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Abstract: Cognitive inflexibility is a well-documented, yet non-specific corollary of many neurological
diseases. Computational modeling of covert cognitive processes supporting cognitive flexibility
may provide progress toward nosologically specific aspects of cognitive inflexibility. We review
computational models of the Wisconsin Card Sorting Test (WCST), which represents a gold standard
for the clinical assessment of cognitive flexibility. A parallel reinforcement-learning (RL) model
provides the best conceptualization of individual trial-by-trial WCST responses among all models
considered. Clinical applications of the parallel RL model suggest that patients with Parkinson’s
disease (PD) and patients with amyotrophic lateral sclerosis (ALS) share a non-specific covert
cognitive symptom: bradyphrenia. Impaired stimulus-response learning appears to occur specifically
in patients with PD, whereas haphazard responding seems to occur specifically in patients with ALS.
Computational modeling hence possesses the potential to reveal nosologically specific profiles of
covert cognitive symptoms, which remain undetectable by traditionally applied behavioral methods.
The present review exemplifies how computational neuropsychology may advance the assessment of
cognitive flexibility. We discuss implications for neuropsychological assessment and directions for
future research.
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1. The Neuropsychology of Cognitive Flexibility

Maintaining goal-directed behavior in the face of novel situations is a fundamental requirement for
everyday life. The processes that enable individuals to maintain goal-directedness are subsumed under
the term executive control (also called executive function or cognitive control) [1–6]. Impaired executive
control is a well-documented corollary of various neurological diseases as well as an important predictor
of disease progression [7–12]. Hence, a major aim of contemporary neuropsychological research is to
achieve a better understanding of executive control.

The present review focuses on a particular facet of executive control: cognitive flexibility [4,13–15].
Cognitive flexibility refers to the ability to adjust behavior to novel situational demands, rules or priorities
in an adaptive manner [4,15–17]. There are various standardized neuropsychological assessment
tools for cognitive flexibility. These include, for example, the Trail Making Test Part B [18–20],
the intra/extradimensional attentional set-shifting task [21], and the Wisconsin Card Sorting Test
(WCST) [22–24]. The WCST is probably the most frequently used tool for the neuropsychological
assessment of cognitive flexibility [25].
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The WCST requires participants to sort stimulus cards to key cards according to categories that
change periodically. In order to identify the prevailing category, participants need to adjust card sorting
to the examiner’s positive and negative feedback, which follows any card sort. Negative feedback
indicates that the previously applied category was incorrect, and, accordingly, that participants should
switch the applied category. Positive feedback indicates that the previously applied category was
correct, and that participants should repeat the applied category. Perseveration errors (PEs) and
set-loss errors (SLEs) represent failures to adjust card sorting to these task demands. PEs refer to
erroneous category repetitions following negative feedback, and SLEs refer to erroneous category
switches following positive feedback. A typical interpretation of increased PE and/or SLE propensities
on the WCST is that the assessed participant shows cognitive inflexibility [11]. WCST error propensities
usually refer to conditional PE and/or SLE probabilities, e.g., [26] (e.g., conditional PE probabilities
equal the number of committed PEs divided by the number of trials following negative feedback).
Figure 1 depicts a representative WCST-trial sequence, which illustrates the two types of errors (PE, SLE)
that may occur on the WCST.
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Yet, on Trial t + 1, the execution of response 3 indicates the application of the number category. Set-
loss errors refer to such erroneous switches of the applied category following positive feedback. A 
subsequent negative feedback cue (i.e., “SWITCH”) indicates that response 3 was incorrect. Hence, 
the applied category should be switched. However, on Trial t + 2, the execution of response 2 indicates 
an erroneous repetition of the number category. Perseveration errors refer to such erroneous category 
repetitions after negative feedback. 

Beginning with Milner’s [31] seminal work, PE propensities have received the most attention in 
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reporting small (d = −0.32) [32] to large effect sizes (d = −0.97) [33] for elevated PE propensities in 
patients with frontal lobe lesions when compared to patients with non-frontal brain lesions or healthy 
controls (HCs) [34]. These meta-analytic findings contributed to the widely held belief that the frontal 
lobes and related neuroanatomical structures support executive control in general [35,36], and 
cognitive flexibility in particular [11,32,33]. 

However, elevated PE propensities not only occur in patients with frontal lobe lesions [37]. For 
example, Eslinger and Grattan [38] reported increased PE propensities for patients with focal 
ischemic lesions in the basal ganglia when compared to patients with posterior cortical lesions. 
Enhanced PE propensities also occur in various neurological patient groups, such as patients with 
idiopathic Parkinson’s disease (PD) [39], amyotrophic lateral sclerosis (ALS) [29], Alzheimer’s disease 
[40], Gilles de la Tourette syndrome [41], or primary dystonia [42]. Increased PE propensities also 

Figure 1. Three consecutive trials on a computerized variant of the Wisconsin Card Sorting Test
(cWCST) [11,27–30]. The stimulus card on Trial t depicts one green cross. Applicable categories are
the number category (far left key card, response 1), the color category (inner left key card, response 2),
and the shape category (inner right key card, response 3). The execution of response 3 indicates the
application of the shape category. A succeeding positive feedback cue (i.e., “REPEAT”) indicates
that response 3 was correct and that the shape category should be repeated on the upcoming trials.
Yet, on Trial t + 1, the execution of response 3 indicates the application of the number category.
Set-loss errors refer to such erroneous switches of the applied category following positive feedback.
A subsequent negative feedback cue (i.e., “SWITCH”) indicates that response 3 was incorrect. Hence,
the applied category should be switched. However, on Trial t + 2, the execution of response 2 indicates
an erroneous repetition of the number category. Perseveration errors refer to such erroneous category
repetitions after negative feedback.

