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Abstract: Motor function assessment is essential for post-stroke rehabilitation, while the requirement
for professional therapists’ participation in current clinical assessment limits its availability to most
patients. By means of sensors that collect the motion data and algorithms that conduct assessment
based on such data, an automated system can be built to optimize the assessment process, benefiting
both patients and therapists. To this end, this paper proposed an automated Fugl-Meyer Assessment
(FMA) upper extremity system covering all 30 voluntary items of the scale. RGBD sensors, together
with force sensing resistor sensors were used to collect the patients’ motion information. Meanwhile,
both machine learning and rule-based logic classification were jointly employed for assessment
scoring. Clinical validation on 20 hemiparetic stroke patients suggests that this system is able to
generate reliable FMA scores. There is an extremely high correlation coefficient (r = 0.981, p < 0.01)
with that yielded by an experienced therapist. This study offers guidance and feasible solutions to a
complete and independent automated assessment system.

Keywords: stroke rehabilitation; upper limb; automated system; motor function assessment; Fugl-
Meyer Assessment

1. Introduction

Stroke is one of the leading causes of motor function impairment worldwide, and 30%
to 66% of post-stroke hemiplegic patients suffer from permanent upper limb deficits [1].
Restoring upper limb motor function through rehabilitation can considerably improve
patients’ lives.

As a crucial step in the stroke rehabilitation process [2], assessment contributes much
to rehabilitation training guidance and patients’ self-confidence enhancement. Traditional
clinical assessment relies on the professional therapist observing the patient’s behavior
based on various scales. According to the International Classification of Functioning,
Disability and Health (ICF), these scales can be divided into three main categories [3]: body
functions such as Fugl-Meyer Assessment (FMA) and Motor Status Score (MSS), activity
ability such as Wolf Motor Function Test (WMFT) and Arm Motor Ability Test (AMAT),
and participation such as Stroke Impact Scale (SIS) and EuroQol Quality of Life Scale
(QLS). Among them, FMA [4] is probably the most widely used one in both clinical and
research applications [5]. It has excellent intra-rater and inter-rater reliability and construct
validity [6,7], and is sensitive to change [8]. The FMA upper extremity (FMA-UE) section
(Table 1) consists of 33 items, and each item is scored on a 3-point ordinal scale from 0 to 2.

However, the requirement of therapist participation substantially limits the imple-
mentation of the assessment. As for patients, especially discharged patients, scientific
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assessment is not readily available. For therapists, it is time-consuming and laborious.
Consequently, automated scale evaluation systems are proposed to solve these problems.

Table 1. Target FMA items and Grouping 1.

Category 2 Motion 3 FMA Item Sensors 4

1. Flexors
Reflex activity

2. Extensors
3. Shoulder elevation RS
4. Shoulder retraction RS
5. Shoulder abduction(90◦) RS
6. Shoulder external rotation RS
7. Elbow flexion RS
8. Forearm supination RS
9. Shoulder adduction/internal rotation RS
10. Elbow extension RS

Shoulder/Elbow
Volitional movement

within synergies
I

11. Forearm pronation RS

II 12. Hand to lumbar spine RSShoulder/Elbow
Volitional movement

mixing synergies III 13. Shoulder flexion 0∼90◦ RS

V 15. Shoulder abduction 0∼90◦ RSShoulder/Elbow
Volitional movement

with little or no synergy III 16. Shoulder flexion 90∼180◦ RS

Normal reflex activity 18. Biceps, triceps, finger flexors
IV + VI90 14. Forearm pronation-supination with elbow 90◦ RS + LM
III + VI0 17. Forearm pronation-supination with elbow 0◦ RS + LM

19. Stability at 15◦ dorsiflexion with elbow 90◦ LM
VII90 20. Repeated dorsiflexion/volar flexion with elbow 90◦ LM

21. Stability at 15◦ dorsiflexion with elbow 0◦ LM
VII0 22. Repeated dorsiflexion/volar flexion with elbow 0◦ LM
VIII 23. Circumduction LM

24. Mass flexion LM

Wrist/Hand

IX
25. Mass extension LM

X 26. Hook grasp FSRs
XI 27. Thumb adduction FSRs
XII 28. Pincer grasp FSRs
XIII 29. Cylinder grasp FSRs

Grasp

XIV 30. Sphere grasp FSRs
31. Tremor RS
32. Dysmetria RSCoordination/Speed XV
33. Time RS

