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Abstract: Semantic role labeling is an effective approach to understand underlying meanings
associated with word relationships in natural language sentences. Recent studies using deep neural
networks, specifically, recurrent neural networks, have significantly improved traditional shallow
models. However, due to the limitation of recurrent updates, they require long training time over a
large data set. Moreover, they could not capture the hierarchical structures of languages. We propose
a novel deep neural model, providing selective connections among attentive representations,
which remove the recurrent updates, for semantic role labeling. Experimental results show that our
model performs better in accuracy compared to the state-of-the-art studies. Our model achieves
86.6 F1 scores and 83.6 F1 scores on the CoNLL 2005 and CoNLL 2012 shared tasks, respectively.
The accuracy gains are improved by capturing the hierarchical information using the connection
module. Moreover, we show that our model can be parallelized to avoid the repetitive updates of the
model. As a result, our model reduces the training time by 62 percentages from the baseline.

Keywords: semantic role labeling; attention mechanism; selective connection

1. Introduction

Semantic representation is important for the machine to understand the meaning of data. Semantic
role labeling (SRL) is a task of constructing a dependency structure to represent the semantics in natural
language. In specific, it assigns pre-defined labels, called semantic roles, about ‘when’, ‘who’, ‘what to
whom’ or ‘where’, to the non-predicate words dependent to predicates. The definition of semantic
roles have been well posed in the literature [1,2]. The aim of SRL is accurately predicting the labels
among verbs and other words given a sentence. SRL studies have been applied to benefit many natural
language processing (NLP) applications, such as question answering [3] machine translation [4],
and many others [5].

Many traditional SRL approaches have used the shallow models that rely on the syntactic features.
With the recent development of deep learning [6], more and more SRL studies using deep neural
networks improve state-of-the-art approaches only with large training data sets. For example, recurrent
neural networks (RNN) have shown satisfactory results [7] in SRL owing to the sequential nature of
natural language data. The variants of RNN using long short-term memory (LSTM) are popularly used
in many NLP applications [8] due to their great performance in training sequential data. The LSTMs,
which enable the RNNs to memorize selectively, have been regarded as viable modules that can
learn the latent features over an alignment between the pair of long sentences. In SRL, several recent
studies [9–11] have been adopted the LSTM-based networks to generate a sequence of labels, that is,
semantic roles, corresponding to the input words. A seminal work [9] has introduced a stacked,
bidirectional LSTM-based model for SRL, and has outperformed the existing studies.

However, the existing approaches [7,9–11] have several limitations. First, LSTM-based approaches
overwrite a large number of parameters of the model during training. The updates of the hidden states
may perform poorly when the training sequences are long. For example, the overwritten memory of an
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LSTM module may not maintain the features learned at the early stage until it processes the last word.
Second, due to the inherent recurrence, the current hidden state is repetitively updated by the previous
hidden state. Although this process makes the models learn the dependency through time, it prevents
parallel computation. Third, training with temporal dependency over the sequence may lose some
spatial constraints, for example, hierarchical structure over the words in a sentence. For example,
a sequence of words, construct a phrase, and a sentence is made of phrases. It is worth noting that the
hierarchical representation is an effective form of natural language. Although the existing SRL studies
perform greatly, there still remain challenges in training long sequences and spatial constrains, such as
hierarchical information.

