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Abstract: Low-grade glioma (LGG) is a highly aggressive disease in the skull. On the other hand,
anoikis, a specific form of cell death induced by the loss of cell contact with the extracellular matrix,
plays a key role in cancer metastasis. In this study, anoikis-related genes (ANRGs) were used to
identify LGG subtypes and to construct a prognostic model for LGG patients. In addition, we
explored the immune microenvironment and enrichment pathways between different subtypes. We
constructed an anoikis-related gene signature using the TCGA (The Cancer Genome Atlas) cohort and
investigated the differences between different risk groups in clinical features, mutational landscape,
immune cell infiltration (ICI), etc. Kaplan–Meier analysis showed that the characteristics of ANRGs
in the high-risk group were associated with poor prognosis in LGG patients. The risk score was
identified as an independent prognostic factor. The high-risk group had higher ICI, tumor mutation
load (TMB), immune checkpoint gene expression, and therapeutic response to immune checkpoint
blockers (ICB). Functional analysis showed that these high-risk and low-risk groups had different
immune statuses and drug sensitivity. Risk scores were used together with LGG clinicopathological
features to construct a nomogram, and Decision Curve Analysis (DCA) showed that the model could
enable patients to benefit from clinical treatment strategies.

Keywords: anoikis; low-grade glioma; signature; prognosis; immune microenvironment

1. Introduction

Glioma is a relatively common primary tumor in the brain that originates mainly from
glial cells in the brain tissue, and about one-third of gliomas are low-grade gliomas (LGGs) [1].
low-grade glioma is a diffusely infiltrating, slow-growing glial brain tumor that tends to have
extensive genetic and transcriptional heterogeneity [2]. According to the Cancer Genome
Atlas Project classification, “low-grade glioma” has taken the place of the phrase “lower
grade glioma,” which was formerly often used to refer to grade 2 gliomas [3,4]. LGG is
usually considered to have a benign course; however, diffuse low-grade gliomas (LGG)
naturally transform into malignant high-grade gliomas, and once recurring and progressing
to high-grade gliomas, they can greatly limit a patient’s survival [5]. The poor prognosis and
mortality associated with gliomas are mainly due to the highly aggressive and mobile nature
of the tumor cells, which can spread widely into the surrounding brain tissue [6]. To date,
the molecular mechanisms of glioma invasion and migration are not fully understood [7].
The epithelial-mesenchymal transition (EMT) of glioma cells is a significant component
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contributing to the aggressiveness of high-grade gliomas. For prompting clinical interventions
to halt the growth of the disease, more novel biomarkers are urgently required at an early
stage to predict the prognosis of glioma patients.

In the absence of extracellular matrix (ECM) attachment or when adhered to inappro-
priate sites, cells undergo a specific type of apoptosis called anoikis [8,9]. Anoikis acts as
an important defense for the organism by preventing shedding cells from re-adhering to
incorrect locations and preventing their growth [8,10]. Tumor cells have been found to
resist anoikis in a variety of ways, such as secreting growth factors, activating pro-survival
signaling pathways, or altering the expression pattern of integrins by cells [11]. Resistance
to anoikis is becoming a hallmark of cancer cells and contributes to the formation of distant
organ metastases [12,13]. However, few studies focused on the relationship between the
process of anoikis and distant metastasis of LGGs.

Therefore, we developed a prognostic scoring model based on anoikis-related genes
(ANRGs), and under this risk score, we further investigated the relationship between AN-
RGs and the immune microenvironment, immune checkpoint blockers (ICB) response, and
chemotherapy sensitivity. We aim to demonstrate the value of ANRGs for assessing the
prognosis of LGG patients through a comprehensive analysis of genomic data and to develop
a novel signature based on ANRGs that can accurately predict the prognosis of LGG patients
and characterize the immune landscape, thereby improving treatment options.

2. Materials and Methods
2.1. Gene Expression and Clinical Data Acquisition

Gene expression profiles of TCGA-LGG were downloaded from the UCSC Xena
website (https://xena.ucsc.edu/, accessed on 20 August 2022). 529 LGG tissue samples
were available in the TCGA(The Cancer Genome Atlas) cohort. Gene expression profile
data for the 443 patients with low-grade gliomas in the validation model was obtained
from the China Glioma Genome Atlas (CGGA) data portal (http://www.cgga.org.cn/,
accessed on 20 August 2022). In addition, normal control samples were obtained from The
Genotype-Tissue Expression (GTEx) website (https://www.gtexportal.org/, accessed on
20 August 2022). FPKM data was finally transformed into transcript per million (TPM).
Batch corrections and integrations of the two sets of gene expression data were performed
with the “limma” and “sva” [14] packages. A detailed flow chart is shown in Figure 1.
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Figure 1. A detailed flow chart about the study of ANRGs in LGG. Figure 1. A detailed flow chart about the study of ANRGs in LGG.

2.2. Acquisition of ANRGs

A total of 358 ANRGs were downloaded from the GeneCard database [15] (https:
//www.genecards.org/, accessed on 15 August 2022) and Harmonizome portals (https:
//maayanlab.cloud/Harmonizome/, accessed on 15 August 2022) [16]. Differential expres-
sion analysis of differentially expressed genes (DEGs) was performed for the TCGA cohort
and different subgroups using the R software “limma” package with | log2FC | > 1.0 and
FDR < 0.05 as thresholds.

https://xena.ucsc.edu/
http://www.cgga.org.cn/
https://www.gtexportal.org/
https://www.genecards.org/
https://www.genecards.org/
https://maayanlab.cloud/Harmonizome/
https://maayanlab.cloud/Harmonizome/
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2.3. Functional Enrichment Analysis

We downloaded “c2. cp.kegg.v7.4. symbols. gmt” from the MSigDB database to
carry out GSVA analysis. The “GSVA” R package was used to perform GSVA enrichment
analysis [17]. In addition to this, functional enrichment analysis was performed by the
“clusterProfiler” package in the R software (Version 4.1.0) (https://www.r-project.org,
accessed on 1 September 2022), including the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) analysis.

2.4. Consensus Clustering

Consensus clustering was applied to identify distinct anoikis-related patterns relating
to the expression of anoikis regulators by the k-means method. Thereafter, Uniform
Manifold Approximation and Projection (UMAP) was used to validate the reliability of
clustering with the R package “ggplot2”.

2.5. Selection of Characteristic Genes

Two machine learning algorithms, random forest and SVM-RFE [18] were used to
screen for signature genes. Recursive feature elimination (RFE) in the random forest
algorithm is a supervised machine learning method for ranking genes in LGGs. Predictive
performance was estimated by tenfold cross-validation, and genes with relative importance
> 0.25 were identified as feature genes. SVM-RFE is a small-sample learning method
that essentially bypasses the traditional process of induction to deduction and enables
efficient “transductive inference” from training to prediction samples, simplifying the usual
classification and regression problems.

2.6. Development and Validation of Prognostic Signatures

First, accurate models were developed using the R package “sva” to eliminate batch
effects between TCGA and CGGA data. Variables with p-values < 0.01 were selected
for the least absolute shrinkage and selection operator (LASSO) regression analysis, and
the number of genes in the final risk model was reduced by the R software package
“glmnet”. Then, the genes from the LASSO regression were selected for the multivariate
Cox regression analysis and thus constructed according to the following equation: risk
score = ∑(ð × Exp), where ð is the corresponding regression coefficient and Exp represents
the expression value of each mRNA. All patients were divided into high-risk and low-risk
groups according to the median risk score. Survival curves and risk maps were generated
to show the survival differences and status of each patient by the R software, “survminer”
and “ggrisk” packages. In addition, the CGGA cohort was used as an independent external
cohort to validate the utility of the prognostic model.