1 The gray part indicates the items not included in the automated system, the red part indicates the items scored
using random forest classification, and the blue part indicates the items scored using rule-based logic classification.
2 The FMA items involved in the automated system were grouped into four categories (bolded) based on the
execution actions and evaluation methods. 3 30 FMA items were implemented in this automated system with 17
motion tasks, with multiple FMA items corresponding to one motion, or one FMA item split into two motions in
some cases. 4 RS means RealSense, LM means Leap Motion, and FSRs means Force Sensitive Resistors.
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A few studies on automated evaluation of the upper extremity motor function have
been conducted using various sensors. Wearable sensors, including inertial measurement
units (IMUs) (or only accelerometers) [9,10], flex sensors, and their combinations [11], have
been heavily applied to automate FMA or WMFT [12]. They are portable and accurate.
Nevertheless, these sensors are inconvenient for patients to wear and the preparation can
take a long time, especially when using the glove sensor to track hand motion. Electromyo-
graphy (EMG) is a bioelectric signal that reflects neuromuscular behaviors, which is of great
significance for understanding motor function levels and guiding rehabilitation [13]. By us-
ing EMG, both longitudinal [14] and cross-sectional [15] assessments can be implemented
from a more physiological perspective. The multi-camera-based optoelectronic system,
such as Vicon (Vicon Motion System, USA) and Impulse (Phase Space, USA) [16], is another
commonly used sensor with acute precision for automated assessment system construction.
However, their high price and complicated operation limit their use in the laboratory.

Compared with the three kinds of sensors mentioned above, the depth camera, such as
Kinect (Microsoft, Redmond, WA, USA), RealSense (Intel, Santa Clara, CA, USA), and Leap
Motion (Leap Motion Inc., San Francisco, CA, USA), has the advantages of low cost,
convenient installation, and high comfort. These advantages, together with acceptable
precision, promote their widespread use in rehabilitation. Kim et al. [17] automated 13 FMA-
UE items using Kinect. Bai et al. [18] fused Kinect One and a posture sensor to evaluate
15 FMA items as well as the reachable workspace area. Fang et al. [19] proposed a novel
hand assessment framework compliant with Swanson impairment evaluation and FMA
based on Leap Motion. Further, Lee et al. [20] combined Kinect v2 and FSRs and achieved
the automated evaluation of 26 FMA-UE items. It is worth noting that most of these
systems merely consider part of the scale: some aim to evaluate the shoulder and elbow
joints [17,18], and others focus on assessing hand function [19,21]. The incompleteness
diminishes their practical value. In other words, there is still much room for improvement
in these systems for application in independent clinical evaluation.

Aiming to achieve complete, independent, and low-cost assessment without therapists’
involvement, this paper proposed an automated evaluation system covering all voluntary
FMA-UE items, using no body-worn sensors. Two RGBD cameras (An RGBD camera is a
type of depth camera that provides both depth (D) and color (RGB) data) and several force-
sensing resistors were included. Both machine learning and rule-based logic classification
were applied for score prediction according to different categories. The feasibility of the
proposed system was demonstrated with data from 20 hemiparetic stroke patients.

2. Materials and Methods
2.1. Participants

Applying the two-stage sample size approximation method for the Pearson corre-
lation [22], with the estimated correlation coefficient r̃ = 0.9, Fisher confidence interval
ω = 0.3, and significance level α = 0.01 as parameters, a correct sample size n = 20
can be obtained. Therefore, twenty stroke patients (fifteen males, five females; age:
58.95 ± 10.58 years) from the Rehabilitation Medicine Department of Huashan Hospital
were recruited for this study. The inclusion criteria for participation in the study were:
(1) age between 21 and 75 years old; (2) diagnosis of unilateral hemiplegia caused by
ischemic or hemorrhagic stroke; (3) absence of apraxia and severe medical complications
(including shoulder pain); (4) with no serious cognitive impairment and able to understand
and follow instructions (Mini-Mental State Examination (MMSE) score > 20 [23]). The study
was pre-approved by the Huashan Hospital Institutional Review Board (KY2018-248) and
registered at the Chinese Clinical Trial Registry (ChiCTR1800017568). All participants were
provided with and signed the informed consent prior to the experiment.
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2.2. System Design
2.2.1. FMA Items

The complete scale of FMA-UE is shown in Table 1. All these FMA items except the
three reflex ones (item 1, 2, and 18 filled with grey) requiring external forces, were covered
in this automated system. It has been suggested that the three reflex items contribute little
to volitional movement ability measurement and can be excluded from the FMA-UE evalua-
tion [24,25]. Based on assessment joints and execution actions, the FMA-UE can be divided
into four categories: Shoulder/Elbow, Wrist/Hand, Grasp, and Coordination/Speed. Over-
all, 30 FMA items (33 in total) were implemented in this automated system with 17 motion
tasks. According to the scale instruction, item 3–11 only involve one movement, and so
do item 24–25, 31–33. For convenience, item 13 and 16 were combined into one action:
shoulder flexion 180°. Besides, several minor adjustments have been made in view of the
actual application. Item 14 and 17 were broken down into two movements respectively:
shoulder/elbow moving to the initial position and forearm pronation/supination at this
position. Item 19 and 20 were combined into one action because the automated system
could not provide resistance to wrists, and so were item 21 and 22. Each of the rest items
corresponded to one indicated action.