To address the problems, we present a novel deep architecture for SRL based on stacked
attentive representations. The attention mechanism [12] has become a prevalent method in neural
models for NLP tasks because of its impressive performance [6]. The attention mechanism works to
focus the salient information over an input while generating an output. Our model is based on the
self-attention mechanism [13] for sentence representation because we note that the self-attention is
a proper method to capture the associations for SRL. Since the self-attention has been considered to
derive the intra-connections among every word within a sentence, it has been popularly adopted
in recent NLP studies [6]. The basis of our architecture is the encoder of the transformer [14] as in
the prior work [15], which is similar to ours. However, we differ from the work [15] by stacking
the self-attentions with the original module called, the selective connection. The module makes our
model can capture the hierarchical information over the attentive representations, which are built on
the self-attention modules, while training. Our intuition is that the combination of the self-attention
module and the selective memory units would perform better because the former represents the
correlation between words in a sentence, and the latter represents the hierarchical structure in the
learned representation of the sentence. By adapting gating units in the selective connection module,
our model can manage where to focus over the sentence while encoding its representations. As a
result, the selective connection module can maintain latent features through the entire stacked network
efficiently. As a result, we observed our model performs great in SRL task. Moreover, our proposed
module can be adopted as a complementary to any work utilizing the stacked self-attentions.

We present a comparative performance study using two benchmark data sets, CoNLL-2005 and
CoNLL-2012, widely used in the literature. Our model outperforms the previous state-of-the-art
approaches by 0.6, 1.1 and 0.2 F1 scores in WSJ test, Brown test and OntoNotes test, respectively.
Experimental results also show that our model effectively captures the hierarchical information of
long complex sentences. Moreover, we discuss that our architecture allows for more parallelization to
compute the model efficiently.

The remaining of the paper is organized as follows: Section 2 describes the backgrounds of SRL
and attention mechanisms. Section 3 presents our proposal deep network architecture. Section 4 shows
the experimental study. Section 5 discusses related work. We conclude our work in Section 6.

2. Backgrounds

2.1. Semantic Role Labeling

SRL is the process of computational identification and classification of the arguments in given
text into predefined labels. The label denotes the role of words with respect to predicates in a sentence.
For example, given a sentence, “Some nights, he slept under his desk.”, the result of SRL is presented
as follows:

[TMP Some nights,], [A0 he][V slect][LOC under his desk.]

where A0 represents the actor, V represents the predicate, TMP denotes the timing of the action,
and LOC indicates the location of the actor.

SRL consists of three basic steps: (1) predicate identification, (2) argument assignment, and (3)
classifying arguments. In the first step, syntactic analysis, Part-of-speech (POS) tagging, is performed
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to detect clauses and frames. Based on the POS tags attached to tokens, a single main verb is selected
as a predicate. In some problem settings, a predicate is given with a sentence to be parsed. In the
second step, it chooses candidate arguments from non-argument tokens. It is common to build a
parse tree and predicts possible dependent tokens to the selected predicate. Finally, any classification
algorithms can be applied to find a possible solution for the sequence labeling problem. In recent
studies, [7,9–11], they adopt end-to-end deep neural network models to take only sentences as inputs
to labeling semantic roles for corresponding words.

2.2. Attention Mechanisms

Attention is a trainable alignment of an input and an output. In NLP, this mechanism is used
to represent how much the input symbols are associated with generating a certain output symbol.
The most salient symbols in the input are learned as focused by adjusting the weights during training.
The mechanism is often formulated jointly with the sequence to sequence model that consists of two
modules: an encoder and a decoder [16]. In the encoder, it takes the input sentence x, a sequence of
vectors x = (x1, . . . , xtx ). The output vector of the encoder is called context vector c that contains latent
features h of the input x. The vector is commonly generated by RNN hidden states through time t
such that

c = f ({h1, . . . , ht}), (1)

where ht ∈ Rn is a hidden state at time t. f is a nonlinear function. The decoder is trained to generate
the next token yt′ , given the vector c and all the previous predicted words {y1, ..., yt′−1}. The context c
is used while training as

p(y′t|y1, ..., yt′−1, x) = g(yt′−1, st′ , ct′), (2)

where g is a nonlinear function that outputs the probability of y′t. s′t is the hidden state computed by
si = l(si−1, yi−1, ci). ct′ is the context vector computed at each decoding step t′. Without the attention
mechanism, si is a function f (si−1, yi−1), which removes the context vector. The context vector ci is
depends on a sequence of hidden states as

ci =
tx

∑
j=1

αijhj· (3)

where the weight αij of each state is computed by

αij =
exp(eij)

∑ tx
k=1exp(eik)

, (4)

where eij is a score a of association between the hidden state si−1 of the decoder and the hidden state
hj of the encoder. The score a can be modeled based on the alignment table that represent a direct
allocation, which can be jointly trained via end-to-end manner. In this work, we adopt several variants
proposed in [14] to compute the score, which is denoted as attention score.