2.7. Estimation of the Tumor Immune Microenvironment of the Prognostic Signature

CIBERSORT and ssGSEA R scripts were used to quantify the relative proportion of
infiltrating immune cells [19]. We used CIBERSORT to estimate the proportion of immune
cell types between the low-risk and high-risk groups. The sum of all estimated immune cell
types scored in each sample equals 1. Meanwhile, spearman rank correlation analysis was
applied to explore relationships between risk score values and immune infiltrating cells.

2.8. Tumor Immune Cycle and ICB Response

We obtained the cancer-immune cycle-related gene set [20] from the website developed
by Xu et al. (http://biocc.hrbmu.edu.cn/TIP/, accessed on 20 August 2022) and a set of
genes positively associated with clinical response to the anti-PD-L1 drug (atezolizumab)
from Mariathasan’s study features [21].

2.9. Construction and Evaluation of a Predictive Nomogram

The nomogram was created using risk ratings and clinicopathological features. For
internal validation to confirm the accuracy, the calibration plot was executed. DCA, or

https://www.r-project.org
http://biocc.hrbmu.edu.cn/TIP/
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decision curve analysis, was used to evaluate the clinical net benefit [22]. In addition, we
evaluated the accuracy of risk ratings in predicting 1-year, 3-year, and 5-year OS in LGG
patients by plotting subject operating characteristic curves using the R software’s (Version
4.1.0) (https://www.r-project.org, accessed on 1 September 2022) “timeROC” package.

2.10. Tumor Immune Single Cell Hub Database

An extensive single-cell RNA-seq database devoted to the TME is available online
under the name Tumor Immune Single-Cell Hub (TISCH; http://tisch.comp-genomics.org,
accessed on 20 August 2022) [23]. Utilizing this database, comprehensive research on TME
heterogeneity in diverse data sets and cell types was done.

2.11. Statistical Analysis

All analyses were performed using R version 4.1.1, 64-bit6, and its support package.
To calculate prognostic values and to compare patient survival in different subgroups
in each data set, Kaplan–Meier survival analysis, and the log-rank test was used. The
non-parametric Wilcoxon rank sum test was used to test the relationship between the two
groups for continuous variables. Kruskal–Wallis test was used as a comparison among
more than two groups. Clinical characteristics of the high and low-risk groups were
screened for prognostic variables using univariate and multivariate Cox regression (R
package ‘survival’). Correlation coefficients were examined using spearman correlation
analysis. In all statistical investigations, p < 0.05 was considered statistically significant.

3. Results
3.1. Acquisition of ANRGs

The Genecards and Har-monizome portals yielded a total of 358 anoikis-associated
genes (Supplementary Table S1), and the TCGA and CGGA cohorts included a combined
total of 316 ANRGs (Figure 2A). When compared to normal adjacent tissues, we found
57 differentially expressed genes (DEGs) in the TCGA-LGG and GTEx cohorts, the volcano
map of these DEGs is displayed in Figure 2B. To create the new “TCGA-CGGA” cohort,
we combined the TCGA-LGG cohort with the CGGA cohort and eliminated the batch
effect. 41 of 57 ANRGs were linked with survival and statistically distinct, according to
univariate Cox regression analysis (p < 0.05, km < 0.05, Supplementary Table S2). The top
29 ANRGs most strongly correlated with prognosis in LGG patients were displayed in
the forest plot (p < 0.001, Figure 2C). Except for ANGPTL2, CRYAB, and BAG1, 26 genes
were associated with poor prognosis. Meanwhile, network plots showed the relationship
between the expression levels of the top 29 ranked genes more clearly (Figure 2D). Since
LGG patients frequently lost or gained chromosomal regions [24], we downloaded CNV
data from the TCGA database to further explore the alteration of these lost apoptosis-
related genes on chromosomes and the location of each gene on chromosomes (Figure 2E,F).
Figure 2F demonstrates that IFI27 was mostly displayed as a “loss” and was positioned
on chromosome 14, while the most substantial changed “gain” of EGFR was located on
chromosome 7.

https://www.r-project.org
http://tisch.comp-genomics.org
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Figure 2. Characteristics of ANRGs in LGG. (A) Venn diagram showing the 316 ANRGs found
from the TCGA and CGGA cohorts. (B) Volcano plot of 57 DEGs in TCGA and GTEx cohort,
red for up-regulated, blue for down-regulated genes. (C) The forest plot shows the 29 ANRGs
(p < 0.001) via the univariate Cox regression analysis. (D) The network diagram showed the corre-
lations between the top 29ANRGs. The red connecting lines represent positive correlations, while
the blue represents negative correlations. (E) Copy number variations (CNVs) of 29 ANRGs in
TCGA-LGG. (F) Localization of 29 ANRGs in chromosomal regions.

3.2. Consistent Clustering of 29 ANRGs in LGG

To comprehend the function of ANRGs in LGG better, we used the ‘Consensus Cluster
Plus’ R program to perform consensus clustering based on 29 prognosis-related ANRGs
(p < 0.001) and the findings of the univariate cox analysis. When k = 3, as in Figure 3A,
the cohort could be effectively divided into three subtypes. A substantial difference in
prognosis among the three subtypes was revealed by the overall survival analysis (p < 0.001,
Figure 3B). Its accuracy was examined using principal component analysis (PCA), which
was used to classify the data. The findings demonstrated that, at k = 3, the three clusters’
subtypes could be precisely defined (Figure 3C). Heatmaps of ANGs expression and corre-
sponding clinicopathological features of the 3 subtypes indicated that higher expression
of ANGRs in cluster A might be associated with a worse prognosis in LGG patients, and
interestingly try that very low expression of ANGs in cluster C was not associated with
a better prognosis (Figure 3D), so that ANRGs may regulate LGG progression through
more complex pathways. We used the GSVA software to concentrate on the differential
enrichment of the KEGG pathway between cluster A and cluster B given the obvious
disparities among clusters A, B, and C in addition to examining the overall distribution
of the 29 ANRGs in clusters (Figure 3E, Supplementary Figure S1). Cluster A with the
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poorest prognosis was mainly associated with the adhesive junction pathway and some
common tumor-associated pathways. In glioma, adhesive linkage-associated proteins can
be bound to β-catenin and regulate gene transcription, which ultimately affects the cell
cycle, apoptosis, and changes in cytoskeletal structure, affecting cell migration [25].
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Figure 3. Subgroups of LGGs associated with 29 ANRGs. (A) The consensus matrix was obtained
by applying consensus clustering when k = 2, 3 and 4. When k = 2, the slope of the CDF curve is
the lowest. (B) Overall survival of three subtypes (p < 0.001). (C) PCA distinguished three subtypes
based on the expression of ANRGs. (D) Heat map of the expression of 29 ANRGs and corresponding
clinicopathological features of two subtypes. (E) GSVA analysis focused on the differential enrichment
of KEGG pathways between clusters A and B.

