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Abstract: It has been widely assumed that in speech perception it is imperative to first detect a set
of distinctive properties or features and then use them to recognize phonetic units like consonants,
vowels, and tones. Those features can be auditory cues or articulatory gestures, or a combination
of both. There have been no clear demonstrations of how exactly such a two-phase process would
work in the perception of continuous speech, however. Here we used computational modelling
to explore whether it is possible to recognize phonetic categories from syllable-sized continuous
acoustic signals of connected speech without intermediate featural representations. We used Support
Vector Machine (SVM) and Self-organizing Map (SOM) to simulate tone perception in Mandarin, by
either directly processing f 0 trajectories, or extracting various tonal features. The results show that
direct tone recognition not only yields better performance than any of the feature extraction schemes,
but also requires less computational power. These results suggest that prior extraction of features is
unlikely the operational mechanism of speech perception.

Keywords: speech perception; Mandarin tones; tone recognition; tone features

1. Introduction

How exactly speech perception works is still a mystery. It is widely assumed that
multiple acoustic cues are needed for the perception of segments (consonants and vowels)
and suprasegmentals (tone, intonation, etc.), and a major goal of research is to find out
which cues are relevant for the recognition of these units [1,2]. For example, formants
may provide primary cues for signaling different vowel categories, VOT is useful for
distinguishing between voiced and voiceless plosives [3], pitch contour and pitch height
are useful for differentiating lexical tones [4,5], etc. During speech perception, those cues
are detected and then combined to identify specific contrastive phonetic units such as
consonants, vowels, or tones [6]. This assumed mechanism, therefore, consists of two
phases: feature detection, and phonetic recognition. No research so far, however, has
demonstrated how exactly such a two-phase process can achieve the recognition of phonetic
units in the perception of continuous speech. At the same time, another possibility about
speech perception has rarely been theoretically contemplated, namely, a mechanism in
which raw acoustic signals are processed to directly recognize phonetic units, without the
extraction of intermediate featural representations. It may be difficult to test this hypothesis
with existing accounts, however, because conventional behavioral and neural studies can
only allow us to explore what acoustic cues are important for perception, but not how the
whole perception process may work. What is needed is a way to explore the operation
of speech perception by simulating it as a step-by-step procedural process, starting from
acoustic signals as input, and ending with identified phonetic categories as output. This can
be done through computational modeling that implements each proposed perception model
as a phonetic recognition system. The present study is an attempt to apply this paradigm
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by making a computational comparison of direct phonetic perception to various two-phase
perception models. In order to avoid the pitfall, often seen in computational modeling, of
allowing multiple hidden layers that do not correspond to specific aspects of theoretical
models of perception, here we try to construct computational models with transparent
components that correspond explicitly to specific aspects of the related theoretical models.

1.1. Feature-to-Percept Theories
1.1.1. Distinctive Feature Theories

A major source of the feature-based view of speech perception is the classic theory
of distinctive features [7]. The theory was proposed as an attempt to economize the
representation of speech sounds beyond segmental phonemes [8,9]. In a pursuit to identify
the most rudimentary phonetic entities, an even smaller set of featural contrasts than
phonemes, aka distinctive features, was proposed [10]. Jakobson et al. [7] proposed a
system with only 12 pairs of features, each making a binary contrast based predominantly
on acoustic properties. An alternative system was proposed by Chomsky and Halle [11]
with a much larger set of binary features (around 40) that are predominantly based on
articulatory properties. Some phonological theories have even claimed that distinctive
features are the true minimal constituents of language [12,13]. Most relevant for the current
discussion, it is often assumed that the detection of the discrete features [14,15], be it binary
or multivalued [1], is the key to speech perception [16,17]. This is seen in both the auditory
theories and motor theories of speech perception, two competing lines of theories that have
been dominating this area of research, as will be outlined next.

1.1.2. Auditory Theories

Auditory theories as a group assume that perceptual cues of phonetic contrasts are
directly present in the acoustic signals of speech [17–20]. These theories assume that it is
the distinctive acoustic properties that listeners are primarily sensitive to, and that speech
perception is achieved by either capturing these properties [21] or extracting distinctive
features [22]. These theories are often presented in opposition to motor theory, to be
discussed next, in that they assume no intermediate gestural representations between
acoustic cues and perceived categories. They recognize a role of distinctive features, and
assume a need for extracting them in perception [17]. This need is elaborated in the Quantal
Theory [23–26] based on the observation that auditory properties are not linearly related
to continuous changes of articulation, but show some stable plateau-like regions in the
spectrum. The plateaus are argued to form the basis of universal distinctive features. In
addition, it is further proposed that there are enhancing features to augment the distinctive
features [15,18,26–28].

1.1.3. Motor Theories

The motor theory [29–31], in contrast, assumes that the peripheral auditory processing
phase of speech perception is followed by an articulatory recognition phase, in which
articulatory gestures such as tongue backing, lip rounding, and jaw raising are identified.
The motor theory is mainly motivated by the observation of the lack of one-to-one relations
between acoustic patterns and speech sounds [32,33]. It is argued that invariance must lie
in the articulatory gestures that generate the highly variable acoustic patterns. Therefore,
gestures would serve as intermediate features that can match the auditory signals on the
one hand, and the perceived phonemic or lexical units on the other hand.

Counter evidence to the motor theory comes from findings that speech perception
can be achieved without speech motor ability in infants [34], non-human animals [35],
and people suffering from aphasia [36–38]. However, there is also increasing evidence
that perceiving speech involves neural activity of the motor system [39,40], and the motor
regions are recruited during listening [41–44]. A range of brain studies using methods like
TMS also showed evidence for the motor theory [45–47].
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However, perceptual involvement of the motor system is not direct evidence for
gesture recognition as the necessary prerequisite to phonetic recognition. For one thing, it
is not clear whether motor activations occur before or after the recognition of the perceived
categories. For another thing, there is increasing evidence that motor area activation
mostly occurs only under adverse auditory conditions [45,48,49], which means that motor
involvement may not be obligatory for normal perception tasks.

An issue that has rarely been pointed out by critics of motor theory is that gestures are
actually not likely to be as invariant as the theory assumes. While a consonantal gesture
could be in most cases moving toward a constricted vocal tract configuration, a vowel
gesture could be either a closing or opening movement, depending on the openness of
the preceding segment. In this respect, a greater degree of articulatory invariance is more
likely found in the underlying phonetic targets in terms of vocal tract and/or laryngeal
configuration rather than the target approximation movements [50–52].

1.2. Feature-to-Percept vs. Direct Phonetic Perception

As mentioned above, what originally motivated the motor theory, which has also
permeated much of the debate between the motor and auditory theories is the apparent
and pervasive variability in the speech signal. This is an issue fundamental for any theory
of speech perception, namely, how is it possible that speech perception can successfully
recover the phonetic categories intended by the speaker despite the variability? Note that,
however, the question can be asked in a different way. That is, despite the variability, is
there still enough within-category consistency in the acoustic signal that makes speech
perception effective? If the answer is yes, the next question would be, what is the best way
to capture the within-category consistency?