3. Selectively Connected Attentive Representation

To tackle the problems mentioned in the introduction, we propose a novel deep architecture for
SRL. Inspired by the self-attention mechanism [14], our model train the correlation between words
in a sentence based on the multiple layers of attentive representation. Upon the staked self-attention
modules, we construct a connecting mechanism over the layers of attentive representations to capture
the hierarchical structure in a sentence. In the following subsections, we describe the details of our
proposed architecture comprising embedding modules, attentive representation modules, selective
connection modules, and its training process.
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3.1. Embedding

Word embedding is the first step of using neural networks to feed natural word symbols as
processing inputs. To encode the natural word sequence into a set of vectors, the distributional word
representation [17] is often used. First, each word in the training data is converted to the one-hot
vector. Given a predicate, a predicate mask is similarly projected to the same one-hot vector space.
Then, the (pre-trained) embedding matrix projects the two one-hot vectors to d-dimensional space.
The projected vectors are concatenated to a vector evw, that is called embedding vector. As a pre-trained
embedding matrix, we use Embeddings from Language Models (ELMo) [18] as in [11], which shows
the state-of-the-art results. In our model, we set the size of the projection space as same as the
size of the attentive representation described following subsections for simplicity. Because the self
attentive representation ignores the positions of words, we should encode the positional information
of words. To distinguish the different positions, we project the word positions to the same space of
word embedding by using the well-defined function in the related work [14]. A sine function and
cosine function are used for different frequencies:

evp(pos, 2i) = sin(pos/10000(2i/d))
evp(pos, 2i + 1) = cos(pos/10000(2i/d)),

(5)

where pos denotes the word index and i denotes the number of dimensions.
To incorporate the sequential nature of language, we build an optional encoding layer based

on the bidirectional LSTMs as in the state-of-the-art approach [11]. This layer exploits two parallel
LSTMs processing opposite directions of processing input sequences. The two outputs of this layer are
concatenated and applied max pooling to reduce the dimension to the embedding space. The output is
fed to the first layer of attentive representation module, which will be described in the next subsection.
The output this layer is formulated as follows:

−→
ht =

−−−→
LSTM(xt,

−→
h t+1)←−

ht =
←−−−
LSTM(xt,

←−
h t−1)

evs =
−→
ht +

←−
ht .

(6)

The final embedding vector is represented as L×
{

evw � evp � evs
}

where L is the length of the
sentence, and � is the element-wise multiplication.

3.2. Attentive Representation

Basically, our model mainly relies on the self-attention mechanism [14] to capture the semantic
roles of the words in a sentence. The self-attention has been successfully applied to draw the
dependency structure within a single sequence. In recent studies [15,19], the self-attention is widely
used because it is not only avoiding recurrent updates during training, but also capturing the
intra-relationship in sentences. The most relevant work [15] to ours has achieved state-of-the-art
performance (without pre-trained embedding models) in 2017 by parallelizing the encoding and
decoding processes by using multi head self-attention. Inspired by the prior work, we build the
dependency structure featured for SRL by densely connecting the every word parts to each other.
Figure 1 illustrates the multi head self-attention module.
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Figure 1. Multi head self-attention.