3.3. Immune Infiltration and Differential Gene Expression in the Two Subtype Clusters

A boxplot was utilized to demonstrate the considerable variation in immune cell
infiltration levels among the three groupings (Figure 4A). We were surprised to find that
almost all percentages of immune cell infiltration were higher in group A than in groups
B and C. We performed differential analysis for groups A and B, where patients had the
worst survival performance, and volcano plots of the differential analysis were shown
in Figure 4B. GO and KEGG enrichment analyses were performed for these differential
genes, and these DEGs were associated with a variety of items, including “regulation of
trans-synaptic signaling” in the biological process (BP) class, “presynapse” in the cellular
component (CC) class, Molecular KEGG results show that these genes are associated
with “cell cycle” and “proteoglycans in cancer” (Figure 4C,D), with related evidence that
proteoglycans could act as co-receptors for growth factors and co-receptors for cellular
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matrix proteins, increasing the affinity of adhesion molecules for their specific receptors,
and thus proteoglycans play an important role in the acquisition of apoptosis resistance in
tumors with anoikis [26,27].
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Figure 4. Differences in immune infiltration patterns and enrichment analysis of DEGs in the three
subtype groups. (A) Immune infiltration patterns of three subtype groups were obtained using
ssGSEA. (B) Volcano plot of up-and down-regulated DEGs in clusters A and B. (C) GO analysis circle
diagram of DEGs. (D) Bubble diagram of KEGG enrichment analysis of DEGs. *** p < 0.001.

3.4. The Development and Validation of an Anoikis-Related Prognostic Signature

We used two diagnostic machine learning methods to select signature genes associated
with anoikis in LGG. For the SVM-RFE algorithm, the error was minimized when the
number of features was 28 (Figure 5A). For the random forest algorithm, the 20 feature genes
with the largest relative importance scores were determined (Figure 4B,C). After taking
the intersection set, 19 feature genes common to both the random forest and SVM-RFE
algorithms were finally identified (Figure 5D). We then participated in a Lasso-penalized
Cox analysis using these 19 ANRGs (p < 0.05, Figure 5E,F). Finally, by multivariate Cox
analysis, 7 ANRGs were identified as independent prognostic factors, including ANGPTL2,
BAG1, CDH2, IFI27, PTK2B, SOD2, and UBE2C. Based on their coefficients, we calculated
risk scores using the following formula.
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process of selecting biomarkers using the support vector machine-recursive feature elimination Figure 5. Identification of prognostic features associated with Anoikis. (A) A plot illustrating the process of
selecting biomarkers using the support vector machine-recursive feature elimination (SVM-RFE) technique.
The SVM-RFE technique was used to identify a subset of 28 characteristics from the DEGs. (B) The
effect of the decision tree number on the error rate. The X-axis denotes the number of decision trees,
while the y-axis shows the error rate. When approximately 240 decision trees are used, the error rate is
generally steady. (C) The Gini coefficient method results in a random forest classifier. The x-axis displays
the genetic variable, and the y-axis the significance index. (D) Venn diagram showing the feature genes
shared by random forest, and SVM-RFE algorithms. (E) LASSO analysis with 10-fold cross-validation
identified seven prognostic genes. Each curve corresponds to one gene. (F) Coefficient profile plots of
seven prognostic ANRGs. Vertical dashed lines are plotted at the best lambda. (G,H) The KM curves
showed a different prognosis in the subtype risk group. (I,J) Risk plots were used to illustrate the survival
status of each sample in the TCGA and CGGA cohorts. (K) Risk score in 3 clusters established before.
(L) Alluvial diagram of subtype and living status.

Risk score = sum of the expressions of the 7 ANRGs * respective coefficients. The
correlation coefficients are shown in Supplementary Table S3. Patients in the high-risk
group in the TCGA-LGG cohort had a worse prognosis, according to KM curves, which was
also seen in the CGGA validation cohort (Figure 5G,H). Risk plots display specific survival
results for each patient in the TCGA cohort and the CGGA cohort, showing a steady rise in
mortality with increasing risk scores (Figure 5I,J). Risk scores were significantly different in
the three previous subtypes (Figure 5K), with cluster A having a higher risk score (p < 0.01).
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Alluvial plots showed the association of cluster, risk, and survival status associated with
ANRGs (Figure 5L).

3.5. Immune Infiltration in Different Risk Groups

The development of gliomas and the effectiveness of immunotherapy are both sig-
nificantly influenced by the immune microenvironment. To achieve this, we looked more
closely at the tumor microenvironment (TME) of LGG patients. The relative proportions
of invading immune cells in the high-risk and low-risk groups were measured using the
“CIBERSORT”. First, the risk scores for the LGG samples were ranked from low to high
to display the proportion of various immune cells (Figure 6A). With an increasing risk
score, the proportion of mast cells gradually increased (R = 0.23, Figure 6B). In particular,
SOD2 was highly associated with the infiltration of M1 macrophages and CD8 + T cells.
The seven genes utilized to build the risk score were strongly connected with numerous
immune cells (Figure 6C). The infiltration of monocytes and mast cells was greater in the
low-risk group (Figure 6D). This shows that mast cell suppression may play a significant
role in the poor prognosis for LGG. We discovered that practically all immune checkpoints,
including CTLA-4, HAVCR2 (TIM3), PDCD1 (PD-1), TIGIT, and CD70, displayed greater
activity in the high-risk group by comparing immune checkpoint activation between vari-
ous risk groups (Figure 6E). Additionally, we were able to determine the stromal score and
immunological score of the high-risk and low-risk groups using the ESTIMATEscore of the
expression profile (Figure 6F).
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3.6. Establishment of a Prognostic Nomogram for LGG Patients

The risk score was identified as an independent predictive factor for LGG in the
TCGA population by univariate and multivariate Cox analyses (Figure 7A,B). Then, we
included information about risk groups, IDH mutation status, 1p/19q deletion status,
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tumor grade, age, grade, and tumor grade in the nomogram (Figure 7C). To evaluate
the consistency between the prognostic model’s predicted overall survival (OS) and the
actual overall survival, calibration plots were created. The findings revealed that the
nomogram’s predictions were accurate (Figure 7D). The efficacy of the created model in
accurately predicting OS in LGG patients was evaluated using time-dependent ROC curves.
Concerning predicting OS in the TCGA cohort, the risk score did well (AUCs for 1-year,
3-year, and time-dependent ROC curves were used to assess the accuracy of the developed
model for predicting OS in LGG patients. The risk score did well in the TCGA cohort at
predicting OS in these people (AUCs for 1-year, 3-year, and 5-year OS: 0.872, 0.844, and
0.813; Figure 7E). Comparable outcomes were seen in the CGGA cohort (Figure 7H). In
both the TCGA and CGGA cohorts, the three-year area under the curve (AUC) of the risk
score was larger than the AUC of other clinicopathological characteristics (Figure 7F,I). The
three-year DCA curves showed that the risk score was a good predictor of survival in LGG
patients (Figure 7G,J).
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(B) multi-variate COX analysis to assess risk scores and clinical features (including age, grade, gender,
IDH status, and 1p/19q. codeletion). (C) Nomogram of risk groupings and clinical characteristics
predicting 1-, 3-, and 5-year survival. (D) Calibration curves tested for agreement between actual and
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at 3 years. * p < 0.05, *** p < 0.001.
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Based on these observations, we compared in detail whether risk scores differed across
subgroups of clinical characteristics. We found that individuals with older age, G3 stage, no
mutation in IDH, and no common defect in 1p/19q showed higher risk scores (Figure 8A–F,
p all < 0.05).
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3.7. Mutation Landscape in Different Risk Groups

Tumor mutation load (TMB) was higher in the high-risk group, according to our
analysis of the relationship between risk score and TMB (Figure 9B) and the variation
in TMB among various risk groups (Figure 9A). IDH1, TP53, and ATRX were the most
frequently mutated genes in high-risk and low-risk groups, respectively. However, there
were fewer IDH mutations and more mutations in other genes in the high-risk group. As a
result, we generated two waterfall plots to explore the detailed gene mutation characteristics
between high-risk and low-risk populations (Figure 9C,D).