The answer by all the theories reviewed above would be that a feature-based two-
phase process is the best way to capture the within-category consistency. They differ
from each other only in terms of whether the extracted features are primarily auditory or
articulatory, or a mixture of both as in the case of distinctive features. This commonality
is nicely illustrated in Figure 1 from Fant [53]. Here, after being received by the ear, and
having gone through the primary auditory analysis, the acoustic signals of speech are first
turned into featural patterns that are either auditory (intervals CD) or motor (interval GF).
Either way, they are both sub-phonemic and featural, and need to be further processed to
identify the categorical phonemes, syllables, words, etc.
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A key to this two-phase concept is the assumption that for each specific phonetic
element only certain aspects of the speech signal are the most relevant, and what needs to
be theoretically determined is whether the critical aspects are auditory or motor in nature.
This implies that the non-critical properties (i.e., those beyond even the enhancing features)
are redundant and are therefore not taken into account in perception. Even though there
is also recognition that certain minor cues can be useful [54], it is generally felt that the
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minor cues are not nearly as important. There is little discussion, however, as to how the
perception system can learn what cues to focus on and what cues to ignore.

An alternative possibility, as explored in the present study, is that raw acoustic signals
of connected speech, after an initial segmentation into syllable sized chunks, can be pro-
cessed as a whole to directly recognize the relevant phonetic elements, such as consonants,
vowels, and tones. This process does not consist of a phase in which auditory or articu-
latory features are explicitly identified and then used as input to the recognition of the
units at the phonemic level. There are a number of reasons why such a direct perception
of phonetic categories may be effective. First, given that speakers differ extensively in
terms of static articulatory configurations such as vocal tract length, articulator size, and
length and thickness of the vocal folds, greater commonality could be in the dynamics of
the articulatory trajectories, which is constrained by physical laws. The dynamic nature
of continuous speech [55–58] means that it is intrinsically difficult to find the optimal
time points at which discrete features can be extracted from the continuous articulatory
or acoustic trajectories. Second, there is evidence that continuous articulatory (and the
resulting acoustic) movements are divided into syllable-sized unidirectional target approxi-
mation movements [59–61] or gestures [62]. This suggests that processing syllable-sized
acoustic signals could be an effective perceptual strategy to capture the full details of all
the relevant information about contrastive phonetic units such as consonants, vowels, and
tones. Finally, a seemingly trivial but in fact critical reason is that, if detailed acoustic
signals are all available to the auditory system, should perception throw away any part of
the signal that is potentially helpful? The answer to this question would be no, according
to the data processing theorem, also known as data processing inequality [63]. This is an
information theoretic concept that states that the information content of a signal cannot be
increased via data processing:

If X→ Y→ Z (Markov chain), then I (X; Y) ≥ I (X; Z), I (Y; Z) ≥ I (X; Z). (1)

Equality if I (X; Y|Z) = 0.

where X, Y and Z form a Markov Chain (a stochastic process consisting of a sequence of
events, where the probability of each event depends on the state of the previous event). X
is the input, Z is the processed output, and Y is the only path to convert X to Z. What this
says is that whenever data is processed, some information is lost. In the best-case scenario,
the equality could still largely hold when some information is lost but no processing
can increase the amount of original information. In general, the more data processing,
the greater the information loss. An extraction of intermediate features before phonetic
recognition, therefore, would necessarily involve more processing than direct recognition
of phonetic categories from raw acoustic signals.

There have already been some theories that favor relative direct or holistic speech
perception. Direct realism [64], for example, argues that speech perception involves direct
recognition of articulatory gestures, without the intermediatory of explicit representation
of auditory features. However, because gestures are also sub-phonemic (Figure 1), an extra
step is still needed to convert them to syllables and words. The exemplar theories [65–67]
also postulate that in both production and perception, information about particular in-
stances (episodic information) as a whole is stored. Categorization of an input is accom-
plished by comparison with all remembered instances of each category. It is suggested that
people use already-encountered memories to determine categorization, rather than creating
an additional abstract summary of representations. In exemplar models of phonology,
phonological structures, including syllables, segments and even sub-segmental features
emerge from the phonetic properties of words or larger units [67–69], which implies that
units larger than phonemes are processed as a whole. The exemplar theories, however,
have not been highly specific on how exactly such recognition is achieved.

In fact, there is a general lack of step-by-step procedural account of any of the theoreti-
cal frameworks on speech perception that starts from the processing of continuous acoustic
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signals. Auditory theories have presented no demonstration of how exactly continuous
acoustic signals are converted into auditory cues in the first phase of perception, and how
these representations are translated into consonants, vowels, and tones. Motor theory
has suggested that gestures can be detected from acoustic signals through analysis by
synthesis [31], but this has not yet been tested in perception studies, and has remained only
as a theoretical conjecture. What is needed is to go beyond purely theoretical discussion
of what is logically plausible, and start to test computationally what may actually work.
For this purpose, it is worth noting that computational speech recognition has been going
on for decades, in research and development in speech technology. As a matter of fact,
automatic speech recognition (ASR) has been one of the most successful areas in speech
technologies [70,71]. Zhang et al. [72], for example, reported word-error-rates (WERs) as
low as 1.4%/2.6%.

The state of the art in speech recognition, however, does not use intermediate feature
extraction as a core technology. Instead, units like diphones or triphones are directly
recognized from continuous acoustic signals [73–77]. There have been some attempts to
make use of features in automatic speech recognition. For example, the landmark-based
approach tries to extract distinctive features from around acoustic landmarks such as the
onset or offset of consonant closure, which can then be used to make choices between
candidate segments to be recognized [14,78–80]. In most cases, however, systems using
landmarks or distinctive features are knowledge-based, and the detected features are used
as one kind of feature added on top of other linguistic features and acoustic features to
facilitate the recognition of phonemes [81,82]. In this kind of process, there is no test of the
effectiveness of distinctive features relative to other features. Some other automatic speech
recognition systems use acoustic properties around the landmarks, but without converting
them to any featural representations [83–86]. What is more, those recognition systems
still use phoneme as the basic unit, which implies that phoneme is the basic functional
speech unit, and units under phonemes do not have to be categorical. There have also
been systems that make some use of articulatory features. However, there is no system
that we know of that performs phonetic recognition entirely based on articulatory gestures
extracted from acoustic signals.

Feature-to-percept, therefore, is questionable as a general strategy of speech perception,
especially given the possibility of direct phonetic perception as an alternative. There has
not yet been any direct comparisons of the two strategies, however. In light of the data
processing theorem in Equation (1), both strategies would involve data processing that
may lead to information loss. In addition, a strategy that can generate better perceptual
accuracy could be computationally too costly. Therefore, in this study, a set of modelling
experiments are conducted to compare the two perceptual strategies, measured in terms
of recognition accuracy and computational cost. As the very first such effort, the object
of recognition is Mandarin tones, because they involve fewer acoustic dimensions than
consonants and vowels, as explained next.

1.3. Tone Recognition: A Test Case

In languages like Mandarin, Yoruba, and Thai, words are distinguished from each other
not only by consonants and vowels, but also by pitch patterns known as tones. Tone in these
languages therefore serves a contrastive function like consonants and vowels. Syllables
with the same CV structure can represent different words when the pitch profiles in the
syllable vary. Although tonal contrasts are sometimes also accompanied by differences in
consonants, vowels and voice quality, pitch patterns provide both sufficient and dominant
cues for the identification of tones [59,87].