2.2.2. Hardware and Software

The sensors used by the system included a RealSense D435, a Leap Motion, and Force
Sensitive Resistors (FSRs) (Interlink Electronics, Westlake Village, CA, USA). The hardware
layout is shown in Figure 1A.

RealSense D435, a mainstream depth camera having the potential to measure health
outcomes [26], was applied to record the movement of the Shoulder/Elbow and Coordi-
nation/Speed parts. In this system, RealSense was positioned on a tripod in front of the
patient, and data streams were captured at 30 frames per second (fps). The coordinates
of 18 joints (Figure 2A) could be extracted from raw data based on skeleton tracking SDK.
Leap Motion controller is a depth-sensing camera designed for tracking hand and finger
motion at up to 200 fps, which was mainly used in the Wrist/Hand part. At the same
time, a support mechanism was specially designed, aiming to fix Leap Motion and human
arm comfortably and keep their relative position. The support was placed on the other
tripod to achieve the change in pitch angle (Figure 1A). In order to quantitatively measure
the interaction force between the hand and the object in the Grasp part, five FSRs were
respectively attached to five corresponding grip tools [20]. The detailed information of the
raw data collected by the above sensors is summarized in Table 2.

Table 2. Raw data information.

Data Source RealSense D435 Leap Motion Force Sensitive Resistors
Sampling frequency 30 fps 200 fps 10 Hz
Experimental protocol Perform motions I–V, XV Perform motions VI-IX Grasp 5 specified tools
Original data format Color and depth images Hand tracking data Voltage and force
Features 1 3D coordinates of joints ( f × 18× 3) Angles ( f × a) Force ( f × 1)
Sample Size 20 subjects × 2 repetitions 20 subjects 20 subjects

1 f is the frame number, and a is the angle number.
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RealSense D435

Display

Five grip tools
attached with FSRs

Support

Leap 
Motion

A

B

C

1.8m

elbow at 0˚

elbow at 90˚

Figure 1. (A) The hardware setup and scene of the experiment. On the right are the two initial
positions for the Wrist/Hand part. (B) The graphical user interface (GUI) of the assessment system.
(C) The experimental protocol.
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A B

Figure 2. (A) 18-joint skeleton of RealSenseD435. (B) The 3D coordinates of the wrist joint in the
Shoulder/Elbow part motions. Left: The curves of raw RealSense (RS) data, data processed by two
denoising methods, and Vicon data of motion I. Right: The SSA-filtered RS data and the Vicon data
of four motions, and the red dots mark the motion start and end time.

The automatic administration is also a critical aspect of automated evaluation sys-
tems [27], which is mainly embodied in the interaction with the user. Therefore, user-
friendly software was also developed (Figure 1B). It has the function of patient information
register, data collection, data analysis, and results generation. In the data collection interface
(left top of Figure 1B), when an evaluation action is selected, the corresponding instruction
video will be played on the left, and the real-time sensor data will be displayed on the
right. In the results generation interface (left bottom of Figure 1B), the scores and vital
kinematic features of single items are available. Finally, a complete FMA-UE report (right
of Figure 1B) from this automated system can be viewed and saved.

2.2.3. Experimental Protocol

As shown in the experimental scene in Figure 1A, the subject sat in a chair facing a
display. For each movement, an instruction video was played first, and the subject was
asked to try to perform the demonstrated action without assistance (Figure 1C). The four
Shoulder/Elbow part motions (I, II, III, V) were performed twice. All other motions were
performed once on the less-affected side and paretic sides respectively. At the same time,
one experienced therapist also participated to observe and rate each FMA item according
to the consistency between patients’ performance and the scale instructions.

2.3. Assessment
2.3.1. Data Analysis Procedure

Figure 3A depicts the data analysis procedure of the proposed system, in which the
extracted features are listed in Table 3. The data from sensors were first preprocessed, and
then specific features were extracted. These features served as inputs to the scoring method.
Different scoring methods were applied to different categories. The Shoulder/Elbow
part was scored using random forest (RF) classification, an effective machine learning
algorithm for estimating scale scores from kinematic features [28,29]. It has the advantages
of non-parametric nature, feature importance evaluation capability, and high classification
accuracy [30]. The other three were scored using rule-based (RB) logical classification,
because the movement evaluation criteria are explicit and concise, suitable to directly
abstract logical rules with interpretability for scoring. Meanwhile, it was also found that the
RF classification could not achieve better results. The following two sections will separately
introduce the automated evaluation process of the Shoulder/Elbow part and the other
three parts in detail.
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Figure 3. (A) Flow chart of data analysis. SSA: singular spectrum analysis. (B) The general IF-ELSEIF-
ELSE logic model of scoring rules, where the gray part indicates that several items require prerequisites.