As a basis, the scaled dot-product attention is adopted to compute the attention score. The dotted
block denoted as h-heads of self-attention depicts a single computation flow of the scaled dot-product
attention. Also, two variants can be used for efficient computation: dot-product attention and additive
attention. The dot-product attention utilizes matrix production, which allows faster computation [15].
Given a matrix of n query vectors Q ∈ Rn×d, keys K ∈ Rn×d and values V ∈ Rn×d for X, the scaled
dot product attention computes the attention scores based on the following equation:

a(Q, K, V) = so f tmax(
QKT
√

d
)V, (7)

where d is the number of hidden units of the network. Without
√

d, the score computes the dot-product
attention. Additive function is just a simple concatenation.

For multiple heads of the self-attention, we adopt linear projections by WQ
i ∈ Rn×d/h, WK

i ∈
Rn×d/h, WV

i ∈ Rn×d/h, which correspond to queries, keys and values, respectively. The attention score
a calculates the association between queries and keys for values to generate the attentive representation
of the vectors X. As a result, our model is incorporating multiple parallel channels, that is, h-multi
heads mi, to represent the different learned semantics from the inputs:

mi = a(QWQ
i , KWK

i , VWV
i ), (8)

To combine the multiple channels as a single representation, we concatenate them and apply
linear projection via a feed forward layer as X′ = Concat(m1, ..., mh)×WA. The Figure 2 illustrate the
module called attentive representation that makes the multi head self-attention module to be trainable.
Each module contains the multi head self-attention sub-module and fully connected sub-layer, followed
by a sub-layer for normalization. Also, we adopt residual connections around each of the sub-layers
described as blocks. The number h of the parallel layers is given as a hyper-parameter. To deepen
the model, we stack the attentive representation modules by N sequential layers. It is worth noting
that the depth of our model affects the performance on labeling accuracy, which means the learned
semantic representation would be more robust according to the depth. By adopting the multiple heads
and the stacking, our model can capture the correlative relationships within a sentence effectively.



Appl. Sci. 2019, 9, 1716 6 of 15

X

Layer Norm

 X'

Multi Head Self-attention

Attentive
Representation

Fully Connected

Layer Norm

Figure 2. Attentive Representation.

3.3. Selective Connection

The stacked attentive representations is suitable for the pairwise connections, which is a densely
populated structure, between words in a sentence. In other words, it can capture the associations
among single symbols. However, it cannot learn the features related to the spatial constraints like
hierarchy. Our model combines several components from previous studies [14,15,19]. However, our
work is different from them in that we connect the identical layers of attentive representation to learn
the spatial constraints in sentences. The connection is built with a gated unit that selectively updates the
latent feature Si over the variable-depth model, which comprises N identical multi head self-attention
modules. We propose a novel module called selective connection that maintains the features capturing
the spatial constraints, such as hierarchical structure within the sentence. This module adjusts the flow
of information through the network, which is the orthogonal characteristic of self-attention mechanism.
As a result, our model can manage where to focus over the sentence during encoding its representation.
The motivation of this proposal is that the adaptation of the hierarchical representation learning from
other fields [20,21], would be beneficial to SRL tasks.

The input representation Xi is generated from the i-th layer of attentive representation module.
The initial state S0 is set to be a vector whose elements sampled from a Gaussian distribution with
mean 0 and variance 1/s where s denotes the size of the feature vector. According to each attentive
representation module steps, the state Si is updated as follows:

Si = (1− zi)Si−1 + ziŜi, (9)

where z is a selective modulator that decides how much the features generated from the attentive
representation module activated. The modulator z is computed by

zi = f (WzXi + UzSi−1), (10)

where f is a nonlinear function, for example, sigmoid. Wz and Uz are weight matrices to sum the
existing state and the new state to be selected. The candidate state feature Ŝi is computed by gating
units g as follows:

Ŝi = tanh(WXi + U(gi � Si−1), (11)

where � is an element-wise multiplication. The gating unit g selectively chose the update z to be
activated. The computation of the unit is performed as follows:

ĝi = f (WgXi + UgSi−1). (12)
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The Figure 3 illustrates the computational flow in the selective connection module.
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Figure 3. Selective Connection.