How to define tonal contrasts is a long-standing issue for tone language studies. In
general, efforts have predominantly focused on establishing the best featural representation
of tones, starting from Wang’s [88] binary tone features in the style of distinctive features
of Jakobson et al. [7]. Later development has moved away from simple binary features.
For East Asian languages, a broadly accepted practice is to use a five-level system [89]
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which assumes that five discrete levels are sufficient to distinguish all the tones of many
languages. Also different from the classical feature theory, the five-level system represents
pitch changes over time by denoting each tone with two temporal points. The four tones
of Mandarin, for example, can be represented as 55—Tone 1, 35—Tone 2, 214—Tone 3,
and 51—Tone 4, where a greater number indicates a higher pitch. Two points per tone is
also widely used for African tone languages [90–92], although for those languages usually
only up to three pitch levels, High, Mid, Low, are used. Morén and Zsiga [93] and Zsiga
and Nitisaroj [94] even claimed that for Thai, only one target point per tone is needed for
connected speech. There has also been a long-standing debate over whether pitch level
alone is sufficient to represent all tones, or slope and contour specifications are also needed
as part of the representation [4,5]. There are also alternative schemes that try to represent
tone contours, such as the T value method, LZ value method [95–97], etc., but they also
focus on abstracting the pitch contours into several discrete levels.

Under the feature-to-percept assumption, the two-point + five-level tone represen-
tation would mean that, to perceive a tone, listeners need to first determine if the pitch
level is any of the five levels at each of the two temporal locations, so as to derive at a
representation in the form of, e.g., 55, 35, 21 or 51. Those representations would then lead to
the recognition of the tones. In such a recognition process, the key is to first detect discrete
pitch levels at specific temporal locations before tone recognition. A conceivable difficulty
with such tone feature detection is the well-known extensive amount of contextual variabil-
ity. For example, due to inertia, much of the pitch contours of a tone varies heavily with the
preceding tone, and it is only near the end of the syllable that the underlying tonal targets
are best approached [98,99]. This would make tone level detection hard, at least for the first
of the two temporal locations.

An alternative to the feature-to-tone scheme, based on the direct phonetic perception
hypothesis, is to process continuous f 0 contour of each tone-carrying syllable as a whole
without derivation of intermediate featural representations. The plausibility of holistic tone
processing can be seen in the success of tone recognition in speech technology. The state-of-
the-art automatic tone recognition can be as accurate as 94.5% on continuous speech [100],
with no extraction of intermediate tonal features. In fact, the current trend is to process as
many sources of raw acoustics as possible, including many non-f 0 dimensions in complex
models [100,101]. This suggests that maximization of signal processing rather than isolation
of distinctive cues may be the key to tone recognition.

Tone recognition would therefore serve as a test case for comparing direct and two-
phase perception. But the speech-technology-oriented approach of using as many acoustic
properties as possible makes it hard to isolate the key differences between the two ap-
proaches. Given that f 0 alone is sufficient to convey most tonal contrasts in perception as
mentioned above, in this study we will use a computational tone recognition task that pro-
cesses raw f 0 contours in connected Mandarin speech, with the aim to test if the perception
of phonetic categories is more likely a two-phase feature-to-percept process or a single-
phase direct acoustic decoding process. We will apply two machine learning algorithms
to process Mandarin tones from syllable-sized f 0 contours extracted from a connected
speech corpus in ways that parallel different tone perception hypotheses, including direct
perception, pitch level extraction, pitch profile features, and underlying articulatory targets.

2. Methods and Materials

The overall method is to use computational models to simulate tone perception as
a semi-automatic recognition task by training them with syllable-sized f 0 contours in
connected speech. The perception strategies under comparison are simulated by different
ways of processing the raw f 0 contours, and the efficacy of each strategy is estimated in
terms of recognition rate.
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2.1. Recognition Models

Two recognition models are applied to recognize Mandarin tones. One is a supervised
model, Support Vector Machine (SVM), which can be used to simulate conditions where
learners already know the tone inventory of the language. As we only have f 0 values as
input, there is no need to use very complex models to train the data. The other model
is an unsupervised model, Self-Organizing Map (SOM), which can be used to simulate
conditions where learners have no knowledge of the tonal inventory in the language.

As shown in the experimental results to be reported later, the recognition rates
achieved by the SOM model were much lower than those achieved by the SVM model,
despite the promising results reported previously [102]. In addition, although SOM can sim-
ulate clustering of patterned data like f 0 trajectories, it is difficult to simulate the extraction
of abstract features. Therefore, SOM is applied only in the tone recognition experiments
based on pitch contours (full f 0 contours and pitch level detection).

2.1.1. Support Vector Machine (SVM)

SVM is a supervised machine learning model developed for binary classification tasks.
An SVM model is a representation of the examples as points in space, mapped so that
the examples of the separate categories are divided by a clear hyperplane or gap that is
as wide as possible. New examples are then mapped into that same space and predicted
to belong to a category based on which side of the gap they fall. Visually, f 0 contours of
each tone may consist of different patterns and so can be mapped in different spaces as
a whole in the training phase. During the testing phase, every sampled contour will get
a probability of each tone category and be predicted as a certain tone. Then, we could
get an average accuracy of each tone. In the application of SVM, all the training samples
and testing samples are converted to D-dimensional vectors and labelled with +1 or −1.
A simple functional margin can be: f (x) = sign

(
Wtx + b

)
. If the label is +1, Wtx + b is

expected to be larger than 0, otherwise it is smaller than 0. The weight W is a combination
of a subset of the training examples and shows how each dimension of the vectors is used
in the classification process. The vectors in this subset are called support vectors. In our
experiment, one f 0 contour is one sample consisting of 30 sample points, and treated as a 30-
dimention vector. This is done with the LibSVM tool [103] with RBF kernel. It generalizes
the binary classification to a n-class classifier that splits the task into n(n− 1)/2 binary
tasks and the solutions are combined by a voting strategy [104]. Five-fold cross-validations
were applied on the training set automatically and randomly during training to optimize
the model, and the classification accuracy of the testing set will be shown in the Results
section to compare the performance of each model. The training and testing set will be
introduced later in Section 2.2.

2.1.2. Self-Organizing Map (SOM)

In contrast to SVM, SOM is an unsupervised machine learning algorithm that projects
high-dimensional input space onto a discrete lower dimensional array of topologically
ordered processing units. During this training process, the SOM model compresses the infor-
mation while keeping the geometric relationships among input data. In the tone recognition
task based on full f 0 contours, the networks were designed to contain 100 units/prototypes,
and all the f 0 contours were put into the training model. After many iterations, each contour
tends to approximate a certain unit and all the f 0 contours are finally mapped onto the
10 × 10 prototypes. Observing the trained units, we could see that neighboured units are
gradually varied and the clusters of units share similar characteristics based on f 0 contours.

After training, every unit will have a tone property calculated by a firing frequency
matrix. A unit with the probability of 68% or above for a tone is considered as categorized
as that tone. During the testing phase, each f 0 contour in the testing data was mapped onto
a unit which means this contour was recognized as that tone. This categorization process is
done with the “kohonen-package” in R [105].
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For any highly abstract features to work, one of the first critical steps is to extract them
from observations through identification and naming. This is not a trivial task, and its
effectiveness can be shown only in terms of the ultimate rate of recognition of the phonetic
category. For the five-level tone representation system and the two-level distinctive feature
system mentioned earlier, pitch levels can be detected or recognized using SVM or SOM
from f 0 contours and then transformed into tone by simple mapping. For more abstract
features like pitch profile features and underlying articulatory targets, features need to be
extracted first in a particular model and then put into the tone recognition system (SVM).