Brain Sci. 2022, 12, 1349 12 of 18Brain Sci. 2022, 12, 1349 15 of 22 
 

 

 

Figure 9. Mutation analysis based on risk score model. (A) Differences in TMB in high and low-risk 

score groups. (B) Correlation of risk score and TMB. (C,D) Waterfall plots summarizing the muta-

tions in high- and low-risk patients. 

3.8. Immunotherapy and ICB Response 

Since the immune microenvironment mediates the ICB response, we further ana-

lyzed the correlation between the risk score and the ICB response signature. We found 

that the risk score was significantly negatively correlated with alcoholism only, while it 

was significantly positively correlated with other ICB response signatures (Figure 10A). 

Subsequently, to further refine the immune signature of the tumor microenvironment, we 

also performed a correlation analysis between tumor immune cycle steps and the risk 

score. Once more, risk scores were significantly and favorably correlated with the majority 

of the critical stages of the tumor immune cycle, such as the release of cancer cell antigen 

(step 1), presentation of cancer antigen (step 2), priming and activation (step 3), immune 

cell transporting to the tumor (step 4) (CD8 T cell recruitment, Th1 cell recruitment, Th22 

cell recruitment, NK cell recruitment, and Th17 cell recruitment), infiltration of immune 

cells into tumors (step 5), and recognition of cancer (Figure10B). 

Figure 9. Mutation analysis based on risk score model. (A) Differences in TMB in high and low-risk
score groups. (B) Correlation of risk score and TMB. (C,D) Waterfall plots summarizing the mutations
in high- and low-risk patients.

3.8. Immunotherapy and ICB Response

Since the immune microenvironment mediates the ICB response, we further analyzed
the correlation between the risk score and the ICB response signature. We found that the risk
score was significantly negatively correlated with alcoholism only, while it was significantly
positively correlated with other ICB response signatures (Figure 10A). Subsequently, to
further refine the immune signature of the tumor microenvironment, we also performed a
correlation analysis between tumor immune cycle steps and the risk score. Once more, risk
scores were significantly and favorably correlated with the majority of the critical stages of
the tumor immune cycle, such as the release of cancer cell antigen (step 1), presentation of
cancer antigen (step 2), priming and activation (step 3), immune cell transporting to the
tumor (step 4) (CD8 T cell recruitment, Th1 cell recruitment, Th22 cell recruitment, NK cell
recruitment, and Th17 cell recruitment), infiltration of immune cells into tumors (step 5),
and recognition of cancer (Figure 10B).

Finally, we investigated the potential sensitivity of clinical agents in the high-risk and low-
risk groups using the “pRRophetic” R package and screened some chemotherapeutic agents
that could be used to treat gliomas, such as lapatinib and afatinib (Figure 10C,D). Almost all
of these agents showed higher IC50 in patients with high scores (Supplementary Figure S2),
indicating that patients with high-risk scores may be more sensitive.
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on lapatinib (C) and afatinib (D) to assess the sensitivity of chemotherapeutic agents.

3.9. Correlation Analysis of ANRGs and Tumor Immune Microenvironment

To examine the expression of seven ANRGs in TME, we used the single-cell data set
GSE70630 of oligodendroglioma from the TISCH database. There are 10 cell populations
and 4 intermediate cell types in the GSE70630 dataset, and the image depicts their distri-
bution and number (Figure 11A). PTK2B and SOD2 were mainly expressed in monocyte
macrophages. In contrast, ANGPTL2, BAG1, and CDH2 were mainly expressed in cancer
cells and oligodendrocytes (Figure 11B,C).
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4. Discussion

The prognosis for glioma patients does not significantly improve despite break-
throughs in surgery, radiation therapy, chemotherapy, and other treatments. Glioma is the
most prevalent kind of malignant brain tumor in adults [28,29]. Glioma cells can penetrate
along blood vessels and invade surrounding normal brain tissue, making it difficult to
remove the tumor as a whole [30]. Once a low-grade glioma differentiates into a high-grade
malignant glioblastoma, the invasive ability will be enhanced, and it can infiltrate and
metastasize through the normal tissue space [31]. However, due to the heterogeneity of
gliomas and the lack of sustained response, targeted therapies for LGG patients are less
effective, and therefore there is an urgent need for more tumor metastasis-related markers
for early glioma treatment to improve diagnostic accuracy.

In the absence of extracellular matrix (ECM) attachment or when cells adhere to
inappropriate sites, cells undergo a specific type of apoptosis called anoikis [32]. Failure
to properly execute the anoikis program may lead to rapid cell proliferation at ectopic
sites. This dysregulation of apoptotic execution is becoming a hallmark of cancer cells and
contributes to their metastasis to distant organs [33].

The crucial process by which epithelial cells transform into mesenchymal cells and
lose their cell polarity and adhesion is known as oncogenic EMT. EMT has recently been
discovered in glioma stem cells to directly impact migration, invading ability, and radiation
resistance in gliomas [34]. One of the hallmarks of EMT is the resistance of tumor cells to
anoikis. The development of new cancer treatment modalities to address tumor resistance
to anoikis has become a hot topic of research in recent years [35,36]. Gliomas have anoikis-
resistant properties that enhance their invasion of the adjacent brain parenchyma and
eventually recur despite the use of standard therapies. Further exploration regarding
the mechanisms of anoikis in gliomas remains to be done. A recent study found that
activation of anoikis in glioma cells was associated with inhibition of p21-activated kinase
4 (PAK4) [37]. In addition, Jiang et al. found that MNX1 was bound to the upstream
regulatory region of TrkB as a transcription factor to activate its expression, enhancing the
ability of glioma cells to evade anoikis [30].