2.3.2. The Shoulder/Elbow Part

The RealSense Data consisted of a time series of the 18-key-point 3D positions. Re-
garding the data with high confidence collected by Vicon as the baseline, it could be found
that the raw RealSense data were contaminated by noise (Figure 2B-left). Two algorithms,
low pass filter and singular spectrum analysis (SSA) [31], have been compared to attenuate
the influence of noise. Finally, SSA was selected because of its stronger smoothing effect.
The main steps of SSA include embedding, singular value decomposition, grouping, and re-
construction. It decomposes diverse components (trend, periodic components, noise, etc.)
from the initial time series. Selecting the top k components with the largest contribution for
reconstruction can achieve the purpose of denoising. Taking the wrist joint in motion I as an
example, it can be seen from Figure 2B-left that the data filtered by SSA is highly consistent
with the Vicon data. Next, the start time and end time were automatically detected by
marking the first and the last frames with higher endpoint velocities than the average one.
The preprocessed data (i.e., denoised and segmented data) of the wrist joint are shown in
Figure 2B-right, where the red dots represent the motion segmentation points. The wrist
joint position offsets (mean Euclid distance between the corresponding joints in each time
frame) for the four motions (I, II, III, V) were 54, 43, 138, 150 mm, respectively, with a
mean offset of 96mm, which was acceptable and close to that of Kinect V2 (72 mm) [32].
Therefore, the RealSense data processed by SSA could achieve high precision with limited
data acquisition conditions.

Before the scoring method was applied, 36 kinematic features in Table 3 were calcu-
lated to describe the properties of the preprocessed data, which could be divided into three
aspects [33]: endpoint kinematics (6 features, e.g., path length, velocity, smoothness [34]),
angular kinematics (24 features, e.g., angles and angular velocity of four degrees of free-
doms (DoFs)) and other kinematics (6 features, e.g., inter-joint coordination index (IJCI) [35],
time, trunk compensation [36]).The detailed calculation of these features are elaborated
in Appendix A. 13 RF classifiers, respectively corresponding to 13 items, were trained,
for item 3–13,15,16 (Table 1). The features stated above were used as input and the scores
evaluated by one experienced therapist were used as labels.

Comprehensively considering the smoothing effect and computation time, the two
main parameters of the SSA filter, the window length L and the reconstruction subsequence
number k, were set to 15 and 2, respectively. Additionally, the two main parameters of
the RF classifier, the number of trees n and the number of features f, were set to 100 and 6.
The parameter n was selected by five-fold cross validation. A sequence of increasing values
was applied until the results tended to stabilize.



Brain Sci. 2022, 12, 1380 8 of 18

Table 3. Extracted Features for Each FMA Test Item.

Category FMA Item Feature
Category/Symbol Feature

Shoulder/Elbow
3–17

(except

14,17)

Endpoint Path length of the
endpoint

Max velocity

Mean velocity

Velocity variance

Spectral arc length

Dimensionless jerk

Angle

(Shoulder flexion,

shoulder adduction,

shoulder rotation,

elbow flexion)

Range of motion
(ROM)

Max angle

Min angle

Max angular velocity

Mean
angular velocity

Angular velocity
variance

Others Inter-joint
coordination index

Time

Max shoulder joint
displacement (X, Y, Z)

Trunk compensation

Wrist/Hand

14 δmax, Φmax

Max elbow flexion
angle and forearm
angle

17 αmax, Φmax

Max shoulder flexion
angle and forearm
angle

19–22 θmax, θmin
Wrist pitch angle
(max, min)

23 θmax, ψmax
Wrist pitch angle and
yaw angle (max, min)

24, 25 ηi,max, ρmax

Finger tip anlge and
hand grab strength
(max, min)

Grasp 26–30 Vmax, Fmax Max voltage and force

Coordination/Speed

31 SPARC Spectral arc length

32 dr,min

Min relative distance
between wrist and
nose

33 T Time

2.3.3. The Other Three Parts

For the Coordination/Speed part, the parameter L of the SSA algorithm was slightly
adjusted so as to avoid removing motion details and maintain the tremor information
for item 31. For the Wrist/Hand part, the Leap Motion Data was composed of hand
bone vectors and some variables (palm orientation, hand opening, closing degree, etc.)
generated by Leap Motion SDK. Data were also first preprocessed using an SSA filter. Then
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specific features listed in Table 3 were selected for each FMA item for later scoring based
on logical rules.