2.2. Material

The data were syllable-sized f 0 contours produced by four female and four male
Mandarin speakers [98]. Each token is a 30 equidistant (hence time-normalized) discrete
point vector taken from either the first or second syllable of a disyllabic tone sequence in
the middle position of a carrier sentence. There was no differentiation of the tokens from
the first and second syllables, leaving the information of syllable position in word/phrase
unrepresented. Two frequency scales were used to represent f 0, Hertz and semitones. The
latter was converted from Hertz with the following equation:

semitone = log2( f0)× 12 (2)

where the reference f 0 is assumed to be 1 Hz for all speakers. Note that this kind of raw data
(i.e., without applying a normalization scheme such as Z-score transformation, c.f., [106])
leave most of the individual differences in pitch height intact, particularly between the
female and male speakers, as can be seen in the plots of f 0 contours in Figures 2 and 3.
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There were a total of 1408 tokens of Tone 1 (high-level), 1408 tokens of Tone 2 (rising),
1232 tokens of Tone 3 (low), and 1408 tokens of Tone 4 (falling). The fewer tokens of
Tone 3 were because those of the first syllable followed by another Tone 3 were excluded to
circumvent the problem of the well-known tone sandhi rule, which turns the first Tone 3 to
be similar [89,98] though not identical [107] to Tone 2. The whole dataset was then divided
into a training subset and a testing subset randomly, with a ratio of 2:1.

2.3. Overall Design

Five modelling experiments were set up to compare the efficacy of different tone
recognition schemes, both cross-gender and cross-speaker. The first experiment used
raw f 0 contours of the four Mandarin tones to train an SVM model and an SOM model,
respectively, which were then used to classify the tone categories. The second experiment,
pitch level detection, again used raw f 0 contours to train a SVM model and a SOM model,
respectively. But this time, the models were used to detect pitch levels, which were then
mapped to tone categories. In the two subsequent experiments, different tonal features
were extracted from the raw f 0 contours, and were then used to train the SVM models. The
extracted features were then used to recognize the tones. The extracted tonal features were
ordered from the most to the least adherent to the feature-to-percept paradigm:

1. Pitch height (2 levels and 5 levels);
2. f 0 profile (slope etc.);
3. Underlying pitch targets (quantitative target approximation (qTA) parameters).

3. Results
3.1. Experiment 1—Full f0 Contour

In the first experiment, the raw f 0 contours were used to both train the tone recognition
model and test the performance. As shown in Table 1, with raw f 0 data, tone recognition
rates based on SVM model were very high. In the mixed-gender condition, the recognition
rates were 97.4% for contours in semitones and 86.3% for contours in Hertz. In the male-only
condition, the recognition rate reached 99.1% for contours in semitones. In the female-only
condition, the recognition rate was 96.6%. The much lower recognition rates for contours in
Hz is not surprising, as the logarithmic conversion in calculating semitones has effectively
normalized the vertical span of the pitch range, with only individual differences in pitch
height still retained. The performances of the SOM model are lower than that of SVM, but
even the rates in the mixed-gender condition were all above 70%. In later experiments, we
will only focus on mixed-gender conditions.

Table 1. Tone recognition rates using raw f 0 contours based on SVM and SOM models.

SVM SOM

Hertz Semitone Hertz Semitone

Male 96.0% 99.1% 89.7% 90.8%
Female 76.7% 96.6% 76.7% 77.6%

All 86.3% 97.4% 72.8% 72.0%
SVM: Support Vector Machine; SOM: Self-Organizing Map.

Table 2 is the tone confusion matrix of f 0 contours in semitones. The performance of the
tone classification is similar to the human tone recognition reported by McLoughlin et al. [108]
shown in Table 3. The corpus they used has a context-free carrier sentence structure that is
similar to that used in the present study. Similar to the results in Table 2, their recognition
rate is the highest for Tone 3 and lowest for Tone 4.
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Table 2. Tone confusion matrix using semitone of mixed-gender based on SVM.

T1 T2 T3 T4

T1 98.2% 0.2% 0.5% 1.1%
T2 0.9% 96.6% 0.9% 1.6%
T3 0.3% 1.0% 98.4% 0.3%
T4 2.7% 0.0% 0.7% 96.6%

T means Tone here.

Table 3. Tone confusion matrix context-free words in AWGN-corrupted spoken sentences [108].

T1 T2 T3 T4

T1 95.68% 2.03% 2.08% 0.21%
T2 1.24% 97.92% 0.08% 0.76%
T3 0.35% 0.42% 99.02% 0.21%
T4 2.63% 1.72% 1.38% 94.27%

3.2. Experiments 2–3: Pitch Level Representation

In this experiment, we abstracted the f 0 contours into a two-position height represen-
tation. We tested both a two-level (distinctive-feature style) and a five-level abstraction that
would correspond to two popular featural representations of tones [88,89].

3.2.1. Experiment 2—Distinctive Feature Style (Two Level) Representation

In a distinctive feature system, Mandarin tones can be represented by two levels: high
and low. The four lexical tones of Mandarin can be represented as 11—Tone 1, 01—Tone
2, 00—Tone 3, and 10—Tone 4. ‘1’ means high and ‘0’ means low. In our implementation
of this featural representation system, each f 0 contour was split into two halves and each
was labelled high or low. The first 15 points of the contours were labelled as 1—Tone 1,
0—Tone 2, 0—Tone 3, 1—Tone 4, and the later 15 points are labelled as 1—Tone 1, 1—Tone
2, 0—Tone 3, 0—Tone 4. Two sub-experiments were conducted. One is training and testing
the two halves separately, and the other is training and testing the two halves together. The
models used were SVM and SOM. In the first sub-experiment, after the classification, the
results of the two halves are combined and checked.

Table 4 shows tone recognition rates of this experiment. The rates are 93.67% and
92.90% for the separate and together sub-experiments, respectively, based on the SVM
model. Assuming that distinctive features of tones are unknown knowledge until after
learning, SOM is more comparable to human tone perception than SVM. The recognition
rates are 80.59% and 82.82% for the separate and together sub-experiments, respectively.

Table 4. Tone recognition rates using two-level abstraction based on SVM and SOM models.

Separate Together

Hertz Semitone Hertz Semitone

SVM 93.5% 93.7% 91.9% 92.9%
SOM 80.8% 80.6% 81.0% 82.8%

SVM: Support Vector Machine; SOM: Self-Organizing Map.

3.2.2. Experiment 3—Five-Level Representation

In a five-level, hence non-binary, pitch level representation, the four lexical tones of
Mandarin can be represented as 55—Tone 1, 35—Tone 2, 21—Tone 3, and 53—Tone 4, as
shown in Figure 4. In the featural representation of this system, each f 0 contour is again split
into two halves, each consisting of 15 points. Again, two sub-experiments were conducted.
One is training and testing the two halves separately, and the other is training and testing
them together. The models used were SVM and SOM. In the first sub-experiment, after the
classification, the results of the two halves are combined and checked.
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Table 5 shows recognition rates of both SVM and SOM. For SVM, when the two halves
of the f 0 contours are trained separately, the recognition rate reached around 90%. When
the two halves are trained together, the rate dropped to just above 80%. The results of SOM
are even lower than SVM. The recognition rates are 58.9% and 43.7% for the separate and
together sub-experiments, respectively.