In this work, we found seven genes—ANGPTL2, BAG1, CDH2, IFI27, PTK2B, SOD2,
and UBE2C—that together make up robust risk score characteristics. In previous studies,
many correlations between these ANRGs and tumorigenesis as well as pathogenesis have
been extensively reported. Increased ANGPTL2 expression in colorectal cancer (CRC) cells
improves the β-catenin pathway signaling and boosts tumor cell proliferation. ANGPTL2
regulates epithelial regeneration and intestinal immune response [38]. In ovarian cancer,
ANGPTL2 can even reduce peritoneal metastasis of tumor cells by inhibiting anoikis
resistance [39]. BAG1 is a multifunctional protein associated with a variety of cellular
processes, such as apoptosis, proliferation, growth, and motility [40]. As an autophagy-
related gene, BAG1 is also considered to be an important prognostic factor in low-grade
gliomas [41]. In colon cancer, knockdown of the neurotrophic factor BDNF suppresses the
expression of the mesenchymal marker CDH2 leading to anoikis and immune resistance
in tumor cells [42]. Atypical EGFR signaling in glioblastoma activates the transcription
factor IRF3, leading to the expression of IFI27, which often plays an important oncogenic
role [43]. Acute lymphoblastic leukemia (ALL) contains multiple activated kinase and
cytokine receptor signatures, such as genomic alterations in PTK2B [44]. Normal cells
require adherence to the extracellular matrix to survive. Cell shedding leads to a dramatic
increase in reactive oxygen species (ROS), which promotes anoikis [45,46]. Mammary
epithelial cells can reduce anoikis by increasing mitochondrial antioxidant enzyme SOD2
to reduce ROS produced by mitochondrial glucose oxidation [47]. Similarly, in ovarian
cancer cells, SOD2 protein expression is associated with increased oxidative stress, and
ovarian cancer cells rapidly increase their mitochondrial antioxidant capacity through
this mechanism as a means to adapt to the loss of anchor points and escape anoikis [48].
Ma et al. found that the ubiquitin-binding enzyme E2C (UBE2C) was a key regulator of
cell cycle progression and an important factor in the malignant progression of astrocytic
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tumors [49]. Meanwhile silencing of UBE2C in glioma leads to significant inhibition of the
PI3K-Akt-mTOR pathway, while avoiding autophagy [50].

To evaluate the status of anoikis, we utilized unsupervised cluster analysis to divide
LGG patients into three subgroups (clusters A, B, and C) based on 27 ANRGs. The majority
of the ANRGs were discovered to be highly expressed in cluster A, which is likely what
caused the individuals in group A to have a worse prognosis. The results imply that
anoikis can affect how LGGs form. The two clusters of AB differed in tumor infiltration and
metastasis-related pathways, according to GSVA. In the current study, both the training and
validation cohorts of LGG patients showed that the anoikis-related gene signature correctly
predicted OS. This gene signature was an independent predictor of LGG prognosis in both
the TCGA and CGGA cohorts when considering relevant clinical characteristics, such as
tumor grade, age, and sex. Clinical variables with high-risk scores tended to be statistically
significant risk factors for prognosis, suggesting that the ANRG gene signature could be a
predictor of prognosis and could be a proxy for prognosis. Patients with concurrent risk
scores tended to have higher tumor grade, IDH-wild type, and no 1p/19q co-deletion,
which was consistent with previous studies [51,52] and more suggestive of a high-risk
adverse prognostic profile.

To investigate the prognostic mechanism of this feature and to provide clues for
predicting immune cell infiltration (ICI), we compared the high-risk and low-risk groups in
terms of the proportion of 22 immune cells, TME, gene mutations, and TMB. Consistent with
previous studies, CD8+ T-cell infiltration was greater in the high-risk group. Furthermore,
SOD2, among the seven risk genes, had the highest correlation coefficient with CD8 + T
cells [53]. Thus, SOD2 activation of the CD8 + T cell axis may be an interesting pathway. We
also found that the high-risk group exhibited higher TMB than the low-risk group, but the
low-risk group expressed more high-frequency IDH and CIC mutations [54]. The high-risk
group showed higher TMB, which would lead to more neoantigens and enhanced T-cell
recognition, and therefore could be a good predictor of the effect of ICB therapy.

In 2013, Chen and Mellman introduced the concept of tumor immune cycling. Tumor
immunity arises as a continuously self-derived cyclic process, through which immune
stimulatory molecules are accumulated to amplify T cell responses [55]. Thus, the cancer-
immune cycle represents the immune response of the human immune system to cancer.
Immune checkpoint inhibitors, particularly treatments such as anti-PD-1/PD-L1 and CTLA-
4, are effective against a wide range of tumors but have performed poorly in clinical trials
in glioma [56]. The efficacy of immunotherapy in glioma is related to its unique molecular
alterations, immune checkpoint expression levels and immune microenvironment. Immune
cells and associated stromal components recruited and activated by tumor cells, which
form tumor suppressive inflammatory TME from the early stages of tumor colonization or
growth, can well hinder tumor development [57]. In addition, in patients in the high-risk
group, we found that upregulation of suppressive immune checkpoint molecules, which
can reduce immune cell activity, is another major feature of inflammatory TME [58]. Pa-
tients in the high-risk group tend to have higher immune checkpoint gene expression,
while we found that higher risk scores correlate significantly with both tumor immune
cycle and ICB response. For these high-risk subgroups of LGG patients, a combination
of immunotherapeutic strategies targeting TME, remodeling of the positive immune mi-
croenvironment, and multi-targeted immunotherapeutic agents can be used to significantly
improve the prognosis and generate a comprehensive response in LGG patients.

5. Conclusions

In conclusion, our 7 ANRGs signature can well predict the survival of LGG patients, and
it will assist clinicians in creating various treatment plans. The DCA curve also indicates that
LGG patients can benefit from the nomogram created using the 7 genes signature. In practical
practice, columnar maps based on this concept can aid doctors in creating personalized treat-
ments. Our study still has some inherent problems, though. Future experimental confirmation
is required as all of these conclusions came from bioinformatics research.



Brain Sci. 2022, 12, 1349 16 of 18

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/brainsci12101349/s1, Figure S1: GSVA analysis of clusters B (or
A) and C; Figure S2: A drug sensitivity analysis. Table S1: 358 ANRGs from the Genecards and
Har-monizome portals; Table S2: Results of univariate Cox regression analysis and survival analysis
for the 57 ANRGs; Table S3: Correlation coefficients of the 7 ANRGs.

Author Contributions: Conceptualization, C.C., X.Z. and G.L.; methodology, S.Z. and H.C.; software,
S.Z.; formal analysis, G.P.; data curation, W.J., Q.H. and H.C.; writing—original draft preparation,
H.C., S.Z. and G.L.; writing—review and editing, W.J. and H.C.; visualization, S.Z.; funding acquisi-
tion, C.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by General project of the Wuxi Commission of Health (MS201933,
T202120).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets analyzed in this study can be found in the TCGA-
LGG project (http://www.cancer.gov/tcga, accessed on 20 August 2022), CGGA database (http:
//www.cgga.org.cn/, accessed on 20 August 2022), and GTEx project (https://gtexportal.org/home/,
accessed on 20 August 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, Y.; Liu, X.; Cheng, L.; Li, L.; Wei, Z.; Wang, Z.; Han, G.; Wan, X.; Wang, Z.; Zhang, J.; et al. Tumor Suppressor microRNA-138

Suppresses Low-Grade Glioma Development and Metastasis via Regulating IGF2BP2. Oncol. Targets Ther. 2020, 13, 2247–2260.
[CrossRef] [PubMed]

2. Baumert, B.G.; Hegi, M.E.; van den Bent, M.J.; von Deimling, A.; Gorlia, T.; Hoang-Xuan, K.; Brandes, A.A.; Kantor, G.; Taphoorn,
M.J.B.; Hassel, M.B.; et al. Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033):
A randomised, open-label, phase 3 intergroup study. Lancet Oncol. 2016, 17, 1521–1532. [CrossRef]

3. Tom, M.C.; Cahill, D.P.; Buckner, J.C.; Dietrich, J.; Parsons, M.W.; Yu, J.S. Management for Different Glioma Subtypes: Are All
Low-Grade Gliomas Created Equal? Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 133–145. [CrossRef] [PubMed]