All these rules were based on an IF-ElSEIF-ELSE logic model, as shown in Figure 3B.
There was an additional prerequisite for FMA items 14, 17, and 33 (marked gray). For
14 and 17, the prerequisite was whether the subject could move to the initial position,
and for 33, the prerequisite was whether the subject could point to the nose with the paretic
limb. With regard to item 24 and 25, there was such a logic model for scoring each finger,
and finally, the item score was obtained by another model with the total score of four fingers
as input. Detailed rules for each item are provided in the Appendix B. The variable with
the subscript p represents the feature of the paretic side, with the subscript h represents
the less-affected side, and with the subscript N represents the normal reference, which is a
constant calculated from the mean value of all subjects’ less-affected side features. Notably,
the threshold λ1 and λ2 in each rule were set as 1/3 and 2/3, respectively, achieving the
effect of three equal divisions, which were approved by experienced clinicians.

2.4. Data Analysis

The following metrics were calculated in this study. By default, the Leave-One-Out
Cross-Validation (LOOCV) method [37] was used for performance evaluation of the RF
segment, and the average less-affected-side kinematic features of all subjects were used
as the standard references for the RB segment. The LOOCV method uses one subject as
the test set and all other subjects as the training set and iterates this step n times (n is the
sample size). Then offline scores for each item of each person could be obtained.

1. Total scores: Using Pearson’s correlation coefficient, the correlation between the
system and therapist scores was investigated. In addition, in order to further prove the
system value in practical applications, a simulated online test was also implemented.
The 20 participating patients were first ranked in ascending order according to their
FMA-UE scores. In order to ensure the involvement of different motor function
levels, every other subject was selected to construct a ten-patient training set, and the
remaining ten patients made up the test set. For convenience, the result predicted by
the automated system was abbreviated as S_FMA and that evaluated by the therapist
was abbreviated as T_FMA.

2. Single FMA items: To evaluate the scoring accuracy of the proposed system, both
the prediction accuracy and mean absolute error (MAE) of each item were calculated,
using scores obtained from the therapist as the gold standard. The consistency between
all the scores for a total of 600 items (30 items for each of 20 subjects) obtained by these
two assessment methods was estimated by linear weighted Cohen’s kappa coefficient.
Four additional macro-averaged metrics, including F1-score, sensitivity, specificity,
and precision, were also calculated according to the confusion matrix.

All statistical analyses were performed via SPSS (IBM, Chicago, IL, USA).

3. Results
3.1. Participants

A total of 20 patients with stroke participated in this study. Table 4 presents the
detailed characteristics of the population.
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Table 4. Characteristics of Stroke Subjects.

Index Age Sex
Time since

Stroke Onset
(Month)

Paretic Side MMSE Brunnstrom FMA-UE

P1 54 M 2 Left 28 2 14

P2 70 F 4 Right 29 6 66

P3 51 M 1 Left 30 4 54

P4 61 M 7 Left 28 3 32

P5 43 F 2 Left 29 4 45

P6 70 F 24 Left 27 2 9

P7 69 F 3 Left 29 5 57

P8 58 M 2 Right 30 5 61

P9 58 M 4 Right 28 3 20

P10 54 M 1 Right 28 2 13

P11 73 M 7 Left 24 2 25

P12 68 M 2 Right 28 4 28

P13 33 M 11 Left 28 4 30

P14 56 M 24 Right 29 4 40

P15 74 M 2 Right 27 3 16

P16 61 M 22 Left 27 2 12

P17 70 F 1 Left 28 3 20

P18 58 M 5 Left 28 5 55

P19 51 M 2 Left 27 3 16

P20 47 M 1 Left 28 5 50

3.2. Performance Evaluation on Total Scores

Correlation between S_FMA and T_FMA was particularly high (r = 0.981, p < 0.01)
(Figure 4), indicating that the system has a strong ability to produce FMA-UE scores
consistent with the therapist.

0 10 20 30 40 50 60
T_FMA

0

10

20

30

40

50

60

S_
FM

A

r=0.981, p<0.01

Figure 4. The correlation between the summed scores of the 30 items obtained by the automated
system and by a therapist (n = 20).
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In order to further verify the system value in practical applications, online testing was
simulated. The FMA-UE scores of the 20 participating patients in this study are displayed
in Figure 5A in ascending order, which are evenly distributed. As shown in the Figure 5B,
Pearson’s correlation coefficient between S_FMA and T_FMA (r = 0.982, p < 0.01) of the
simulated online test was equal to the offline test.

A B

Figure 5. (A) The FMA-UE scores of 20 subjects. The subjects with red triangle markers were
regarded as the training set in the simulated online test, and other subjects were used as the test set.
(B) Simulated online test results, the correlation between the total scores of the 30 items obtained by
the automated system and by a therapist in the test set (n = 10).

3.3. Performance Evaluation on Single FMA Items

Figure 6A depicts the performance of single FMA items in two indicators: classification
accuracy and MAE. Due to different scoring methods and accuracy evaluation approaches,
all items were divided into two segments to show the results: the Shoulder/Elbow part
and the other three parts, distinguished by two different colors. Item 3, 4, 5, and 7 had
the highest accuracy (100%), and item 12 and 23 had the lowest accuracy (60% and 55%,
respectively) among each segment. The maximum error (0.55 points) appeared in item 12,
which was still far less than the resolution of the scale: 1 point.