Table 5. Tone recognition rates using five-level abstraction based on SVM and SOM models.

Separate Together

Hertz Semitone Hertz Semitone

SVM 88.8% 90.3% 80.5% 84.1%
SOM 56.7% 58.9% 43.5% 43.7%

SVM: Support Vector Machine; SOM: Self-Organizing Map.

3.3. Experiment 4—f0 Profile Representation

Besides the discrete representations tested so far, there are also schemes that use
mathematical functions to represent f 0 profiles with parameters with continuous values. A
recent study explored fitting the tone contours with two mathematical functions, parabola
and broken-line (BL) and concluded that three of the cues obtained in the parabola fitting
were broadly effective: mean f 0, slope, and curve [109]. In this experiment we tested the
effectiveness of fitting both functions to the f 0 contours in the test corpus in the least-
squared sense. The expression of the parabola is as follows:

f (t) ≈ c0 + c1

(
t− 1

2

)
+ c2[

(
t− 1

2

)2
− 1/12] (3)

The expression of BL is as follows:

f (t) ≈
{

a1 + b1t, t < d
a2 + b2t, t ≥ d (d is the position of breakpoint) (4)

The features we used for testing were the top five pairs of features reported in
Tupper et al. [109] for maximizing classification accuracy, as follows:

• Slope: c1 in the parabola fit;
• Curve: c2 in the parabola fit, which is one half the second derivative of the fitted

f 0 contour;
• Onglide: difference between f 0 at contour onset and breakpoint in the BL fit;
• Offglide: difference between f 0 at breakpoint and contour offset in the BL fit;
• Overall: difference between f 0 at contour onset and offset in BL fit.

The features extracted from f 0 contours are trained by the SVM model. Table 6 shows
the recognition rates of the top five pairs of features used in Tupper et al. [109]. The best
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results for mixed genders are 92.3% in semitones and 89.3% in hertz, both of which are
based on slope + curve.

Table 6. Tone recognition rates using f 0 profile features based on SVM model.

Herz Semitone

Slope + Curve 89.3% 92.3%
Curve + Overall 85.9% 90.4%
Slope + Onglide 68.3% 66.7%

Onglide + Offglide 71.8% 75.7%
Offglide + Overall 70.4% 75.1%

3.4. Experiment 5—qTA Articulatory Feature Extraction

qTA is another mathematic function also capable of representing tonal contours [59].
The model is based on the assumption that speech articulation is a mechanical process of
target approximation that can be simulated by a critically damped spring-mass system
(similar to the command-response model [110] and the task dynamic model [111]). The
model can be fitted to not only tonal contours in continuous speech, but also intonational
contours carrying multiple communicative functions [107]. QTA’s ability to simulate the
articulatory process of generating tonal contours makes it an ideal model to test the motor
theory, according to which speech perception is a process of detecting the articulatory
gestures that generate the speech signals [31] through analysis-by-synthesis [112]. Analysis-
by-synthesis is a process of analysing a signal by reproducing it, and it has been successfully
applied in previous modelling works with qTA [59,107,113]. In this experiment, we used
analysis-by-synthesis to fit qTA to the tonal contours in the same corpus used in the
other experiments.

qTA assumes that the f 0 contour of each syllable is generated with a single pitch target,
defined by the linear function,

x(t) = mt + b (5)

where m (in st/s) and b (in st) denote the slope and offset of the underlying pitch target,
respectively. The surface f0 is modeled as the system response driven by the pitch target,

f0 (t) = (mt + b) +
(

c0 + c1 t + · · ·+ cN−1tN−1
)

e−t/τ (6)

where the time constant τ (in s) represents the strength of the target approximation movement.
The values of m, b, and τ (referred to as qTA parameters) can be determined by fitting

the original pitch contour in the least-squares sense. We used Target Optimizer [114] to
extract qTA parameters. The Target Optimizer internally converts the f0 samples from Hz
scale to semitone scale and normalizes them by subtracting the mean values of the whole
utterance. The three estimated qTA parameters were then used as input to a tone recognizer.

In qTA, the offset f0 of the preceding syllable is transferred to the current syllable to
become its onset f0 to simulate the effect of inertia. Therefore, the onset f 0 of a syllable
is expected to be potentially relevant to tone recognition, as it carries contextual tonal
information. In the second training condition, therefore, this onset f0 was added to the
qTA parameters to form a four-dimensional input feature for each syllable. These four-
dimensional features are then used as input to the SVM model for tone recognition.

Table 7 shows the performance of qTA features from the two training conditions.
With the three-dimensional features, the recognition accuracy was 90.7%. With the four-
dimensional features, which included the f 0 onset parameter, the accuracy increased
to 97.1%.
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Table 7. Tone recognition rates using qTA (quantitative target approximation) features.

Features Accuracy

3-dim qTA parameters 90.7%
3-dim qTA parameters plus f 0 onset value 97.1%

4. Discussion

In the five experiments, we tested whether direct phonetic perception or feature-
to-percept is a more likely mechanism of speech perception. All the tests were done by
applying the SVM and/or SOM model with either full f 0 contours or various extracted f 0
features as the training and testing data. Except for qTA (due to model-internal setting),
all the models were tested with f 0 in both Hz and semitone scales. The performance of
the models was assessed in terms of tone recognition rate. In all the experiments the
recognition was consistently better for the SVM model than for the SOM model, and better
with the semitone scale than the Hz scale. To make a fair comparison of the all the models,
a summary of the best performances in all five experiments based on SVM in semitones
is shown Figure 5. As can be seen, the highest recognition rate, 97.4%, was achieved
in the full f 0 contour condition in Experiment 1. With pitch level features extracted in
Experiments 2–3, recognition rates of 93.7% and 90.3% were achieved for the two-level
and five-level conditions, respectively. These are fairly good, but are well below the top
recognition rate in Experiment 1. Experiment 4 tested two mathematical (parabola and
broken-line) representations of f 0 profiles, which, unlike the discrete pitch level features
in Experiments 2–3, have continuous values. The highest recognition rate of 92.3% was
achieved for the combination of slope and curve. This is very close to the best recognition
rate of 93.7% with the two-level condition in Experiment 2. Another continuous parametric
representation tested in Experiment 5, namely, qTA parameters based on [59], achieved
a very high recognition rate of 97.1% when initial f 0 was included as a fourth parameter,
which is almost as high as the benchmark of 97.4% in Experiment 1. Without the initial f 0,
however, the recognition rate was only 90.7%. It is worth noting, however, that the initial
f 0 is actually included in the full f 0 contour in Experiment 1, as it is just the first f 0 point in
an f 0 contour.
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Figure 5. Summary of tone recognition rates based on SVM model for full f 0 contour (Experiment 1),
two-level feature (Experiment 2), five-level feature (Experiment 3), f 0 profile (Experiment 4) and qTA
and qTA + f 0 onset (Experiments 5). SVM: Support Vector Machine.