Beginning with Milner’s [31] seminal work, PE propensities have received the most attention in
neuropsychology. Milner [31] investigated the effects of unilateral cortical excisions for the relief of
focal epilepsy on PE propensities. Patients with frontal lobe lesions showed massively increased PE
propensities when compared to patients with posterior cortical lesions. Two meta-analytical studies
confirmed the association between the presence of frontal lobe lesions and increased PE propensities,
reporting small (d = −0.32) [32] to large effect sizes (d = −0.97) [33] for elevated PE propensities in
patients with frontal lobe lesions when compared to patients with non-frontal brain lesions or healthy
controls (HCs) [34]. These meta-analytic findings contributed to the widely held belief that the frontal
lobes and related neuroanatomical structures support executive control in general [35,36], and cognitive
flexibility in particular [11,32,33].
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However, elevated PE propensities not only occur in patients with frontal lobe lesions [37].
For example, Eslinger and Grattan [38] reported increased PE propensities for patients with focal
ischemic lesions in the basal ganglia when compared to patients with posterior cortical lesions.
Enhanced PE propensities also occur in various neurological patient groups, such as patients
with idiopathic Parkinson’s disease (PD) [39], amyotrophic lateral sclerosis (ALS) [29], Alzheimer’s
disease [40], Gilles de la Tourette syndrome [41], or primary dystonia [42]. Increased PE propensities
also occur in a number of psychiatric patient groups, such as patients with attention deficit hyperactivity
disorder [43], eating disorders [44], major depressive disorder [45], or obsessive-compulsive
disorder [46]. The ubiquity of increased PE propensities across many neurological diseases and
psychiatric disorders suggests that elevated PE propensities may neither be specific neuropsychological
symptoms of frontal lobe lesions nor of various clinical conditions [11,47].

The non-specific finding of increased PE propensities across many neurological diseases
and psychiatric disorders may result from the impurity of PE propensities [11,13,48,49]. That is,
PE propensities may not represent pure correlates of the efficacy of a particular, well-circumscribed
cognitive process. Instead, PE propensities may rather reflect the efficacy of a mixture of multiple,
yet covert cognitive processes. An impairment of any of these covert cognitive processes could become
behaviorally manifest as increased PE propensities [11]. Due to this process impurity, PE propensities
may not achieve nosological specificity across a range of neurological diseases and psychiatric disorders.
Thus, neuropsychological assessment of cognitive flexibility via PE propensities should probably
be considered as a first step, subject to further improvement, rather than as a goal state of affairs.
The purpose of the present article is to review recent progress toward computational modeling of covert
cognitive processes that may be related to the commitment of overt behavioral errors on the WCST,
and to analyze how computational modeling may contribute to the development of next-generation
neuropsychological assessment methods.

Based on the assumption that PE propensities reflect the efficacy of a mixture of covert cognitive
processes, similar increased PE propensities across various clinical conditions could arise from
(partially) separable impairments of covert cognitive processes. However, such covert cognitive
symptoms may not yet be detectable by behavioral WCST measures because any impairment of covert
cognitive processes may become behaviorally manifest as elevated PE propensities. Figure 2 presents
an illustrative example of this reasoning.

We developed our computational research program in the context of two neurological diseases,
i.e., PD and ALS. A loss of dopaminergic neurons in nigro-striatal pathways primarily characterizes
PD [50,51]. In contrast, a loss of upper and lower motor neurons in the brain and spinal cord neurons
characterizes ALS [52]. There is evidence for increased PE propensities in both patients with PD and
patients with ALS [29,39]. Despite this neuropsychological commonality between patients with PD and
patients with ALS, the neurodegenerative alterations that occur in patients with PD could affect a set of
covert cognitive processes that remain spared in patients with ALS, who, in contrast, show impairments
in a distinct set of covert cognitive processes [11]. Thus, while patients with PD and patients with ALS
remain indiscernible by analyses of overt PE propensities, these patient groups may nevertheless show
(partially) dissociable impairments of covert cognitive processes (i.e., covert cognitive symptoms).
The assessment of covert cognitive processes in patients with PD and patients with ALS could provide
initial progress toward the detection of nosologically specific aspects of cognitive inflexibility.
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Figure 2. Increased perseveration error (PE) propensities may result from separable impairments of
covert cognitive processes. (A) An exemplary sequence on a computerized WCST variant. On Trial
t − 1, the execution of response 3 indicates the application of the number category. A subsequently
presented negative feedback cue (i.e., “SWITCH”) indicates that the application of the number category
was incorrect. Thus, a switch away from the number category is requested on Trial t. (B) A successful
switch away from the number category on Trial t may rely on a number of covert cognitive processes.
For example, participants must retain the assumption about the prevailing category on Trial t − 1
(i.e., “number is correct”) until they receive a feedback cue (i.e., “number was correct”). Next, participants
must update the retained assumption about the prevailing category by received feedback (i.e., “number is
incorrect”). At the level of overt behavior on Trial t, the execution of response 1 indicates the application
of the color category, i.e., a successful switch away from the number category. (C) A covert cognitive
symptom may describe impaired updating following received feedback. In this example, impaired
updating results in the assumption that the number category is still correct, although the received
negative feedback indicates that the application of the number category was incorrect. At the level of
overt behavior, the execution of response 2 indicates an erroneous repetition of the number category,
i.e., a PE. (D) Another covert cognitive symptom may describe impaired retention. In this example,
impaired retention results in the assumption that the color category was correct. A received negative
feedback (i.e., “Color is incorrect”) renders a subsequent application of the number or shape category
likely. At the level of overt behavior, the execution of response 2 indicates the application of the number
category, i.e., a PE. Please note that we do not wish to imply that these covert cognitive processes are
conscious (i.e., the depicted clouds might just as well reflect implicit processes).