Figure 6B shows the confusion matrix of FMA scores assigned by the therapist versus
scores estimated by the automated system. The accuracy for score 0 (78.3%) and 2 (90.2%)
was higher than that for score 1 (75.1%), implying that the system performed better in
extreme cases. Meanwhile, prediction errors mainly occurred in misjudgment of score 0 as
1 (16.3%) and misjudgment of score 1 as 2 (15%), that is, the system tended to overestimate
results when it deviated from the therapist assessment. Cohen’s kappa coefficient was
0.757, demonstrating a substantial agreement between the two scoring manners.

The mean accuracy, macro-averaged F1-score, precision, sensitivity, and specificity,
and MAE for each segment and for all the selected 30 FMA items are shown in Table 5.
The average accuracy of the RF classification segment was as high as 88.08% and of all
30 items was over 80.83%. The macro-averaged F1-score, precision, sensitivity, and speci-
ficity of all 30 items were 80.97%, 81.11%, 81.22%, and 90.40%, respectively, and there is no
significant deviation between precision and sensitivity. It suggests that the system was well
behaved under all these performance measures. The average MAE of all 30 items was 0.21.
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A B

Figure 6. The results of single FMA items. (A) Prediction accuracy (%) and mean absolute error (MAE)
(points) of each automated FMA item, where the red part denotes the items of the Shoulder/Elbow
category scored by random forest classification, and the blue part denotes those of the other three
parts scored by rule-based logic methods. The bar graph is the accuracy, while the line graph is the
MAE. (B) A confusion matrix showing single item scores assigned by a therapist versus estimated by
the automated system, with 600 items in total (30 items for each of 20 subjects).

Table 5. Average results of performance metrics for single items.

Indicators Shoulder/Elbow Part The Other Three Parts All Four Parts
Accuracy (%) 88.08 75.30 80.83
F1-score (%) 86.59 74.58 80.97
Precision (%) 88.70 74.27 81.11

Sensitivity (%) 85.81 75.22 81.22
Specificity (%) 93.77 87.72 90.40

Mean absolute error 0.15 0.26 0.21

4. Discussion

In the present study, we proposed a complete automated FMA system to indepen-
dently assess upper limb motor function in stroke patients and performed preliminary
validation. On the whole, the total scores of the system were highly linearly correlated
with that of the therapist, which was very close to 1. In terms of single FMA items scores,
there was a considerable agreement between these two assessment methods (System and
Therapist), as shown in Cohen’s kappa coefficient. Meanwhile, detailed scores for each
FMA item were also available, though some still had room for improvement in accuracy.

For the Shoulder/Elbow part using RF classification, the accuracy of each item could
exceed 75% except for item 12 (hand to lumbar spine). For the other three parts using
rule-based logical classification, the accuracy of each item exceeded 65% except for item
23 (wrist circumduction). The highest accuracy 100% occurred in item 3, 4, 5 and 7, which
were parsed from one motion. This reveals that the system can successfully evaluate mul-
tiple aspects in a comprehensive motion with synergies. Apart from the latent defects in
data processing and scoring methods, the motion implementation was also an essential
factor contributing to the poor results of item 12 and 23. Item 12 has a short action stroke,
enhancing the difficulty of motion distinction. Besides, some patients who could complete
this motion well hid their entire forearms behind their backs, causing the misidentifica-
tion of key skeletal points. For item 23, it was found that some subjects had difficulty
understanding and performing the wrist circumduction movement. Even when using the
less-affected side, they might perform compensatory movements. This could mislead both
the therapist and the system.

In the previous studies of automated FMA, Kim et al. [17] only used Kinect to auto-
mate 13 FMA with an average accuracy below 80%. Bai et al. [18] combined Kinect and
one posture sensor to automate 15 items and the accuracy rates range from 73% to 92.7%.
Song el al. [38] used a cellphone as a wearable sensor and developed a cellphone-based sys-
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tem for 20 items, whose average accuracy is 85%. However, they only recruited 10 patients,
and patients with scores between 30–50 were missing. Lee et al. [20] combined Kinect and
FSRs to increase the automated items to 25, achieving an average accuracy of 92% in merely
9 subjects. Compared with them, the proposed system had comparable results with more
automated items validated in a larger number of subjects.