4. Wesseling, P.; Capper, D. WHO 2016 Classification of gliomas. Neuropathol. Appl. Neurobiol. 2018, 44, 139–150. [CrossRef]
[PubMed]

5. Liu, R.; Solheim, K.; Polley, M.Y.; Lamborn, K.R.; Page, M.; Fedoroff, A.; Rabbitt, J.; Butowski, N.; Prados, M.; Chang, S.M. Quality
of life in low-grade glioma patients receiving temozolomide. Neuro Oncol. 2009, 11, 59–68. [CrossRef]

6. Hersh, D.S.; Harder, B.G.; Roos, A.; Peng, S.; Heath, J.E.; Legesse, T.; Kim, A.J.; Woodworth, G.F.; Tran, N.L.; Winkles, J.A. The
TNF receptor family member Fn14 is highly expressed in recurrent glioblastoma and in GBM patient-derived xenografts with
acquired temozolomide resistance. Neuro Oncol. 2018, 20, 1321–1330. [CrossRef]

7. Delgado-Martin, B.; Medina, M.A. Advances in the Knowledge of the Molecular Biology of Glioblastoma and Its Impact in
Patient Diagnosis, Stratification, and Treatment. Adv. Sci. 2020, 7, 1902971. [CrossRef]

8. Chiarugi, P.; Giannoni, E. Anoikis: A necessary death program for anchorage-dependent cells. Biochem. Pharmacol. 2008, 76,
1352–1364. [CrossRef]

9. Boudreau, N.J.; Jones, P.L. Extracellular matrix and integrin signalling: The shape of things to come. Biochem. J. 1999, 339, 481–488.
[CrossRef]

10. Frisch, S.M.; Ruoslahti, E. Integrins and anoikis. Curr. Opin. Cell Biol. 1997, 9, 701–706. [CrossRef]
11. Kakavandi, E.; Shahbahrami, R.; Goudarzi, H.; Eslami, G.; Faghihloo, E. Anoikis resistance and oncoviruses. J. Cell. Biochem. 2018,

119, 2484–2491. [CrossRef] [PubMed]
12. Kim, Y.N.; Koo, K.H.; Sung, J.Y.; Yun, U.J.; Kim, H. Anoikis resistance: An essential prerequisite for tumor metastasis. Int. J. Cell

Biol. 2012, 2012, 306879. [CrossRef]
13. Yu, Y.; Song, Y.; Cheng, L.; Chen, L.; Liu, B.; Lu, D.; Li, X.; Li, Y.; Lv, F.; Xing, Y. CircCEMIP promotes anoikis-resistance by

enhancing protective autophagy in prostate cancer cells. J. Exp. Clin. Cancer Res. 2022, 41, 188. [CrossRef] [PubMed]
14. Leek, J.T.; Johnson, W.E.; Parker, H.S.; Jaffe, A.E.; Storey, J.D. The sva package for removing batch effects and other unwanted

variation in high-throughput experiments. Bioinformatics 2012, 28, 882–883. [CrossRef] [PubMed]
15. Rebhan, M.; Chalifa-Caspi, V.; Prilusky, J.; Lancet, D. GeneCards: Integrating information about genes, proteins and diseases.

Trends Genet. 1997, 13, 163. [CrossRef]
16. Rouillard, A.D.; Gundersen, G.W.; Fernandez, N.F.; Wang, Z.; Monteiro, C.D.; McDermott, M.G.; Ma’ayan, A. The harmonizome:

A collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database 2016, 2016, baw100.
[CrossRef]

https://www.mdpi.com/article/10.3390/brainsci12101349/s1
https://www.mdpi.com/article/10.3390/brainsci12101349/s1
http://www.cancer.gov/tcga
http://www.cgga.org.cn/
http://www.cgga.org.cn/
https://gtexportal.org/home/
http://doi.org/10.2147/OTT.S232795
http://www.ncbi.nlm.nih.gov/pubmed/32214825
http://doi.org/10.1016/S1470-2045(16)30313-8
http://doi.org/10.1200/EDBK_238353
http://www.ncbi.nlm.nih.gov/pubmed/31099638
http://doi.org/10.1111/nan.12432
http://www.ncbi.nlm.nih.gov/pubmed/28815663
http://doi.org/10.1215/15228517-2008-063
http://doi.org/10.1093/neuonc/noy063
http://doi.org/10.1002/advs.201902971
http://doi.org/10.1016/j.bcp.2008.07.023
http://doi.org/10.1042/bj3390481
http://doi.org/10.1016/S0955-0674(97)80124-X
http://doi.org/10.1002/jcb.26363
http://www.ncbi.nlm.nih.gov/pubmed/28836703
http://doi.org/10.1155/2012/306879
http://doi.org/10.1186/s13046-022-02381-7
http://www.ncbi.nlm.nih.gov/pubmed/35655258
http://doi.org/10.1093/bioinformatics/bts034
http://www.ncbi.nlm.nih.gov/pubmed/22257669
http://doi.org/10.1016/S0168-9525(97)01103-7
http://doi.org/10.1093/database/baw100


Brain Sci. 2022, 12, 1349 17 of 18

17. Hanzelmann, S.; Castelo, R.; Guinney, J. GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinform.
2013, 14, 7. [CrossRef]

18. Sanz, H.; Valim, C.; Vegas, E.; Oller, J.M.; Reverter, F. SVM-RFE: Selection and visualization of the most relevant features through
non-linear kernels. BMC Bioinform. 2018, 19, 432. [CrossRef]

19. Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration
of cell subsets from tissue expression profiles. Nat. Methods 2015, 12, 453–457. [CrossRef]

20. Xu, L.; Deng, C.; Pang, B.; Zhang, X.; Liu, W.; Liao, G.; Yuan, H.; Cheng, P.; Li, F.; Long, Z.; et al. TIP: A Web Server for Resolving
Tumor Immunophenotype Profiling. Cancer Res. 2018, 78, 6575–6580. [CrossRef]

21. Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.;
et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018, 554, 544–548.
[CrossRef] [PubMed]

22. Vickers, A.J.; Cronin, A.M.; Elkin, E.B.; Gonen, M. Extensions to decision curve analysis, a novel method for evaluating diagnostic
tests, prediction models and molecular markers. BMC Med. Inform. Decis. Mak. 2008, 8, 53. [CrossRef]

23. Sun, D.; Wang, J.; Han, Y.; Dong, X.; Ge, J.; Zheng, R.; Shi, X.; Wang, B.; Li, Z.; Ren, P.; et al. TISCH: A comprehensive web resource
enabling interactive single-cell transcriptome visualization of tumor microenvironment. Nucleic Acids Res. 2021, 49, D1420–D1430.
[CrossRef]

24. Reiter, J.G.; Baretti, M.; Gerold, J.M.; Makohon-Moore, A.P.; Daud, A.; Iacobuzio-Donahue, C.A.; Azad, N.S.; Kinzler, K.W.;
Nowak, M.A.; Vogelstein, B. An analysis of genetic heterogeneity in untreated cancers. Nat. Rev. Cancer 2019, 19, 639–650.
[CrossRef] [PubMed]

25. Lewis-Tuffin, L.J.; Rodriguez, F.; Giannini, C.; Scheithauer, B.; Necela, B.M.; Sarkaria, J.N.; Anastasiadis, P.Z. Misregulated
E-cadherin expression associated with an aggressive brain tumor phenotype. PLoS ONE 2010, 5, e13665. [CrossRef] [PubMed]