2. Assessing Covert Cognitive Processes on the WCST

Before we review recent advances with regard to computational modeling of covert cognitive
processes on the WCST, we will give an overview of common methodological approaches to covert
cognitive processes. Of particular interest for this overview is the utility of the discussed methodological
approaches for an individual-based assessment of covert cognitive processes.
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2.1. Dissociating Patterns of Erroneous Responses

The dissociation of patterns of erroneous responses represents a common approach to the
identification and isolation of covert cognitive processes on the WCST [26,28,53,54]. For example,
in a recent behavioral study [26] of neurological inpatients who completed a short paper-and-pencil
version of the WCST (the modified-WCST; M-WCST) [55], we stratified PE and SLE by response
demands (see Figure 3). We found reduced PE propensities with PEs that implied a response repetition
(i.e., “Demanded Response Alternation” in Figure 3A), when compared to PEs, which implied
a response alternation (i.e., “Demanded Response Repetition” in Figure 3A). These results suggest
a modulation of PE propensities by response demands; PEs become less likely when they imply
repeating the response that has received a negative feedback on the previous trial. We concluded that
participants not only learn to avoid re-applications of categories following a received negative feedback.
In addition, participants also learn to avoid re-executions of responses after received negative feedback.Brain Sci. 2020, 10, x FOR PEER REVIEW 5 of 25 
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Figure 3. A modulation of PE propensities by response demands. (A) In a recent behavioral study [26],
we stratified PE by response demands. With a demanded response repetition, the commitment of a PE
(i.e., the re-application of the number category by executing response 2 on Trial t) implies an alternation
of the previously executed response (i.e., response 3 on Trial t − 1). With a demanded response
alternation, the commitment of a PE (i.e., the re-application of the number category by executing
response 2 on Trial t) implies the repetition of the previously executed response (i.e., response 2 on Trial
t − 1). (B) We found a modulation of PE propensities by response demands [26]. Participants showed
reduced PE propensities on trials with a demanded response alternation when compared to trials with
a demanded response repetition. Please note that we did not find evidence for a modulation of set-loss
error (SLE) propensities by response demands.

We replicated the modulation of PE propensities by response demands in a large sample of young
volunteers (N = 375) who completed a computerized WCST (cWCST) variant [56]. This successful
replication suggests that response demands modulate PE propensities not only on a paper-and-pencil
variant of the WCST (i.e., M-WCST), but also on a computerized WCST variant. The successful
replication of the modulation of PE propensities by response demands in a large sample of young
volunteers also suggests that neurological inpatients, as well as individuals with no known brain
damage, show this behavioral phenomenon.
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Analyses of patterns of erroneous responses may allow for the detection of particular behavioral
effects on the WCST (e.g., a modulation of PE propensities by response demands), which in turn allow
inferences about covert cognitive processes (e.g., learning to avoid re-executions of particular responses
following negative feedback). However, analyses of erroneous responses still refer to overt behavioral
events, rendering conclusions about actual covert cognitive processes difficult. Thus, the dissociation
of patterns of erroneous responses does not represent a satisfactory approach to the assessment of
covert cognitive processes.

2.2. Identifying and Isolating Latent Variables

Computational methods provide an alternative approach to covert cognitive processes on the
WCST [48,57]. Computational methods identify and isolate latent variables (as opposed to observable
variables, such as WCST error propensities) from observed behavior. Latent variables reflect the efficacy
of covert cognitive processes that may support WCST responding. In contrast to the dissociation of
patterns of erroneous responses, computational methods allow for inferences closer to the level of
covert cognitive processes.

2.2.1. Factor Analyses

Factor analyses identify sets of latent variables that explain variance common to WCST scores [58–60].
Factor-analytical WCST studies consistently revealed a single latent variable, which could indicate
a general executive control ability [57]. However, factor-analytical WCST studies remain inconclusive
about the number of additionally identifiable latent variables [57]. Furthermore, it remains difficult
to infer which covert cognitive processes are actually reflected by these latent variables and how
these covert cognitive processes could interact [57]. Thus, factor analyses are of limited utility for the
assessment of covert cognitive processes.

2.2.2. Computational Modeling

In contrast to factor analyses, computational models explicitly formalize covert cognitive processes
and the way in which these covert cognitive processes interact by mathematical expressions [61–66].
Computational models thereby allow one (1) to systematically test hypotheses about covert cognitive
processes and (2) to estimate sets of latent variables that reflect the efficacy of the assumed covert
cognitive processes [61–64,67,68].

In the first case, computational models represent hypotheses about covert cognitive processes [68].
Evaluations of competing computational models allow one to test hypotheses about covert cognitive
processes. A common method for the evaluation of computational models is to compare their abilities
to predict observed behavior [68,69]. The computational model that provides the best prediction of
observed behavior may also give the best conceptualization of covert cognitive processes among the
compared computational models. Another method for the evaluation of computational models is to
compare their abilities to simulate particular behavioral phenomena, such as observed PE and SLE
propensities [68]. If a computational model does not simulate all behavioral phenomena of interest,
then that computational model should be considered as falsified [68].

There are several computational models for the WCST [48,70–80]. These computational models
typically belong to one of two subclasses: neural network models or mechanistic models [48].
Most computational models of the WCST are neural network models (e.g., [71,72]). Neural network
models are biologically inspired sets of computational units (referred to as cells or neurons) [81,82].
Interconnections of computational units usually mirror cerebral structures that instantiate specific
covert cognitive processes [48,74]. For example, Caso and Cooper [74] proposed a neural network model
of the WCST that incorporates cortical and striatal learning mechanisms. “Lesions” (i.e., alterations of
latent variables) to computational units that reflect striatal learning mechanisms were considered as
a model of pathophysiological changes in patients with PD (see also [83]). The lesioned neural network
model produced PE propensities comparable to those observed in a sample of patients with PD [29].
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The authors concluded that the proposed neural network model represents a biologically plausible
model of (impaired) striatal learning mechanisms in patients with PD.

Neural network models allow the simulation of general patterns of WCST error propensities,
such as increased PE propensities as found in patients with PD [74]. However, neural network models
incorporate very large numbers of latent variables, rendering their precise estimation for individual
participants difficult [48]. In addition, the enormous number of latent variables complicates their
psychological interpretation. Thus, neural network models provide limited utility for the assessment
of covert cognitive processes.

The second family of computational models of the WCST are so-called mechanistic models [48,67].
In mechanistic models, straightforward computational mechanisms instantiate the assumed covert cognitive
processes. Mechanistic models typically incorporate a small number of latent variables, which can be
robustly estimated from individual trial-by-trial WCST responses [48,67]. Thus, in contrast to neural
network models, mechanistic models provide sets of latent variables for each assessed participant.
Moreover, latent variables obtained from mechanistic models—as opposed to latent variables obtained
from factor analyses or neural network models—serve as psychologically interpretable metrics for
covert cognitive processes. Against this background, mechanistic models could provide a suitable
approach to the assessment of covert cognitive processes on the WCST—an approach which we will
refer to as computational neuropsychology [48,67,84–89].