The single item result of MAE was highly negatively correlated with that of accu-
racy (r = −0.976, p < 0.01 for RF classification, r = −0.961, p < 0.01 for RB classification).
The two indicators were almost identical, and most items with the same accuracy rate also
had the same error. One possible reason is that the number of cross-level misclassification
samples for this system was small. In the confusion matrix of Figure 6B, only 5.4% of
0 points were mistakenly predicted as 2 points, and 1.1% of 2 points were mistakenly
predicted as 0 points. This additionally indicates that the system performs well under the
comprehensive evaluation of these two indicators. In terms of the accuracy in 600 items,
the order from high to low was score 2, 0, and 1. The characteristics of extreme levels
tended to be more pronounced and easier to classify accurately. In contrast, the boundaries
between median and extreme levels could be ambiguous, thus resulting in a worse result.
Additionally, system errors generally occurred in evaluating a level higher than the thera-
pist, which should be paid attention to when patients or physicians utilize the automated
system results.

Furthermore, the satisfactory simulated online test result further proved the accuracy
and reliability of the system.It also implied that the proposed method could be promoted
and applied in practice without difficulty, especially no additional experiments or prior
knowledge was needed for the parameter determination.

Compared with other automated assessment systems based on wearable sensors (such
as IMUs) and EMG, the proposed system, mainly relying on RGBD cameras, still has limi-
tations. Wearable sensors allow for more accurate motion data collection without occlusion
issues. More importantly, their use is not limited by the time and location, i.e., by applying
wearable sensors continuous assessment of activities of daily living [39] and assessment
performed at the bedside or in bed can be possible [40]. Unlike kinematic data, EMG can
be utilized to analyze the neuromuscular differences under different motor functions from
a more fundamental perspective, which cannot be obtained by other sensors. Neverthe-
less, the preliminary validation of the system is promising, and the assessment results are
even better [11,15]. In addition, the proposed system can cover a wider assessment scope,
and there is no need to calibrate and wear in advance. To conclude, it is more automated,
convenient, and low cost.

By promoting strengths and avoiding or compensating for weaknesses, the proposed
assessment system can be improved in the following aspects in the future. First, the accuracy
of some single items is kind of unsatisfactory, which resulted in the system tending to
overestimate patients’ motor function. In addition to optimizing data processing methods,
refining the instructions and adjusting evaluation paradigms of this automated system may
also help improve results. Second, the feasibility of the system has only been preliminarily
verified in a small number of subjects. The test-retest reliability will subsequently be
measured with more patients participation. Moreover, although the sensors used are all
non-wearable sensors, the number of sensor types is relatively large (three types of sensors
including RealSense, Leap Motion, and FSRs). This automated system, which is preferably
arranged in a separate room, is more suitable for hospitals, local clinics, or communities.
There is still room for improvement in its convenience. Future work will focus on using RGB
cameras alone to simplify the proposed system. In this way, patients can use a computer or
a smartphone with cameras for evaluation at home.

5. Conclusions

This paper proposed an automated FMA system combining software and hardware,
which is suitable for use in hospitals and communities. A high correlation coefficient
of 0.981 between system and therapist and an average accuracy of over 80% for single
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FMA items were achieved, with 20 patients participating. It demonstrates that this system
can supplement and has the potential to replace the manual evaluation of the therapist.
Compared to previous studies, the completeness of the system eliminates the need for
therapists to perform complementary assessment items. This significantly saves their time
and reduces their workload, allowing them to focus on rehabilitation training.
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Appendix A. Detailed Feature Extraction Methods

To construct the kinematic metrics in the endpoint space, the endpoint displacement
di between two frames is calculated first: di = ‖Wi −Wi−1‖, i = 1, · · · , n where Wi is the
Cartesian 3D coordinates of the wrist in the ith frame and n is the total number of recorded
frames. di multiplies fps is the velocity and the sum is the path length.

The computable joint angles involved in the moving process include: shoulder flex-
ion/extension angle (α), adduction/abduction angle (β), internal/external rotation angle
(γ) and elbow flexion/extension angle (δ). The first three angles were defined by Euler
angles from the rotation matrix with XZY sequence, which is further elaborated below.

The coordinate systems of the thorax and the humerus segments for both sides from
the 18-joint skeleton of RealSense is shown in Figure A1. Take the right side as an example,
and the left side is similar.

x

y

z

SS
SR

ER

WR

SL

EL

WL

HR HL

Figure A1. Coordinate systems of the thorax and the humerus segments.
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The definition of the thorax segment coordinate system C1 is as follows: SpineMid
(SM) is defined as the midpoint of HR and HL (A1). The y-axis is the unit vector going
from SM to SS (A2), the z-axis is the unit vector perpendicular to the the plane formed by
y-axis and the vector from SR to SM (A3), and the x-axis is defined by y and z-axes to create
a right-hand coordinate system (A4).