3.4. Overall Architecture

The architecture contains the attentive representation module, the selective connection module
and embedding module described above. The Figure 4 illustrates the overview of proposed architecture
to generate the final probabilities given input sequence.

Our model builds on the stacked encoders inspired by [14] for attentive representation of a
sentence. The architecture composes of a stack of N identical attentive representation modules,
and each module is updated using the selective connection module. We broaden the model by allowing
parallel self-attention channels, namely, h-heads, to synthesize the latent information. The number h is a
hyper-parameter which can be set. With the stacked connections and the multiple channels, the model
can capture the word relationships regardless of their sequential steps without losing useful linguistic
features such as, position and hierarchical structure. In the bottom layer, the embedding module to
project the one-hot vectors of input sentence X to uniform space. Three sub-modules are adapted for
sentence embedding: Word Embedding, Predicate Mask and Positional Encoding. The outputs of
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the sub-modules are combined as the input to the optional module: the bidirectional LSTM encoders.
The result of the encoder is fed to the first attentive representation module, which is the core layer
to densely connect the identical input sequence features. Through the N repetition, the selective
connection module, which is a simple, spatially aware gated network, learns the latent features
among the attentive representations. As a result, the connection module maintains the hierarchical
information captured through the N steps. To stabilize the activation of deep structure, we apply a
residual connection followed by layer normalization. Every module is applied dropout as in [14],
but we exclude them from the figures for clear presentation. At the top, we add a fully connected layer
and a softmax layer to predict the probabilities of semantic role labels for the whole sentence.

X i

Linear Linear

Y

Linear

Si-1

Linear Linear

W Wz Uz Wg Ug

U

Nonlinear Nonlinear

Hadamard Product

AddMatMul

Add MatMul

Add

Tanh

Negate

Linear

Add Add

1

Selective Connection

Figure 4. Overall architecture.

3.5. Training

The total process of training can be described as follows. Given an input sequence
x = {x1, x2, ..., xn}, the log-likelihood of the corresponding label sequence y = {y1, y2, ..., yn} is
log p(y|x; θ) = ∑N

t=1 log p(yt|x; θ). As a training sample x, a sequence of words w with predicate
masks m and positional encoding result are combined to the network. Then, the next layer takes the
densely populated connections, self attention, as the inputs to capture the dependency structure in
them. The dense connection is updated via N steps of self-attention modules. At each step, the model
selectively takes the previously generated features as an input to the next. At last, we take the outputs
of the topmost self-attention layer are fed to softmax layer for the final prediction. We try to maximize
the probabilities of the correct output labels with the input sequence over the entire training set given
as follows:
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log p(yt|x; θ) = p(yt|ht; θ)

= so f tmax(Wht)
>δyt),

(13)

where W is the softmax matrix and δyt is Kronecker delta with a dimension for each output label.
At the inference, we use the average pooling layer to combine all the outputs to get the label probability.
To train the model, we use the multi-channel cross entropy loss. With the loss, every layer has the
ability to learn the word information. Every layer can generate the current label.

4. Experiments

In this section, we report a comparative experimental study using two data sets: CoNLL-2005
shared task and the CoNLL-2012 shared task.

4.1. Datasets

We use the CoNLL-2005 dataset and the CoNLL-2012 dataset for our experiment to compare with
previous work. The CoNLL-2005 has 44,020 sentences with POS tags, clauses with BIO tags, role labels
for predicates and its arguments. This data consists of sections of the Wall Street Journal part of the
Penn TreeBank. The test set includes three sections of the Brown corpus. The CoNLL-2012 dataset is
extracted from the final version, v5.0 OntoNotes corpus. The detail setting for cross validation setting
on training and test sets is described as in [22,23].