26. Tseng, T.; Uen, W.; Tseng, J.; Lee, S. Enhanced chemosensitization of anoikis-resistant melanoma cells through syndecan-2
upregulation upon anchorage independency. Oncotarget 2017, 8, 61528–61537. [CrossRef]

27. Carneiro, B.R.; Pernambuco Filho, P.C.; Mesquita, A.P.; da Silva, D.S.; Pinhal, M.A.; Nader, H.B.; Lopes, C.C. Acquisition of
anoikis resistance up-regulates syndecan-4 expression in endothelial cells. PLoS ONE 2014, 9, e116001. [CrossRef]

28. Shen, Y.; Chi, H.; Xu, K.; Li, Y.; Yin, X.; Chen, S.; Yang, Q.; He, M.; Zhu, G.; Li, X. A Novel Classification Model for Lower-Grade
Glioma Patients Based on Pyroptosis-Related Genes. Brain Sci. 2022, 12, 700. [CrossRef]

29. Lai, G.; Li, K.; Deng, J.; Liu, H.; Xie, B.; Zhong, X. Identification and Validation of a Gene Signature for Lower-Grade Gliomas
Based on Pyroptosis-Related Genes to Predict Survival and Response to Immune Checkpoint Inhibitors. J. Healthc. Eng. 2022,
2022, 8704127. [CrossRef]

30. Jiang, L.; Chen, S.; Zhao, D.; Yan, J.; Chen, J.; Yang, C.; Zheng, G. MNX1 reduces sensitivity to anoikis by activating TrkB in
human glioma cells. Mol. Med. Rep. 2018, 18, 3271–3279. [CrossRef]

31. Schiff, D.; Van den Bent, M.; Vogelbaum, M.A.; Wick, W.; Miller, C.R.; Taphoorn, M.; Pope, W.; Brown, P.D.; Platten, M.; Jalali, R.;
et al. Recent developments and future directions in adult lower-grade gliomas: Society for Neuro-Oncology (SNO) and European
Association of Neuro-Oncology (EANO) consensus. Neuro Oncol. 2019, 21, 837–853. [CrossRef] [PubMed]

32. Bakir, B.; Chiarella, A.M.; Pitarresi, J.R.; Rustgi, A.K. EMT, MET, Plasticity, and Tumor Metastasis. Trends Cell Biol. 2020, 30,
764–776. [CrossRef] [PubMed]

33. Taddei, M.L.; Giannoni, E.; Fiaschi, T.; Chiarugi, P. Anoikis: An emerging hallmark in health and diseases. J. Pathol. 2012, 226,
380–393. [CrossRef] [PubMed]

34. Lah, T.T.; Novak, M.; Breznik, B. Brain malignancies: Glioblastoma and brain metastases. Semin. Cancer Biol. 2020, 60, 262–273.
[CrossRef]

35. Ohsawa, S.; Vaughen, J.; Igaki, T. Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis. Dev. Cell
2018, 44, 284–296. [CrossRef]

36. Tiwari, N.; Gheldof, A.; Tatari, M.; Christofori, G. EMT as the ultimate survival mechanism of cancer cells. Semin. Cancer Biol.
2012, 22, 194–207. [CrossRef]

37. Kesanakurti, D.; Chetty, C.; Rajasekhar Maddirela, D.; Gujrati, M.; Rao, J.S. Functional cooperativity by direct interaction between
PAK4 and MMP-2 in the regulation of anoikis resistance, migration and invasion in glioma. Cell Death Dis. 2012, 3, e445.
[CrossRef]

38. Horiguchi, H.; Kadomatsu, T.; Yumoto, S.; Masuda, T.; Miyata, K.; Yamamura, S.; Sato, M.; Morinaga, J.; Ohtsuki, S.; Baba, H.; et al.
Tumor cell-derived ANGPTL2 promotes beta-catenin-driven intestinal tumorigenesis. Oncogene 2022, 41, 4028–4041. [CrossRef]

39. Takeshita, Y.; Motohara, T.; Kadomatsu, T.; Doi, T.; Obayashi, K.; Oike, Y.; Katabuchi, H.; Endo, M. Angiopoietin-like protein 2
decreases peritoneal metastasis of ovarian cancer cells by suppressing anoikis resistance. Biochem. Biophys. Res. Commun. 2021,
561, 26–32. [CrossRef]

40. Ozfiliz, P.; Kizilboga, T.; Demir, S.; Alkurt, G.; Palavan-Unsal, N.; Arisan, E.D.; Dinler-Doganay, G. Bag-1 promotes cell survival
through c-Myc-mediated ODC upregulation that is not preferred under apoptotic stimuli in MCF-7 cells. Cell Biochem. Funct.
2015, 33, 293–307. [CrossRef]

41. Lin, T.; Cheng, H.; Liu, D.; Wen, L.; Kang, J.; Xu, L.; Shan, C.; Chen, Z.; Li, H.; Lai, M.; et al. A Novel Six Autophagy-Related
Genes Signature Associated With Outcomes and Immune Microenvironment in Lower-Grade Glioma. Front. Genet. 2021, 12, 698284.
[CrossRef] [PubMed]

http://doi.org/10.1186/1471-2105-14-7
http://doi.org/10.1186/s12859-018-2451-4
http://doi.org/10.1038/nmeth.3337
http://doi.org/10.1158/0008-5472.CAN-18-0689
http://doi.org/10.1038/nature25501
http://www.ncbi.nlm.nih.gov/pubmed/29443960
http://doi.org/10.1186/1472-6947-8-53
http://doi.org/10.1093/nar/gkaa1020
http://doi.org/10.1038/s41568-019-0185-x
http://www.ncbi.nlm.nih.gov/pubmed/31455892
http://doi.org/10.1371/journal.pone.0013665
http://www.ncbi.nlm.nih.gov/pubmed/21060868
http://doi.org/10.18632/oncotarget.18616
http://doi.org/10.1371/journal.pone.0116001
http://doi.org/10.3390/brainsci12060700
http://doi.org/10.1155/2022/8704127
http://doi.org/10.3892/mmr.2018.9329
http://doi.org/10.1093/neuonc/noz033
http://www.ncbi.nlm.nih.gov/pubmed/30753579
http://doi.org/10.1016/j.tcb.2020.07.003
http://www.ncbi.nlm.nih.gov/pubmed/32800658
http://doi.org/10.1002/path.3000
http://www.ncbi.nlm.nih.gov/pubmed/21953325
http://doi.org/10.1016/j.semcancer.2019.10.010
http://doi.org/10.1016/j.devcel.2018.01.009
http://doi.org/10.1016/j.semcancer.2012.02.013
http://doi.org/10.1038/cddis.2012.182
http://doi.org/10.1038/s41388-022-02405-8
http://doi.org/10.1016/j.bbrc.2021.05.008
http://doi.org/10.1002/cbf.3114
http://doi.org/10.3389/fgene.2021.698284
http://www.ncbi.nlm.nih.gov/pubmed/34721517


Brain Sci. 2022, 12, 1349 18 of 18

42. Ha, C.T.; Cheng, C.Y.; Zheng, M.Y.; Hsu, T.H.; Miao, C.C.; Lee, C.J.; Wang, H.D.; Pan, S.T.; Chou, Y.T. ID4 predicts poor prognosis
and promotes BDNF-mediated oncogenesis of colorectal cancer. Carcinogenesis 2021, 42, 951–960. [CrossRef] [PubMed]