3. Toward a Computational Neuropsychology of Cognitive Flexibility

Computational neuropsychology may provide progress toward nosologically specific aspects
of cognitive inflexibility. That is, analyses of latent variables of mechanistic models could reveal
disease-specific covert cognitive symptoms of neurological conditions, which yet remain undetectable
by traditionally applied behavioral methods.

During the remainder of this article, we aim to elucidate whether computational neuropsychology
possesses the potential to reveal nosologically specific profiles of covert cognitive symptoms. We will
therefore review and compare mechanistic models of the WCST. Having identified the most suitable
mechanistic model of the WCST among all models considered, we will discuss exemplary clinical
applications of this mechanistic model in patients with PD and patients with ALS. In order to shed
light on the nosological specificity of covert cognitive symptoms, we will compare profiles of covert
cognitive symptoms of patients with PD and patients with ALS.

3.1. Mechanistic Models of the WCST

3.1.1. The Attentional-Updating Model

The attentional-updating (AU) model by Bishara et al. [48] represents an established mechanistic
model of the WCST. Core to the AU model is the assumption that participants form attentional
prioritizations (APs) of categories. A high AP of a category results in a high probability of applying
that category on a particular trial. APs of categories are trial-wise updated following received feedback.
Following a received positive feedback, the AP of the applied category will increase, and AP of
not-applied categories will decrease (and vice versa for negative feedback). Thus, following received
positive feedback, the repetition of a category becomes more likely, whereas a switch of the applied
category becomes more likely after received negative feedback. An attentional focus mechanism
modulates the strength of updating of AP: a high AP of a particular category results in strong updating
of that AP. In contrast, a low AP of a particular category results in weak updating of that AP.

The AU model incorporates four individual latent variables. Sensitivity parameters quantify the
overall strengths of updating of AP following received feedback. The AU model includes separate
sensitivity parameters for positive and negative feedback, enabling different individual strengths of
updating following positive and negative feedback. An attentional focus parameter quantifies the
extent to which magnitudes of AP modulate the strength of updating of AP. A response variability
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parameter quantifies how well responding corresponds to AP. Figure 4 gives a schematic depiction of
the AU model.

The AU model successfully contributed to a number of clinical studies [67,78,90]. For example,
Bishara et al. [48] applied the AU model to study covert cognitive symptoms in substance dependent
individuals. Substance dependent individuals showed a decreased sensitivity for negative feedback
as well as increased response variability when compared to a control group. The AU model also
contributed to a lesion mapping study [91]. Results of this lesion mapping study suggest an association
between lesions in the right prefrontal cortex (PFC) and the sensitivity parameter for negative feedback.
In a model evaluation study, the AU model successfully simulated individual PE and SLE propensities
of patients with PD and HC participants who completed a cWCST variant [48,67,91].Brain Sci. 2020, 10, x FOR PEER REVIEW 8 of 25 
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Figure 4. A schematic representation of the attentional-updating (AU) model [48]. Top: an exemplary
sequence on a computerized WCST. Bottom: central to the AU model are attentional prioritizations
(APs) of categories, a(t). APs from the previous trial a(t − 1) are updated in response to a received
feedback. Individual sensitivity parameters p quantify the overall strengths of updating. There are
separate sensitivity parameters for trails following positive and negative feedback (not depicted).
An attentional focus mechanism further modulates the strength of updating of AP (i.e., a high AP
of a category results in strong updating of that AP and vice versa). An individual attentional focus
parameter f quantifies the extent to which the magnitude of an AP modulates updating of that AP.
An individual response variability parameter d quantifies the extent to which response probabilities
correspond to updated AP, a(t).

3.1.2. The Cognitive Reinforcement-Learning Model

The cognitive reinforcement-learning (RL) model [56] is based on the well-established mathematical
framework of reinforcement learning [89,92–98]. Core to the cognitive RL model is the assumption that
participants form feedback predictions for the application of categories. A high feedback prediction
indicates a strong prediction of positive feedback for the application of a category. High feedback
predictions for a category also relate to a high probability of applying that category. Feedback predictions
for categories are trial-wise updated in response to received feedback. Following received positive
feedback, feedback predictions for the applied category will increase. After received negative feedback,
feedback predictions for the applied category will decrease. Prediction errors modulate the strength of
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updating of feedback predictions. Prediction errors equal the difference between the received feedback
and the predicted feedback. Large prediction errors result in stronger updating of feedback predictions.

The cognitive RL model incorporates two mechanisms that are not inherent parts of canonical RL
models [92]. First, a retention mechanism describes the transfer of feedback predictions from one trial
to the next [99,100]. Second, a “soft-max” rule gives response probabilities as a function of feedback
predictions on a particular trial [92,101–103].

The cognitive RL model comprises four individual latent variables. Cognitive learning rates
quantify the extent to which prediction errors update feedback predictions. There are separate
cognitive learning rates for received positive and negative feedback [89,104–106]. A cognitive retention
rate quantifies the extent to which feedback predictions transfer from one trial to the next [99,100].
An inverse temperature parameter quantifies how well executed responses correspond to feedback
predictions [101–103]. Figure 5 gives a schematic depiction of the cognitive RL model.Brain Sci. 2020, 10, x FOR PEER REVIEW 9 of 25 
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Figure 5. A schematic representation of the cognitive reinforcement-learning (RL) model. Top: an exemplary
sequence on a computerized WCST. Bottom: core to the cognitive RL model are feedback predictions for
the application of categories, Qc(t). A prediction error updates feedback predictions from the previous
trial Qc(t − 1) following received feedback. Individual cognitive learning rates αc quantify the strength
of the updating of feedback predictions by prediction errors. There are separate individual cognitive
learning rates for received positive and negative feedback (not depicted). A soft-max rule gives response
probabilities as a function of updated feedback predictions. The individual inverse temperature
parameter τ quantifies how well response probabilities accord to updated feedback predictions.
A retention mechanism gives the extent to which feedback predictions transfer to the next trial.
The individual cognitive retention rate γc quantifies the strength of retention of feedback predictions.