4.2. Experimental Setup

We initialize the weights of all sub-layers as random orthogonal matrices. For other parameters,
we initialize them by sampling each element from a Gaussian distribution with mean 0 and
variance 1/d. The embedding matrix is initialized by the pre-trained ELMo model with fine-tuned
parameters [18]. Words that habe not been appeared in the ELMo are changed to the special symbol
<UNK>. We carefully discuss the impact of using pre-trained model in NLP tasks. We set the dimension
of word embeddings and predicate mask is set to 512. The number of hidden units d to 100. The number
of self-attention heads h is set to 16. To find the optimal structure, we vary the number of attentive
representation layers from 4 to 10. The optional layer of bidirectional LSTMs (BiLSTMs) is initialized
with random orthogonal matrices as in [24]. The dropout rate is set to be 0.8. The momentum and
the weight-decay are 0.8 and 0.9 respectively. We use the AdaDelta optimizer with ε = 1× e−6 and
ρ = 0.95 and mini-batch size is set to 80. Clipping gradient is done with threshold 1.0. The number
of symbols in the batch is 4096 for the CoNLL-2005 dataset and 8192 for the CoNLL-2012 dataset.
The learning rate is initialized to 0.01. We train our best model for 400 epochs, which takes about five
days on two Titan Xp GPUs. We compare our model with the best single models of previous studies.

4.3. Experimental Results

We compare our models to five existing studies: two bidirectional LSTM-based models denoted
as He et al. [9,11], include the state-of-the-art SRL model, and a self-attention-based model denoted
as Tan et al. [15] and others [7,25]. Tables 1 and 2 shows our model performance with the reported
results of the previous studies. We summarize the results of the best single models with the metrics
in terms of precision (P), recall (R) and F1. Our proposed model achieves F1 scores of 86.6 and 77.2
on WSJ test and Brown test of CoNLL 2005 shared tasks, respectively. In CoNLL 2012 shared task,
our model achieves best F1 scores of 83.6. In some senses, these may be small improvements on both
datasets compared to the existing studies. However, we have observed several useful characteristics in
the SRL task. For example, with ELMo pretrained model, F1 scores are increased from 83.3 to 86.6.
Based on the study, it is worth noting that the pretrained embedding models with our architecture are
important to general downstream tasks as well as sentence encoding. The key issue in SRL would be
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incorporating the fine-tuning with the language models. The results explain our model is competitive
to predict the semantic role labels compared to previous work.

Table 1. Experimental results on the CoNLL-2005.

Model Development WSJ Test Brown Test

P R F1 P R F1 P R F1

Ours+ELMo 83.1 85.6 85.5 86.4 81.0 86.6 75.8 77.6 77.2
Ours 82.8 82.6 82.2 83.6 80.1 83.3 73.5 74.0 74.9

He et al. (2018) - - 85.3 84.8 87.2 86.0 73.9 78.4 76.1
Tan et al. 82.6 83.6 83.1 84.5 85.2 84.8 73.5 74.6 74.1

He et al. (2017) 81.6 81.6 81.6 83.1 83.0 83.1 72.9 71.4 72.1
Zhou and Xu 79.7 79.4 79.6 82.9 82.8 82.8 70.7 68.2 69.4

FitzGerald et al. 81.2 76.7 78.9 82.5 78.2 80.3 74.5 70.0 72.2

Table 2. Experimental results on the CoNLL-2012.

Model Development OntoNotes Test

P R F1 P R F1

Ours+ELMo 82.9 81.6 81.9 83.2 83.8 83.6
Ours 81.8 81.2 81.3 81.4 82.4 82.8

He et al. (2018) 81.8 81.4 81.5 81.7 83.3 83.4
Tan et al. 82.2 83.6 82.9 81.9 83.6 82.7

He et al. (2017) 81.7 81.4 81.5 81.8 81.6 81.7
Zhou and Xu - - 81.1 - - 81.3

FitzGerald et al. 81.0 78.5 78.9 81.2 79.0 80.1

To better understand the effect of the proposed modules, we compare the performance of using the
selective connection in self-attention based architectures. The Figure 5 shows the model performance,
according to the different numbers of the depth of the model. With increasing number of model depths,
F1 values of both models are gradually increased until it has 9 layers of attentive representation
modules. The training times in the Figure 5 are normalized by setting the medians to be zero to
present the improvement of efficiency. Training time difference due to the selective connection is
relatively small from 6 to 10 layers, which is within the region of higher performance. Although the
hyperparameters we used are slightly different from the work [15], the tendencies of training times
increase are similar. For more than 4 layers of multi head self-attentions, our model with the selective
connections performs much better than others. This means that the adoption of selective connection
enhances the training efficiency.

