for dealing with three-dimensional
geometric complexity including several typical dam problems. The comparison of results shows that
the position of the free surface using the MFS almost identically with other methods.

7. Conclusions

This paper presents the study on solving three-dimensional free surface flow problems in arbitrary
geometries using the moving boundary-type meshless method based on the MFS. The proposed method
is verified and application examples are performed. The significance of the research is addressed
as follows:

1. The study on solving three-dimensional free surface flow problems is still limited to the
conventional mesh-based method. This study presents a pioneering work using a novel moving
boundary-type meshless method based on the MFS capable of solving three-dimensional free
surface flow problems over arbitrary geometries. Compared to conventional mesh-based
methods, the proposed method is relatively simple because the points are collocated only on the
problem boundary.

2. With the advantage of the boundary-type meshless method, only the collocation points on the
moving surface have to be renewed during iteration for the computation of the location of
the three-dimensional nonlinear free surface. It avoids the most difficult task for handling the
three-dimensional geometric complexity.

3. The validation examples demonstrate that the MAE from the computed results can achieve the
accuracy with the order of 10−12. It is significant that our method may yield highly accurate
results. The effectiveness and ease of use for solving three-dimensional nonlinear free surface
flows are also revealed.

4. The appearance of layered soils is often found in free surface flow problems such as the zoned
embankment type dam. The anisotropic nature of layered soils is usually difficult to solve
using the MFS. Further research is recommended to solve free surface flow problems in layered
heterogeneous soils. It is suggested that the domain decomposition method may be an alternative
to integrate with the MFS to deal with these problems in layered heterogeneous soils.

5. Furthermore, the transient free surface flow problem may be a great challenge for the MFS.
Several studies have been found to solve the transient heat equation using the MFS. Since the
governing equation of the transient free surface flow and the transient heat conduction problems
are identical, it is recommended that further research may be considered to apply the MFS for
solving transient free surface flow problems.
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