3.1.3. The Parallel Reinforcement-Learning Model

Based on the finding of a modulation of PE propensities by response demands (see Figure 3),
we hypothesized that participants learn at two parallel levels on the WCST [26]. Category-level
(putatively cortical) learning implies that participants tend to repeat the applied category on trials
following positive feedback, and that they tend to switch the applied category on trials following
negative feedback. Participants might also learn at the level of responses. Response-level (putatively
striatal) learning implies that participants tend to repeat the execution of a particular response
following positive feedback, and that participants tend to avoid the re-execution of a response
following negative feedback.
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The parallel RL model [56] constitutes a mathematical formalization of category- and response-level
learning [26]. Cognitive RL (as in the cognitive RL model) serves as an instantiation of category-level
learning. In addition, sensorimotor RL serves as an instantiation of response-level learning. Hence,
the parallel RL model constitutes an extended variant of the cognitive RL model (see Figure 5).

Sensorimotor RL is solely concerned with feedback predictions for the execution of responses
irrespective of associated categories. A high feedback prediction for the execution of a response results
in a high probability of executing that response. Feedback predictions for responses are trial-wise
updated following received feedback. Following a received positive feedback, feedback predictions
for the executed response will increase, whereas feedback predictions for the executed response will
decrease after a received negative feedback. Thus, following a received positive feedback, the repetition
of a response execution becomes more likely, whereas a switch of the executed response becomes more
likely after a received negative feedback. Prediction errors (i.e., the difference between the received
feedback and the predicted feedback for the execution of a particular response) modulate the strength
of updating of feedback predictions for responses. Sensorimotor RL also incorporates a retention
mechanism that describes the transfer of feedback predictions for responses from one trial to the
next [99,100]. The parallel RL model adds feedback predictions for responses to feedback predictions
for categories on any trial. A soft-max function gives response probabilities as a function of these
integrated feedback predictions [92,101–103].

The parallel RL model incorporates eight individual latent variables. Separate cognitive and
sensorimotor learning rates quantify the extents to which prediction errors update feedback predictions
for categories and responses, respectively. There are separate learning rates for received positive and
negative feedback at both cognitive and sensorimotor levels [89,104,105]. Separate retention rates
at cognitive and sensorimotor levels [99,100] quantify the extents to which feedback predictions for
categories and responses transfer from trial to trial. A weighting parameter quantifies the relative
strength of cognitive over sensorimotor RL. An inverse temperature parameter [101–103] expresses
how well executed responses correspond to integrated feedback predictions. Figure 6 gives a schematic
depiction of the parallel RL model.

3.1.4. Comparison of Mechanistic Models

In a recent model comparison study [56], we evaluated the AU model [48], the cognitive RL
model, and the parallel RL model on a large sample of healthy volunteers (N = 375) who completed
a cWCST variant [30].

We evaluated mechanistic models by predictive accuracies [107,108]. Predictive accuracies quantify
how well a mechanistic model predicts observed trial-by-trial cWCST responses. The cognitive and
the parallel RL model showed better predictive accuracies than the AU model for most participants.
These results suggest that RL models provide a better conceptualization of trial-by-trial cWCST
responses than the AU model.

RL models differ from the AU model [48] with regard to updating mechanisms. In RL models,
prediction errors modulate the strength of the updating of feedback predictions. Prediction errors
ensure that updating of feedback predictions is stronger when the correspondence between the received
and the predicted feedback is poor. For example, a participant receives positive feedback for the
application of a category that had a low feedback prediction (i.e., indicating the prediction of a negative
feedback for that category). Thus, the prediction of feedback for this category was poor, resulting in
a high prediction error. Hence, updating of feedback prediction for this category will be strong,
facilitating the re-application of the category that produced a positive feedback. In the AU model,
an attentional focus mechanism ensures that updating of AP of a particular category is less strong
when the AP of that category was low. In the example mentioned above, updating of AP will be less
strong since the AP of that category was low. Hence, the attentional focus mechanism complicates the
re-application of the category that produced a positive feedback. Thus, RL models incorporate more
efficient adaptation of card sorting to changing task demands in comparison to the AU model.
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Figure 6. A schematic representation of the parallel RL model. Top: an exemplary sequence on
a computerized WCST. Bottom: the parallel RL model incorporates independent cognitive and
sensorimotor RL (upper and lower grey bar, respectively). Central to cognitive and sensorimotor RL
are feedback predictions for the application of categories Qc(t) and the execution of responses Qs(t),
respectively. Cognitive and sensorimotor prediction errors update feedback predictions for categories
Qc(t − 1) and responses Qs(t − 1) from the previous trial in response to a received feedback. Individual
cognitive αc and sensorimotor learning rates αs quantify the strengths of updating by prediction
errors. There are separate learning rates for received positive and negative feedback at cognitive
and sensorimotor levels (not depicted). The parallel RL adds feedback predictions for responses to
those of categories on any trial. A weighting parameter w quantifies the relative strength of cognitive
over sensorimotor RL. Response probabilities result from integrated feedback predictions. An inverse
temperature parameter τ quantifies how well response probabilities accord to integrated feedback
predictions. Cognitive and sensorimotor retention mechanisms ensure that feedback predictions for
categories and responses transfer from one trial to the next. Cognitive γc and sensorimotor retention
rates γs quantify the strengths of retention.

RL models further differ from the AU model with regard to retention mechanisms. In RL models,
retention mechanisms attenuate feedback predictions from one trial to the next [99,100]. In the AU
model, APs transfer from trial-to-trial without attenuation. RL models also differ from the AU model
with regard to the computation of response probabilities. A soft-max rule gives response probabilities
in RL models [92,101–103]. In contrast, an algorithm that divides single AP by the overall sum of
AP gives response probabilities in the AU model. Lastly, in RL models, prediction errors update
single feedback predictions on any trial (i.e., prediction errors only update feedback predictions for the
applied category and/or the executed response). The AU model assumes that all APs of categories are
updated on any trial (i.e., after a received positive feedback, the AP of the applied category increases,
and all other AP decrease, and vice versa for a received negative feedback).
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Our model comparison study [56] remains inconclusive about which particular mechanism of RL
models gives a better conceptualization of trial-by-trial cWCST responses than the corresponding AU
mechanism. Future studies should explicitly compare the discussed model mechanisms. Such studies
could evaluate predictive accuracies of mechanistic models that solely differ with regard to one of the
contrasted mechanisms.