For parallelism, we compare the time to complete varying the number of epochs given GPU
settings. By assigning a model to 2 GPUs, we have observed that the training time is reduced by 0.62
compared to the single GPU model. For data parallelization, the training time is reduced by 0.67.
Figure 6 shows how the different parallelization method competes with single models.
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Table 3 summarizes F1 values of our model ablations on the CoNLL 2005 development set.
We ablate our full model by removing, (1) the BiLSTM layers (denoted as Seq), (2) the selective
connection module (denoted as SC) and (3) the ELMo model (denoted as Emb). Without the selective
connection, the stack of attentive representation is constructed only with the fully connected layer
followed by layer normalization. As the increasing number of layers, the model achieves higher F1
scores until it has 8 layers. We report the ablation result with the increasing numbers 4, 8 and 12 layers
of the attentive representations to minimize the effect of network depth. Without the BiLSTM layers,
the model achieves, at most, 79.7 F1, which means that the sequential nature in language should be
encoded as an input as well as the positional encoding. Without the selective connection module,
the performance drops by 7.1 in worst case. With Word2Vec model, F1 values cannot be reached to 80,
which is the score of the early study [7]. All the performance results show the decreases with each
ablation model. For parallelization, we have observed the training time decreased with the increasing
number of GPUs used. Due to the limited GPU environment conducted, we cannot present the result
in detail. We note that our model reduce the training time by 62 percentage from the baseline. As a
future work, we plan to investigate the holistic effects of parallelization in training the models.



Appl. Sci. 2019, 9, 1716 12 of 15

Table 3. Ablation study results.

Emb Seq Depth SC F1

ELMo BiLSTMs 4 Use 72.5
1 ELMo BiLSTMs 8 Use 85.2

ELMo BiLSTMs 12 Use 84.8

Word2Vec BiLSTMs 4 Use 66.0
2 Word2Vec BiLSTMs 8 Use 83.1

Word2Vec BiLSTMs 12 Use 81.7

ELMo FC 4 Use 64.2
3 ELMo FC 8 Use 79.7

ELMo FC 12 Use 75.3

ELMo FC 4 N/A 71.3
4 ELMo FC 8 N/A 82.2

ELMo FC 12 N/A 82.2

Word2Vec FC 4 N/A 68.9
5 Word2Vec FC 8 N/A 80.7

Word2Vec FC 12 N/A 80.3

To investigate the relationship between the selective connection and the SRL accuracy
improvements, we qualitatively analyze the generated labels with phrases at each layer. Specifically,
for each predicted label in the development set, we collect 7 predicted labels with their corresponding
spans from the training set. Table 4 shows the inference results with given the predicate word “chased”.
We have observed the higher levels of attentive representation learn the higher syntactic structure
captured by varying the depth of the network. At the ninth layer, the label for accepted-from [A1] is
assigned to the phrase “the bird that saw the cat”. This means the our model predicts the role labels for
the span of words, which contains the new acceptor “the bird” and the new predicate “saw”. The span
could be understood by introducing a new sentence with label [A0] and [V] as specified in the lower
layer 8. Our results show that our model understand the hierarchical structure over the compounding
sentences consisting of acceptors to be accepted.

Table 4. Example sentence with parsed hierarchical information.