The fairly high tone recognition rates from the best performances in all the five
experiments are rather remarkable, given that the f 0 contours used were extracted from
fluent speech [51] in multiple tonal contexts and two different syllable positions, yet
no contextual or positional information was provided during either training or testing,
contrary to the common practice of including tonal context as an input feature in speech
technology [101,115,116]. This means that, despite the extensive variability, tones produced
in contexts by multiple speakers of both genders are still sufficiently distinct to allow
a pattern recognition model (SVM) to accurately identify the tonal categories based on
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syllable-sized f 0 contours alone. In other words, once implemented as trainable systems,
most theory-motivated schemes may be able to perform phonetic recognition to some extent,
though with varying levels of success. Thus, the acoustic variability that has prompted
much of the early theoretical debates [30,117] does not seem to pose an impenetrable barrier.
Instead, there seems to be plenty of consistency underneath the apparent variability for
any recognition scheme to capture.

On the other hand, it is still the case that the tone recognition rates achieved by most
of the feature extraction schemes in Experiments 2–5 were lower than that of the full f 0
contour baseline in Experiment 1. Only the qTA + initial f 0 scheme nearly matched the full
f 0 contour performance. Therefore, for both the qTA + initial f 0 condition and the other
feature extraction schemes, a further question is whether the extra processing required
by the extraction of the intermediate features is cost-effective when compared to direct
processing of full f 0 contours. One way to compare the cost-effectiveness of different
tone recognition schemes is to calculate their time complexity [118] in addition to their
recognition rates. Time complexity is the amount of time needed to run an algorithm on a
computer, as a function of the size of the input. It measures the time taken to execute each
statement of the code in an algorithm and gives information about the variation in execution
time when the number of operations changes in an algorithm. It is difficult to compute
this function exactly, so it is commonly defined in terms of an asymptotic behaviour of
the complexity. Time complexity is expressed with the big O notation, O[n], where n is
the size of the input data and O is the order of the relation between n and the number
of operations performed. Taking the SVM model as an example, the time complexity of
the SVM model at testing phase is a function that involves a loop within a loop, which is
O(d)×O(m) = O(d×m), where d is the number of dimensions of input data and m is
the number of categories. When two models, A and B, are compared, if A is better than or
equal to B in performance, and has a lower time complexity, A can be said to be a better
model than B. If A and B differ clearly in performance, but has a lower time complexity, its
performance needs to be balanced against time complexity when deciding which model
is better. Table 8 shows the time complexity of all the tone recognition schemes tested in
Experiments 1–5.

Table 8. Time complexity of different tone recognition schemes.

Scheme Method Size of Input No. Steps Time Complexity at
Testing Phase

Full f 0 contour SVM 30 points 1 O(30 × 4)

2 f 0 levels
SVM × 2 15 points

3 O(15 × 2) × 2 + 1
Matching 2 features

5 f 0 levels
SVM × 2 15 points

3 O(15 × 5) × 2
Matching 2 features

f 0 profile
features

Parabola/Broken
Line 30 points

2 O(303) + O(2 × 4)
SVM 2 features

qTA features
qTA Extraction 30 points

2 O(303) + O(3 × 4)
SVM 3 features

SVM: Support Vector Machine. Qta: quantitative target approximation.

As can be seen, most feature extraction schemes have greater time complexity than
the baseline full f 0 contour scheme. The only feature extraction scheme with lower time
complexity is the two-level condition. However, its tone recognition accuracy is 3.7%
lower than the full f 0 contour condition, as shown in Figure 5. Therefore, its reduced
time complexity was not beneficial. In addition, as found in Chen and Xu [119], the time
complexity of full f 0 contour scheme does not need to be as high as in Experiment 1, because
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the temporal resolution of f 0 contours could be greatly reduced without lowering tone
recognition accuracy. When the number of f 0 points were reduced to as few as 3, the tone
recognition rate was still 95.7%, only a 1.7% drop from the 30-point condition. Therefore,
compared to 3 points per contour, the two-level feature extraction would even lose its
advantage in time complexity. Overall, therefore, there is no advantage in cost-effectiveness
in any of the features extraction schemes over the full f 0 contour scheme.

Worth particular mentioning is the qTA scheme tested in Experiment 5, as it served as
a test case for the motor theory of speech perception [31]. The theory assumes that speech
perception is a process of recovering articulatory gestures, and the recovery is done by
listeners using their own articulatory system to perform analysis-by-synthesis. However,
analysis-by-synthesis is a time-consuming process of testing numerous candidate model
parameters until an optimal fit is found. As shown in Table 8, the qTA scheme has the
greatest time complexity of all the feature extraction schemes. Although its tone recognition
accuracy was nearly as high as that of full f 0 contours benchmark when initial f 0 was
included as the fourth parameter, one may have to wonder why speech perception would
develop such an effortful strategy when direct processing of raw f 0 contours can already
achieve top performance at a much lower computational cost.

An implication of the experiments in the present study is that listeners’ sensitivity
to certain feature-like properties, such as f 0 slope [5], height [4] or alignment of turning
point [120,121] does not necessarily mean that those properties are separately extracted
during perception. Rather, the sensitivity patterns are what can be observed when various
acoustic dimensions are independently manipulated under laboratory conditions. They
do not necessarily tell us how speech perception operates. The step-by-step modelling
simulations conducted in the current study demonstrate that there may be no need to focus
on any specific features. Instead, the process of recognition training allows the perception
system to learn how to make use of all the relevant phonetic properties, both major and
minor, to achieve optimal phonetic recognition. The dynamic learning operation may in fact
reflect how phonetic categories are developed in the first place. That is, speech production
and perception probably form a reciprocal feedback loop that guarantees that articulation
generates sufficiently distinct cues that perception can make use of during decoding. As a
result, those articulatory gestures that can produce the greatest number of effective phonetic
cues would tend to be retained in a language. At the same time, perceptual strategies
would tend to be those that can make the fullest, and the most economical, use of all the
available acoustic cues from detailed acoustic signals.

Finally, a few caveats and clarifications are in order. First, the tone recognition rates
obtained in the present study may not directly reflect perception efficacy in real life. On the
one hand, they could be too high because the f 0 contours tested here did not contain some
of the known adverse effects like consonantal perturbation of f 0 [122,123], intonational
confounds [99,124], etc. On the other hand, they could also be too low because not all
tonal information is carried by f 0. Listeners are also known to make use of other cues
such as duration, intensity, voice quality, etc. [100,101]. Second, there is a need to make
a distinction between data transformation and feature extraction. Conversion of f 0 from
Hz to semitones and from waveform to MFCC are examples of data transformation. Both
have been shown to be beneficial [125,126], and are likely equivalent to certain signal
processing performed by the human auditory system. They are therefore different from the
feature extraction schemes tested in the present study. In addition, there is another kind
of data processing that has been highly recommended [106,127], namely, speaker/data
normalization schemes in the frequency dimension such as Z-score transformation (rather
than in the temporal dimension). The justification is based on the need to handle variability
within and especially across speakers. The difficulty from an operational perspective is that
Z-score transformation is based on the total pitch range of multiple speakers in previously
processed data. However, Z-score would be hard to compute when processing data from a
new speaker, which happens frequently in real life. Furthermore, the present results have
shown that, once an operational model is developed, explicit speaker normalization is
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not really needed, as the training process is already one of learning to handle variability,
and the results showed that all models were capable of resolving this problem to various
extends. Finally, the present findings do not suggest that a data representation of up
to 30 points per syllable is necessary for tone recognition from continuous speech. As
mentioned earlier, in a separate study [119] we found that just three f 0 points (taken from
the beginning, middle and end of a syllable) are enough for a model equivalent to the
full contour model in Experiment 1 to achieve a tone recognition rate close to that of 30 f 0
points, so long as the data points are in the original f 0 values rather than discretized pitch
height bands. The study also found that discretization of continuous acoustic signal into
categorical values (equivalent to reduction of frequency resolution), which is prototypical
of featural representations, is the most likely to adversely affect tone recognition. In other
words, a temporal resolution of up to 30 samples per syllable as tested in the present
study is not always needed, and may in fact be excessive when time complexity is taken
into consideration, whereas high precision of data representation, which is exactly the
opposite of featural representation, may be the most important guarantee of effective
speech perception.