Suitable mechanistic models of the WCST should account for a wide range of behavioral
phenomena [68]. In our model comparison study [56], the benchmark for all mechanistic models was
(1) a successful simulation of individual PE and SLE propensities as well as (2) a successful simulation
of the modulation of perseveration propensities by response demands (see Figure 3) [26]. The parallel
RL model clearly outperformed the cognitive RL model and the AU model with regard to simulations
of these behavioral phenomena. All mechanistic models under consideration simulated individual
PE and SLE propensities. However, only the parallel RL model simulated the modulation of PE
propensities by response demands.

Against this background, the parallel RL model, which incorporates cognitive and sensorimotor
RL as computational instantiations of category- and response-level learning, represents a suitable
mechanistic model of the cWCST. In contrast, the cognitive RL model and the state-of-the-art AU
model are insufficient mechanistic models of the cWCST.

3.2. Assessing Covert Cognitive Symptoms in Neurological Diseases

In order to elucidate whether computational neuropsychology possesses the potential to reveal
nosologically specific profiles of covert cognitive symptoms, we will review exemplary applications of
the parallel RL model [56] in patients with PD and patients with ALS.

3.2.1. Parkinson’s Disease

In a recent computational study [109], we characterized covert cognitive symptoms associated
with PD pathophysiology. Therefore, we reanalyzed data from 16 patients with PD and 34 matched
HC participants who completed a cWCST variant [110] by means of the parallel RL model.

Patients with PD showed increased cognitive retention rates when compared to HC participants.
With high cognitive retention rates, feedback predictions for categories that produced a negative
feedback remain at high levels when transferring to the next trial. Hence, the erroneous
repetition of such categories becomes more likely (see Figure 7B), rendering category-level learning
inflexible. We concluded that increased cognitive retention rates are an expression of bradyphrenia
(i.e., “inflexibility of thought”), which represents a hallmark cognitive symptom of PD, at the level of
covert cognitive processes [111–114].
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Figure 7. Exemplary effects of between-group variations of latent variables of the parallel RL model.
(A) A showcase trial sequence on the cWCST as presented in Figure 1. (B) Feedback predictions
for the application of the shape category across seven trials (panel A shows the first three of them).
A positive feedback followed the application of the shape category on Trial 1, which increased feedback
predictions for the shape category. With high values of cognitive retention rates (i.e., γc), such as seen in
patients with Parkinson’s disease (PD) and patients with amyotrophic lateral sclerosis (ALS), feedback
predictions for categories remain at high levels when transferring to the next trial. (C) Feedback
predictions for the execution of response 3. The execution of response 3 produced a positive feedback on
Trial 1. Since sensorimotor learning rates for positive feedback were virtually zero in all studies, there
was no updating of feedback predictions for the execution of response 3 following received positive
feedback. On Trial 2, the execution of response 3 produced a negative feedback which decreased
feedback predictions for response 3. With low sensorimotor retention rates (i.e., γs), such as seen in
patients with PD, feedback predictions for the execution of responses retain lower levels of activation
from trial-to-trial. (D) Feedback predictions for the application of the shape category. With low values of
cognitive learning rates for positive feedback (i.e., αc

+), such as seen in patients with PD “on” dopamine
(DA) medication, feedback predictions for categories receive reduced levels of activation following
received positive feedback. (E) Response probabilities on Trial 3. The probability of executing response
3 is the highest (application of the shape category), followed by the probability of executing response
1 (application of the color category) and the probability of executing response 2 (application of the
number category). Increased inverse temperature parameters (i.e., τ), such as seen in patients with ALS,
attenuate differences between response probabilities. Hence, increased inverse temperature parameters
bias response probabilities toward a uniform probability of 0.33. We computed the presented effects of
latent variables by varying exclusively the latent variable of interest at arbitrary values while holding
all other latent variables constant. Figure 7 is adapted from [109,115].
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Patients with PD also showed reduced sensorimotor retention rates when compared to HC
participants. Reduced sensorimotor retention rates indicate that feedback predictions for responses
transfer less strongly from trial to trial (see Figure 7C). Thus, in patients with PD, responding on
a particular cWCST-trial is less strongly affected by previous feedback predictions for responses
when compared to HC participants. That is, responding of patients with PD appears less repetitive
(following positive feedback) or alternating (following negative feedback). The finding of decreased
sensorimotor retention rates in patients with PD may correspond to impaired stimulus-response
learning (or, with regard to the cWCST, selecting a key card by executing a response), which was
repeatedly reported for patients with PD [116–118].

3.2.2. Dopamine Replacement Therapy in Patients with PD

In our recent computational study of patients with PD [109], we also characterized covert
cognitive symptoms associated with the administration of dopamine (DA) replacement therapy.
Therefore, patients with PD were assessed both “on” and “off” DA medication (i.e., after withdrawal
of DA medication) [110].

DA replacement therapy aims to alleviate motor symptoms in patients with PD by restoring missing
DA in nigro-striatal DA systems. However, adjusting systemic DA replacement solely at the best possible
motility may incur cognitive side effects. Optimal DA replacement in the nigro-striatal DA systems may
lead to DA overdosing in less affected DA systems, such as the meso-limbic and/or meso-cortical DA
systems. Thereby, DA replacement therapy may induce cognitive impairments [12,119–124].

The application of the parallel RL model revealed that DA replacement therapy in patients with
PD increased cognitive retention rates. Thus, DA replacement therapy seems to induce bradyphrenic
side effects (see Figure 7B). DA replacement therapy in patients with PD also reduced cognitive learning
rates following positive feedback, indicating that DA replacement therapy in patients with PD induces
another covert cognitive symptom: impaired category learning from positive feedback (see Figure 7D).