43. Chakraborty, S.; Li, L.; Puliyappadamba, V.T.; Guo, G.; Hatanpaa, K.J.; Mickey, B.; Souza, R.F.; Vo, P.; Herz, J.; Chen, M.R.; et al.
Constitutive and ligand-induced EGFR signalling triggers distinct and mutually exclusive downstream signalling networks. Nat.
Commun. 2014, 5, 5811. [CrossRef] [PubMed]

44. Tasian, S.K.; Loh, M.L.; Hunger, S.P. Philadelphia chromosome-like acute lymphoblastic leukemia. Blood 2017, 130, 2064–2072.
[CrossRef]

45. Sousa, B.; Pereira, J.; Marques, R.; Grilo, L.F.; Pereira, S.P.; Sardao, V.A.; Schmitt, F.; Oliveira, P.J.; Paredes, J. P-cadherin induces
anoikis-resistance of matrix-detached breast cancer cells by promoting pentose phosphate pathway and decreasing oxidative
stress. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165964. [CrossRef]

46. Kim, Y.S.; Gupta Vallur, P.; Jones, V.M.; Worley, B.L.; Shimko, S.; Shin, D.H.; Crawford, L.C.; Chen, C.W.; Aird, K.M.; Abraham, T.;
et al. Context-dependent activation of SIRT3 is necessary for anchorage-independent survival and metastasis of ovarian cancer
cells. Oncogene 2020, 39, 1619–1633. [CrossRef]

47. Kamarajugadda, S.; Cai, Q.; Chen, H.; Nayak, S.; Zhu, J.; He, M.; Jin, Y.; Zhang, Y.; Ai, L.; Martin, S.S.; et al. Manganese superoxide
dismutase promotes anoikis resistance and tumor metastasis. Cell Death Dis. 2013, 4, e504. [CrossRef]

48. Kim, Y.S.; Tang, P.W.; Welles, J.E.; Pan, W.; Javed, Z.; Elhaw, A.T.; Mythreye, K.; Kimball, S.R.; Hempel, N. HuR-dependent SOD2
protein synthesis is an early adaptation to anchorage-independence. Redox Biol. 2022, 53, 102329. [CrossRef]

49. Ma, R.; Kang, X.; Zhang, G.; Fang, F.; Du, Y.; Lv, H. High expression of UBE2C is associated with the aggressive progression and
poor outcome of malignant glioma. Oncol. Lett. 2016, 11, 2300–2304. [CrossRef]

50. Guo, L.; Ding, Z.; Huang, N.; Huang, Z.; Zhang, N.; Xia, Z. Forkhead Box M1 positively regulates UBE2C and protects glioma
cells from autophagic death. Cell Cycle 2017, 16, 1705–1718. [CrossRef]

51. Chiocca, E.A.; Yu, J.S.; Lukas, R.V.; Solomon, I.H.; Ligon, K.L.; Nakashima, H.; Triggs, D.A.; Reardon, D.A.; Wen, P.; Stopa, B.M.;
et al. Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: Results of a phase 1 trial. Sci. Transl.
Med. 2019, 11, aaw5680. [CrossRef]

52. Bangalore Yogananda, C.G.; Shah, B.R.; Vejdani-Jahromi, M.; Nalawade, S.S.; Murugesan, G.K.; Yu, F.F.; Pinho, M.C.; Wagner,
B.C.; Mickey, B.; Patel, T.R.; et al. A novel fully automated MRI-based deep-learning method for classification of IDH mutation
status in brain gliomas. Neuro Oncol. 2020, 22, 402–411. [CrossRef] [PubMed]

53. Luo, C.; Liu, Z.; Ye, W.; Liu, F. Immune Infiltration-Related Signature Predicts Risk Stratification and Immunotherapy Efficacy in
Grade II and III Gliomas. Front Cell Dev. Biol. 2021, 9, 756005. [CrossRef] [PubMed]

54. Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden
as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol. 2019, 30, 44–56. [CrossRef] [PubMed]

55. Chen, D.S.; Mellman, I. Oncology meets immunology: The cancer-immunity cycle. Immunity 2013, 39, 1–10. [CrossRef]
56. Yu, J.; Qin, B.; Moyer, A.M.; Nowsheen, S.; Tu, X.; Dong, H.; Boughey, J.C.; Goetz, M.P.; Weinshilboum, R.; Lou, Z.; et al. Regulation

of sister chromatid cohesion by nuclear PD-L1. Cell Res 2020, 30, 590–601. [CrossRef]
57. Atreya, C.E.; Turnbaugh, P.J. Probing the tumor micro(b)environment. Science 2020, 368, 938–939. [CrossRef]
58. Denk, D.; Greten, F.R. Inflammation: The incubator of the tumor microenvironment. Trends Cancer 2022, S2405-8033, 00154-6.

[CrossRef]

http://doi.org/10.1093/carcin/bgab037
http://www.ncbi.nlm.nih.gov/pubmed/33993270
http://doi.org/10.1038/ncomms6811
http://www.ncbi.nlm.nih.gov/pubmed/25503978
http://doi.org/10.1182/blood-2017-06-743252
http://doi.org/10.1016/j.bbadis.2020.165964
http://doi.org/10.1038/s41388-019-1097-7
http://doi.org/10.1038/cddis.2013.20
http://doi.org/10.1016/j.redox.2022.102329
http://doi.org/10.3892/ol.2016.4171
http://doi.org/10.1080/15384101.2017.1356507
http://doi.org/10.1126/scitranslmed.aaw5680
http://doi.org/10.1093/neuonc/noz199
http://www.ncbi.nlm.nih.gov/pubmed/31637430
http://doi.org/10.3389/fcell.2021.756005
http://www.ncbi.nlm.nih.gov/pubmed/34805164
http://doi.org/10.1093/annonc/mdy495
http://www.ncbi.nlm.nih.gov/pubmed/30395155
http://doi.org/10.1016/j.immuni.2013.07.012
http://doi.org/10.1038/s41422-020-0315-8
http://doi.org/10.1126/science.abc1464
http://doi.org/10.1016/j.trecan.2022.07.002

	Introduction 
	Materials and Methods 
	Gene Expression and Clinical Data Acquisition 
	Acquisition of ANRGs 
	Functional Enrichment Analysis 
	Consensus Clustering 
	Selection of Characteristic Genes 
	Development and Validation of Prognostic Signatures 
	Estimation of the Tumor Immune Microenvironment of the Prognostic Signature 
	Tumor Immune Cycle and ICB Response 
	Construction and Evaluation of a Predictive Nomogram 
	Tumor Immune Single Cell Hub Database 
	Statistical Analysis 

	Results 
	Acquisition of ANRGs 
	Consistent Clustering of 29 ANRGs in LGG 
	Immune Infiltration and Differential Gene Expression in the Two Subtype Clusters 
	The Development and Validation of an Anoikis-Related Prognostic Signature 
	Immune Infiltration in Different Risk Groups 
	Establishment of a Prognostic Nomogram for LGG Patients 
	Mutation Landscape in Different Risk Groups 
	Immunotherapy and ICB Response 
	Correlation Analysis of ANRGs and Tumor Immune Microenvironment 

	Discussion 
	Conclusions 
	References