SM =
1
2
(HR + HL) (A1)

yC1 =
SS− SM
‖SS− SM‖ (A2)

zC1 =
(SS− SR)× yC1∥∥(SM− SR)× yC1

∥∥ (A3)

xC1 =
yC1 × zC1∥∥yC1 × zC1

∥∥ (A4)

C1 = [xC1 , yC1 , zC1 ] (A5)

The definition of the right humerus segment coordinate system C2 is as follows: the
y-axis is the unit vector going from ER to SR (A6), the z-axis is the unit-vector perpendicular
to the plane formed by y-axis and the vector from ER to WR (A7), and the x-axis is also
defined by y and z-axes to create a right-hand coordinate system (A8).

yC2 =
SR− ER
‖SR− ER‖ (A6)

zC2 =
(WR− ER)× yC2∥∥(WR− ER)× yC2

∥∥ (A7)

xC2 =
yC2 × zC2∥∥yC2 × zC2

∥∥ (A8)

C2 = [xC2 , yC2 , zC2 ] (A9)

Then the rotation Matrix R1
2 can be obtained via the parent coordinate system C1 and

the child coordinate system C2 (A10). Shoulder flexion/extension, adduction/abduction,
and internal/external rotation angles (α, β, γ in order) are Euler angles from R with XZY
sequence.

R1
2 = C−1

1 C2 (A10)

Additionally, the elbow flexion/extension angle is defined as:

δ =

−→
SE · −→EW
‖SE‖‖EW‖ (A11)

where
−→
SE = SR− ER or SL− EL, and

−→
EW = ER−WR or EL−WL.

The minimum relative distance between wrist and nose is defined as:

dr,min = min(
‖NW‖
‖NK‖ ) (A12)

where NW = N −WR, NK = N − KR or NW = N −WL, NK = N − KL.

Appendix B. Scoring Rules

The scoring rules are listed in Tables A1 and A2.
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Table A1. Logic Classification Rules.

Category FMA Item Rule 1 Score 2

Wrist/Hand

(Rule2 3)

14

If ∆ 0

Else If Φ1 0

Else if Φ2 2

Else 1

17

If A 0

Else If Φ1 0

Else if Φ2 2

Else 1

19, 21
If Θ1 0

Else if Θ2 2

Else 1

20, 22
If (Θ1 AND Θ3) OR Θ5 0

Else if Θ2 AND Θ4 AND Θ6 2

Else 1

23
If Θ5 AND Ψ1 0

Else if Θ6 OR Ψ2 2

Else 1

24

If H1i si = 0

Else if H2i AND H6i si = 2

Else si = 1

If ∑5
i=2 si < 8λ1 0

Else if ∑5
i=2 si > 8λ2 AND P1 2

Else 1

25

If H3i OR H5i si = 0

Else if H4i si = 2

Else si = 1

If ∑5
i=2 si < 8λ1 0

Else if ∑5
i=2 si > 8λ2 AND P2 2

Else 1

Grasp

(Rule3)
26–30

If Fmax,p = 0

If Vmax,p = 0 0

Else 1

Else if Fmax,p > λ2Fmax,h 2

Else 1

Coordination

/Speed

(Rule1)

31
If SPARCN

SPARCp
< λ1 0

Else if SPARCN
SPARCp

> λ2 2

Else 1

32
If dr,min,h > λ2 0

Else if dr,min,h < λ1 2

Else 1

33

If dr,min,p > λ2 0

Else If Tp − Th > 6 0

Else if
∣∣Tp − Th

∣∣ < 2 2

Else 1
1 λ1 = 1/3, λ2 = 2/3. 2 Score 0 = cannot perform, 1 = partially completed, 2 = fully completed. 3 The meanings of
symbols in Rule2 are explained in Table A2.
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Table A2. Symbol meanings in Rule2.

Symbol Logic Operation 1

A αmax,p < 30◦

∆ δmax,p < 90◦

Φ1 φmax,p < λ1φmax,N

Φ2 φmax,p > λ2φmax,N

Θ1 θmax,p < λ1θmax,N

Θ2 θmax,p > λ2θmax,N

Θ3 −θmin,p < −λ1θmin,N

Θ4 −θmin,p > −λ2θmin,N

Θ5 (θmax,p − θmin,p) < λ1(θmax,N − θmax,N)

Θ6 (θmax,p − θmin,p) > λ2(θmax,N − θmax,N)

Ψ1 (ψmax,p − ψmin,p) < λ1(ψmax,N − ψmax,N)

Ψ2 (ψmax,p − ψmin,p) > λ2(ψmax,N − ψmax,N)

H1i ηmin,pi >
ηmin,Ni

λ1

H2i ηmin,pi <
ηmin,Ni

λ2

H3i ηmax,pi < λ1ηmax,Ni

H4i ηmax,pi > λ2ηmax,Ni

H5i ηmax,pi − ηmin,pi < λ1(ηmax,Ni − ηmin,Ni)

H6i ηmax,pi − ηmin,pi > λ2(ηmax,Ni − ηmin,Ni)

P1 ρmax,p == 1

P2 ρmin,p == 0
1 λ1 = 1/3, λ2 = 2/3.
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