The meso-cortical DA systems support cognitive flexibility [125–127], whereas the meso-limbic
DA systems support anticipation of feedback [128,129]. Thus, distinct DA systems could give
rise to the reported iatrogenic cognitive impairments induced by DA replacement therapy [130].
An overstimulation of meso-cortical DA systems might cause bradyphrenic side effects, whereas an
overstimulation of meso-limbic DA systems might impair category learning from positive feedback [109].

3.2.3. Amyotrophic Lateral Sclerosis

In another computational study [115], we characterized covert cognitive symptoms associated
with ALS pathophysiology. Therefore, we reanalyzed data from 18 patients with ALS and 21 matched
HC participants who completed a cWCST variant [29] by means of the parallel RL model.

Patients with ALS showed increased cognitive retention rates when compared to HC participants
(see Figure 7B). These results suggest that bradyphrenia does not specifically occur in patients with
PD. In contrast, bradyphrenia may rather constitute a disease-nonspecific covert cognitive symptom
associated with pathophysiological changes in both patients with PD and patients with ALS.

Patients with ALS also showed increased inverse temperature parameters in comparison to HC
participants. The inverse temperature parameter expresses how well finally executed responses correspond
to integrated feedback predictions for categories and responses [92,101–103]. Higher configurations of
the inverse temperature parameter indicate that responding is more independent of integrated feedback
predictions. Thus, with high inverse temperature parameters, responding appears to be more haphazard
(see Figure 7E). These results suggest that ALS pathophysiology comprises another covert cognitive
symptom: haphazard responding. Haphazard responding may relate to motor impairments in patients
with ALS. For example, haphazard responding could arise from deficient fine motor skills of patients with
ALS that obstruct successful cWCST responding [115,131].
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3.2.4. Comparison

Traditionally applied behavioral methods for the neuropsychological assessment of cognitive
flexibility do not possess sufficient nosological specificity. For example, patients with PD and patients
with ALS show increased PE propensities [29,39]. Thus, the finding of increased PE propensities
is neither specific to patients with PD nor to those with ALS. We proposed that computational
neuropsychology could provide progress with regard to the detection of nosologically specific aspects
of cognitive inflexibility.

Our exemplary comparison of profiles of covert cognitive symptoms of patients with PD and patients
with ALS corroborates this hypothesis [109,115]. Computational modeling revealed a disease-nonspecific
alteration in latent variables. Patients with PD and patients with ALS showed increased cognitive retention
rates. These results suggest that bradyphrenia constitutes a disease-nonspecific covert cognitive symptom,
which characterizes both patient groups. DA medication in patients with PD further increased cognitive
retention rates, indicating that DA medication in patients with PD incurred bradyphrenic side effects.

Computational modeling also revealed PD- and ALS-specific covert cognitive symptoms.
Patients with PD, but not those with ALS, showed decreased sensorimotor retention rates when
compared to HC participants. Decreased sensorimotor retention rates could indicate impaired
stimulus-response learning in patents with PD. DA medication in patients with PD decreased cognitive
learning rates after positive feedback. Thus, DA medication in patients with PD could induce impaired
category learning from positive feedback. Lastly, only patients with ALS showed increased inverse
temperature parameters when compared to HC participants. Increased inverse temperature parameters
in patients with ALS may indicate haphazard responding.

The reported covert cognitive symptoms in patients with PD and patients with ALS demonstrate
that computational neuropsychology possesses the potential to reveal nosologically specific profiles of
covert cognitive symptoms. Figure 8 summarizes profiles of covert cognitive symptoms in patients
with PD and patients with ALS [109,115].
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4. Implications for Neuropsychological Assessment

The present review demonstrates how computational neuropsychology may provide progress
with regard to the neuropsychological assessment of cognitive flexibility [109,115]. First, as delineated
above, computational neuropsychology possesses the potential to reveal nosologically specific profiles
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of covert cognitive symptoms, which remain yet undetectable by traditional behavioral methods of
neuropsychological assessment.

Second, traditional behavioral neuropsychological assessment refers to cognitive assessment,
yet the referenced cognitive processes remain unobservable. For example, a typical inference from
the presence of enhanced WCST error propensities would be that the assessed participant shows
cognitive inflexibility [4,34,49,132]. Hence, behavioral neuropsychological assessment involves drawing
inferences that go beyond behavioral observations. In contrast, computational neuropsychology offers
a technique for the assessment of latent variables. As latent variables reflect the efficacy of assumed
covert cognitive processes, computational neuropsychology may allow for inferences at the level of
covert cognitive processes.

Third, behavioral neuropsychological assessment typically refers to vaguely defined cognitive
symptoms. That is, cognitive symptoms are often verbal re-descriptions of behavioral observations.
For example, Naville [133] observed a lack of voluntary attention, initiative, spontaneous interest,
and capacity for effort in patients with encephalitis lethargica, which was also noted in patients
with PD [134]. Naville summarized this observation as bradyphrenia [134]. Bradyphrenia literally
translates to “slowness of thought”. Hence, a number of studies of bradyphrenia utilized response time
tasks [112]. However, prolonged response times, when considered as an expression of bradyphrenia,
are likely to be confounded with bradykinesia (i.e., “slowness of movement”) [112,135,136]. Hence,
response times are not process pure because they intermingle bradyphrenia and bradykinesia.

Another interpretation of bradyphrenia refers to cognitive akinesia [134], rendering bradyphrenia
better conceived as “inflexibility of thought”. Therefore, a number of studies investigated bradyphrenia
by means of neuropsychological tests, which target aspects of attentional or cognitive flexibility [137,138].
The example of the bradyphrenia construct illustrates that the reliance on vague semantic definitions
renders the interpretation of behavioral studies as indicating particular cognitive symptoms difficult
or even impossible.

Computational neuropsychology provides indicators of covert cognitive symptoms along with
explicit definitions of their meaning. For example, we considered increased cognitive retention rates as
an indicator of bradyphrenia (see above). We showed how increased cognitive retention rates render
category-level learning inflexible (see Figure 7B). In the long run, explicit computational definitions
may replace the state-of-the-art, yet ambiguous semantic constructs that typically back-bone behavioral
neuropsychological assessment.