N-th Layer Inferred Labels

4 [A0rat] [V chased]
5 [A0 the rat] [V chased] [A1 the birds]
6 [A0 the rat] [V chased] [A1 the birds]
7 [A0 the rat] [V chased] [A1 the bird] [A1 that saw the cat]
8 [A0 the rat] [V chased] [A1 the bird] that [V saw] [A1 the cat]
9 [A0 the rat] [V chased] [A1 the bird that saw the cat] that [V ate] [A1 the starling]

10 [A0 the rat] [V chased] [A0 the bird] that [V saw] [A1 the cat] that [V ate] [A1 the starling]

5. Related Work

Conventional SRL approaches [26–28] exploits the syntactic features for capturing the sentence
structure. Early works [29,30] that introduce deep neural networks to SRL have tried to reduce the
feature engineering. They have built some layers, such as convolutions and lexical embeddings, on the
popular deep architectures. The pioneering work [7] having a deep network of eight levels of LSTMs
outperforms the previous studies using syntactic information. Several works [10,31] also proposed a
bidirectional LSTM-based model. Inspired by [7], the work [9] introduces an end-to-end SRL task as
scoring BIO tags for a given word sequence. The model adopts two well-known structures, highway
connections [32] to resolve the gradient vanishing problem. Also, A* search algorithm is used to
determine promising BIO tags in a constrained way at a decoding stage. They have discussed
the benefit of incorporating the explicit injection of labelled syntactic structures. Nevertheless,
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they above methods may fail to train the model in several days because the training duration
is too long. To facilitate parallelism, self-attention mechanism is adopted in recent work [15,19].
Moreover, the mechanism is well-known as a semantic representation for a sentence in many NLP
tasks, such as machine reading comprehension [33]. The most recent work [11] has introduced an
end-to-end network that jointly learn the predicates and arguments without any syntactic information.
It generalizes the prior work [9] by using pretrained word embedding and BiLSTMs. To represent and
learning dependency between predicates and arguments in the sentence, PathLSTM [34] are proposed.
The idea is to learn embeddings of lexicalized dependency paths between predicate and each argument.
They argued that syntactic information could improve the performance of SRL. They pointed out
dependency is necessary for SRL and shows better performance with it. The work [35] introduced
Random-walk based graph learning network. Many recent studies [10,19,34] have employed features
extracted by the syntactic parser at the early stage to improve accuracy, we do not consider them in
this paper because leveraging external knowledge is beyond our scope.

Discussion: As suggested by the many studies above, deep learning models are beneficial to
SRL. In our study, we propose simple represenational model using self-attention mechanism. Studies
on self-attention in the preivious studies often do not address the concerns about exploiting spatial
information in the sentences. Complementary to those studies, we focus on adopting both on sequential
and hierarchical structures.

The self-attention mechanism has been introduced [14], and have been popularly used in
many NLP tasks: machine reading comprehension [33], natural language inference [36], text
summarization [37], language understanding [38], image captioning [39] and machine translation [14],
which yields the state-of-the-art results.

Discussion: Our model is developed based on self-attention mechanism, which is similar to the
several recent studies [15,19]. However, our proposed module, selective connection, is different from
the stacked multi head self-attention modules connected by the feed-forward layers. The module
provides sparse connections to allow training complex structure in the context vectors.

6. Conclusions

We proposed a deep self-attention network for the task of SRL. A novel idea of selective connection
is applied through the deep network of attentive representations to train the spatial constraints over
sentences. Our model outperforms the state-of-the-art on two benchmark data sets, the CoNLL-2005
and the CoNLL-2012 shared task datasets. Our experimental results indicate that our model is
competitive to train the spatial constraints in sentence for efficient SRL. Qualitative analysis explains
the effect of learning hierarchical structure is beneficial. Future work will explore the training efficiency,
maximizing the impact of parallelization. Also, we try to develop better training techniques and adopt
recently released pre-trained word embedding models, the Bidirectional Encoder Representations from
Transformers (BERT) [38].
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