5. Conclusions

We have used tone recognition as a test case for a re-examination of the widely as-
sumed feature-to-percept assumption about speech perception. Through computational
simulation of tone recognition that applied step-by-step modelling procedures, we put
various theoretical accounts of speech perception to test by making all of them process
continuous acoustic signals. The results show that syllable-sized f 0 contours can be used to
directly train pattern recognition models to achieve high tone recognition rates, without ex-
tracting intermediate features. In comparison, extracting discrete pitch levels or continuous
profile features from the original f 0 contours resulted in reduced rates of tone recognition.
Furthermore, when articulatory-based qTA parameters were extracted through analysis-
by-synthesis, an operation reminiscent of the motor theory of perception, the recognition
rate approached that of original f 0 contours only when syllable-initial f 0 was used as an
additional parameter. Finally, we showed through calculation of time complexity relative
to model performance that all the feature extraction schemes are less cost effective than the
full f 0 contour condition. Based on these findings, we conclude that raw acoustic signal,
after certain transformations such as semitone (or MFCC for segments) conversion, can
be processed directly in speech perception to recognize phonetic categories. Therefore,
feature detection, while useful for analysis and observational purposes, is unlikely to be
the core mechanism of speech perception. While the present findings still cannot tell us
how exactly speech perception works, they have at least presented a computational reason
why real-life speech perception is unlikely a two-phase process, something that is hard to
observe through behavioral or state-of-the-art neural investigations alone.

Author Contributions: Conceptualization, Y.C. and Y.X.; methodology, Y.C.; formal analysis, Y.C. and
Y.G.; data curation, Y.X. and Y.C.; writing—original draft preparation, Y.C. and Y.X.; writing—review
and editing, Y.C., Y.X. and Y.G.; project administration, Y.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original corpus is available upon request from the third author.
The data from the simulations are available upon request from the first author.

Conflicts of Interest: The authors declare no conflict of interest.



Brain Sci. 2022, 12, 337 17 of 20

References
1. Ladefoged, P. What Are Linguistic Sounds Made of? Language 1980, 56, 485–502. [CrossRef]
2. Wright, R. A Review of Perceptual Cues and Cue Robustness. Phon. Based Phonol. 2004, 34, 57.
3. Abramson, A.S.; Whalen, D.H. Voice Onset Time (VOT) at 50: Theoretical and Practical Issues in Measuring Voicing Distinctions.

J. Phon. 2017, 63, 75–86. [CrossRef]
4. Abramson, A.S. Static and Dynamic Acoustic Cues in Distinctive Tones. Lang. Speech 1978, 21, 319–325. [CrossRef]
5. Gandour, J. Perceptual Dimensions of Tone: Evidence from Cantonese. J. Chin. Linguist. 1981, 9, 20–36.
6. Ladefoged, P.; Johnson, K. A Course in Phonetics; Cengage Learning: Boston, MA, USA, 2014.
7. Jakobson, R.; Fant, C.G.; Halle, M. Preliminaries to Speech Analysis: The Distinctive Features and Their Correlates. Language

1951, 29, 472–481.
8. Jones, D. The History and Meaning of the Term “Phoneme”. Maître Phonétique 1957, 35, 1–20.
9. Trubetzkoy, N.S. Principles of Phonology; University of California Press: Berkeley, CA, USA, 1939.
10. Jakobson, R. The Concept of Phoneme. In On Language; 1942, reprint; Waugh, L.R., Monique, M.-B., Eds.; Harvard University

Press: Cambridge, MA, USA, 1995; pp. 217–241.
11. Chomsky, N.; Halle, M. The Sound Pattern of English; Harper & Row: Manhattan, NY, USA, 1968.
12. Clements, G.N. The Geometry of Phonological Features. Phonology 1985, 2, 225–252. [CrossRef]
13. Jakobson, R.; Halle, M. Phonology in Relation to Phonteics; North-Holland Publishing Company: Amsterdam, The Netherlands, 1968.
14. Slifka, J.; Stevens, K.N.; Manuel, S.; Shattuck-Hufnagel, S. A Landmark-Based Model of Speech Perception: History and Recent

Developments. Sound Sense 2004, 85–90.
15. Stevens, K.N. Toward a Model for Lexical Access Based on Acoustic Landmarks and Distinctive Features. J. Acoust. Soc. Am.

2002, 111, 1872–1891. [CrossRef]
16. Flemming, E.S. Auditory Representations in Phonology; Routledge: Oxfordshire, UK, 2013.
17. Kingston, J.; Diehl, R.L. Intermediate Properties in the Perception of Distinctive Feature Values. Pap. Lab. Phonol. 1995, 4, 7–27.
18. Diehl, R.L.; Kluender, K.R. On the Objects of Speech Perception. Ecol. Psychol. 1989, 1, 121–144. [CrossRef]
19. Kingston, J. The Phonetics and Phonology of Perceptually Motivated Articulatory Covariation. Lang. Speech 1992, 35, 99–113.

[CrossRef] [PubMed]
20. Lotto, A.J.; Kluender, K.R. General Contrast Effects in Speech Perception: Effect of Preceding Liquid on Stop Consonant

Identification. Percept. Psychophys. 1998, 60, 602–619. [CrossRef]
21. Diehl, R.L.; Lotto, A.J.; Holt, L.L. Speech Perception. Annu. Rev. Psychol. 2004, 55, 149–179. [CrossRef]
22. Stevens, K.N.; Blumstein, S.E. Invariant Cues for Place of Articulation in Stop Consonants. J. Acoust. Soc. Am. 1978, 64, 1358–1368.

[CrossRef]
23. Stevens, K.N.; Keyser, S.J. Quantal Theory, Enhancement and Overlap. J. Phon. 2010, 38, 10–19. [CrossRef]
24. Stevens, K.N. On the Quantal Nature of Speech. J. Phon. 1989, 17, 3–45. [CrossRef]
25. Stevens, K.N. The Acoustic/Articulatory Interface. Acoust. Sci. Technol. 2005, 26, 410–417. [CrossRef]
26. Stevens, K.N.; Keyser, S.J. Primary Features and Their Enhancement in Consonants. Language 1989, 65, 81–106. [CrossRef]
27. Diehl, R.L.; Kluender, K.R.; Walsh, M.A.; Parker, E.M. Auditory Enhancement in Speech Perception and Phonology. In Cognition

and the Symbolic Processes: Applied and Ecological Perspectives; Psychology Press: Hove, UK, 1991; pp. 59–76.
28. Lotto, A.J.; Hickok, G.S.; Holt, L.L. Reflections on Mirror Neurons and Speech Perception. Trends Cogn. Sci. 2009, 13, 110–114.