5. Outlook

The ultimate success of computational neuropsychology for neuropsychological assessment depends
on further studies of validity and reliability [139]. A common method for the validation of computational
models is to assess their ability to simulate particular behavioral phenomena [68,100,140,141]. In our recent
model comparison study [56], we assessed mechanistic models with regard to their ability to simulate
PE and SLE propensities as well as the modulation of PE propensities by response demands [26].
The AU model [48], as well as the cognitive RL model, failed to simulate the modulation of PE
propensities by response demands. In contrast, the parallel RL model successfully simulated this
behavioral effect. Thus, the parallel RL model may represent a valid mechanistic model of the cWCST
with regard to the studied behavioral phenomena. However, the parallel RL model only remains valid
until it fails to explain yet unnoticed behavioral phenomena, or until yet to be specified computational
models explain the known behavioral phenomena in a more parsimonious manner [68,140].

Future studies should also validate computational models with regard to their proposed neural
underpinnings. For example, cortical brain areas may primarily support cognitive RL, whereas sub-cortical,
striatal brain areas may primarily support sensorimotor RL [26]. Confirmatory brain imaging studies
should test this hypothesis. Such studies could make use of individual trial-by-trial variables provided by
the parallel RL model. For example, individual trial-wise cognitive and sensorimotor prediction errors
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could correlate with activation patterns in cortical and/or striatal brain areas as revealed by functional
magnetic resonance imaging [142,143].

Future studies should also investigate the clinical validity of computational modeling [139,144].
With regard to the parallel RL model, we found increased cognitive retention rates in patients with PD
and patients with ALS, which we considered an expression of bradyphrenia. These results suggest
an association between increased cognitive retention rates and brain dysfunctions that are common
to patients with PD and patients with ALS [115]. Both PD and ALS pathophysiology affect the
premotor cortex and the dorsolateral PFC (Broadman areas 4, 6, 8, and 9) [145–147]. Hence, increased
cognitive retention rates may relate to dysfunctions in these cortical areas. Our finding that patients
with PD “on” DA medication showed even more exaggerated cognitive retention rates supports this
hypothesis. That is, DA replacement therapy in patients with PD may overstimulate meso-cortical DA
systems [119,120,122,123].

Alterations in other latent variables of the parallel RL model could specifically relate to
pathophysiological characteristics of patients with PD and patients with ALS [115]. Only patients
with PD showed decreased sensorimotor retention rates. Striatal brain areas may primarily support
sensorimotor RL [26]. Striatal brain areas are also strongly affected in patients with PD [50,51]. Thus,
decreased sensorimotor retention rates could relate to striatal dysfunctions in patients with PD.
DA replacement therapy in patients with PD decreased cognitive learning rates following positive
feedback. As discussed above, decreased cognitive learning rates could relate to an overstimulation
of meso-limbic DA systems induced by DA replacement therapy in patients with PD. Lastly,
only patients with ALS showed increased inverse temperature parameters. Thus, increased inverse
temperature parameters could possibly relate to motor cortex dysfunctions associated with ALS
pathophysiology [52]. Future research should explicitly test these hypothesized relationships between
alterations in latent variables and pathophysiological characteristics of patients with PD and patients
with ALS [115]. Such studies could combine computational modeling with brain imaging and/or
lesion-(covert)-symptom mapping [91,143,148].

Computational models should provide reliable latent variable estimation from observed
behavior [139,141]. Parameter recovery allows one to assess the reliability of parameter estimation [139,141].
Parameter recovery studies simulate behavior by a mechanistic model using a pre-defined set of
latent variables. If latent variable estimation is reliable, there should be a close correspondence
between the pre-defined set of latent variables and latent variables estimated from simulated behavior.
An investigation of parameter recovery [56] suggests that a configuration of the parallel RL that
incorporates a weighting parameter (see Figure 6) did not provide reliable latent variable estimation.
However, a configuration of the parallel RL model that does not incorporate a weighting parameter
provided reliable parameter estimation [56]. We utilized this less complex configuration of the
parallel RL model (i.e., a configuration without a weighting parameter) to study covert cognitive
symptoms in patients with PD and patients with ALS. These results of parameter recovery suggest
that reducing model complexity (i.e., the number of latent variables) may improve the reliability of
latent variable estimation.

It could also be advisable to assess other facets of reliability of latent variables, such as temporal
stability and/or internal consistency [139,149]. Studies addressing latent variables repeatedly over time
should investigate the temporal stability of latent variables, as assessed by test–retest reliability [150].
Studies addressing latent variables in other contexts should investigate the internal consistency of latent
variables, as assessed by split-half reliability. Split-half reliability methods apply to any assessment
tool that can be split into subsets of trials, such as the cWCST [150,151].

The WCST served as an exemplary assessment tool for the present review. However, we would
like to highlight that computational neuropsychology is not limited to the WCST. In fact, computational
neuropsychology should be applicable to many assessment tools. The sole requirements are (1) that
there is a mechanistic model of a participant’s performance, which provides a set of latent variables at
the level of individuals, and (2) that these latent variables can be estimated from observed behavior with
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sufficient precision. The precision of latent variable estimation can be increased with the number of
analyzed participants [109,115]. Hence, computational neuropsychology may be particularly suitable
for (re-)analyses of large datasets, such as those available from open science approaches [152,153] or
multi-lab studies [154].

6. Conclusions

Increased PE propensities are a well-documented behavioral finding in many neurological patient
groups. This disease-nonspecific finding suggests that cognitive inflexibility constitutes a cognitive
symptom common to all these neurological diseases. However, elevated PE propensities may actually
arise from shared and disease-specific impairments of covert cognitive processes supporting cognitive
flexibility. The present review demonstrates that computational neuropsychology possesses the
potential to reveal such nosologically specific profiles of covert cognitive symptoms, which remain
undiscoverable through traditional behavioral neuropsychology. We conclude that computational
neuropsychology offers a potential route to the advancement of neuropsychological assessment.
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