[CrossRef] [PubMed]
29. Galantucci, B.; Fowler, C.A.; Turvey, M.T. The Motor Theory of Speech Perception Reviewed. Psychon. Bull. Rev. 2006, 13, 361–377.

[CrossRef] [PubMed]
30. Liberman, A.M.; Cooper, F.S.; Shankweiler, D.P.; Studdert-Kennedy, M. Perception of the Speech Code. Psychol. Rev. 1967, 74, 431.

[CrossRef] [PubMed]
31. Liberman, A.M.; Mattingly, I.G. The Motor Theory of Speech Perception Revised. Cognition 1985, 21, 1–36. [CrossRef]
32. Cooper, F.S.; Delattre, P.C.; Liberman, A.M.; Borst, J.M.; Gerstman, L.J. Some Experiments on the Perception of Synthetic Speech

Sounds. J. Acoust. Soc. Am. 1952, 24, 597–606. [CrossRef]
33. Liberman, A.M.; Harris, K.S.; Hoffman, H.S.; Griffith, B.C. The Discrimination of Speech Sounds within and across Phoneme

Boundaries. J. Exp. Psychol. 1957, 54, 358. [CrossRef]
34. Eimas, P.D.; Siqueland, E.R.; Jusczyk, P.; Vigorito, J. Speech Perception in Infants. Science 1971, 171, 303–306. [CrossRef]
35. Kuhl, P.K.; Miller, J.D. Speech Perception by the Chinchilla: Voiced-Voiceless Distinction in Alveolar PLoSive Consonants. Science

1975, 190, 69–72. [CrossRef]
36. Damasio, A.R. Aphasia. N. Engl. J. Med. 1992, 326, 531–539. [CrossRef]
37. Goodglass, H. Understanding Aphasia; Academic Press: Cambridge, MA, USA, 1993.
38. Hickok, G.; Okada, K.; Barr, W.; Pa, J.; Rogalsky, C.; Donnelly, K.; Barde, L.; Grant, A. Bilateral Capacity for Speech Sound

Processing in Auditory Comprehension: Evidence from Wada Procedures. Brain Lang. 2008, 107, 179–184. [CrossRef]
39. Fadiga, L.; Craighero, L.; Buccino, G.; Rizzolatti, G. Speech Listening Specifically Modulates the Excitability of Tongue Muscles:

A TMS Study. Eur. J. Neurosci. 2002, 15, 399–402. [CrossRef] [PubMed]
40. Watkins, K.E.; Strafella, A.P.; Paus, T. Seeing and Hearing Speech Excites the Motor System Involved in Speech Production.

Neuropsychologia 2003, 41, 989–994. [CrossRef]

http://doi.org/10.2307/414446
http://doi.org/10.1016/j.wocn.2017.05.002
http://doi.org/10.1177/002383097802100406
http://doi.org/10.1017/S0952675700000440
http://doi.org/10.1121/1.1458026
http://doi.org/10.1207/s15326969eco0102_2
http://doi.org/10.1177/002383099203500209
http://www.ncbi.nlm.nih.gov/pubmed/1287395
http://doi.org/10.3758/BF03206049
http://doi.org/10.1146/annurev.psych.55.090902.142028
http://doi.org/10.1121/1.382102
http://doi.org/10.1016/j.wocn.2008.10.004
http://doi.org/10.1016/S0095-4470(19)31520-7
http://doi.org/10.1250/ast.26.410
http://doi.org/10.2307/414843
http://doi.org/10.1016/j.tics.2008.11.008
http://www.ncbi.nlm.nih.gov/pubmed/19223222
http://doi.org/10.3758/BF03193857
http://www.ncbi.nlm.nih.gov/pubmed/17048719
http://doi.org/10.1037/h0020279
http://www.ncbi.nlm.nih.gov/pubmed/4170865
http://doi.org/10.1016/0010-0277(85)90021-6
http://doi.org/10.1121/1.1906940
http://doi.org/10.1037/h0044417
http://doi.org/10.1126/science.171.3968.303
http://doi.org/10.1126/science.1166301
http://doi.org/10.1056/NEJM199202203260806
http://doi.org/10.1016/j.bandl.2008.09.006
http://doi.org/10.1046/j.0953-816x.2001.01874.x
http://www.ncbi.nlm.nih.gov/pubmed/11849307
http://doi.org/10.1016/S0028-3932(02)00316-0


Brain Sci. 2022, 12, 337 18 of 20

41. Fischer, M.H.; Zwaan, R.A. Embodied Language: A Review of the Role of the Motor System in Language Comprehension. Q. J.
Exp. Psychol. 2008, 61, 825–850. [CrossRef] [PubMed]

42. Hickok, G.; Poeppel, D. The Cortical Organization of Speech Processing. Nat. Rev. Neurosci. 2007, 8, 393–402. [CrossRef] [PubMed]
43. Pickering, M.J.; Garrod, S. Do People Use Language Production to Make Predictions during Comprehension? Trends Cogn. Sci.

2007, 11, 105–110. [CrossRef]
44. Pulvermüller, F.; Fadiga, L. Active Perception: Sensorimotor Circuits as a Cortical Basis for Language. Nat. Rev. Neurosci. 2010, 11,

351–360. [CrossRef]
45. Bartoli, E.; D’Ausilio, A.; Berry, J.; Badino, L.; Bever, T.; Fadiga, L. Listener–Speaker Perceived Distance Predicts the Degree of

Motor Contribution to Speech Perception. Cereb. Cortex 2015, 25, 281–288. [CrossRef]
46. D’Ausilio, A.; Pulvermüller, F.; Salmas, P.; Bufalari, I.; Begliomini, C.; Fadiga, L. The Motor Somatotopy of Speech Perception.

Curr. Biol. 2009, 19, 381–385. [CrossRef]
47. Meister, I.G.; Wilson, S.M.; Deblieck, C.; Wu, A.D.; Iacoboni, M. The Essential Role of Premotor Cortex in Speech Perception. Curr.

Biol. 2007, 17, 1692–1696. [CrossRef]
48. Sato, M.; Tremblay, P.; Gracco, V.L. A Mediating Role of the Premotor Cortex in Phoneme Segmentation. Brain Lang. 2009, 111,

1–7. [CrossRef]
49. Schmitz, J.; Bartoli, E.; Maffongelli, L.; Fadiga, L.; Sebastian-Galles, N.; D’Ausilio, A. Motor Cortex Compensates for Lack of

Sensory and Motor Experience during Auditory Speech Perception. Neuropsychologia 2019, 128, 290–296. [CrossRef] [PubMed]
50. Birkholz, P.; Kröger, B.J.; Neuschaefer-Rube, C. Synthesis of Breathy, Normal, and Pressed Phonation Using a Two-Mass

Model with a Triangular Glottis. In Proceedings of the Twelfth Annual Conference of the International Speech Communication
Association, Lorence, Italy, 28–31 August 2011.

51. Xu, Y. Speech as Articulatory Encoding of Communicative Functions. In Proceedings of the 16th International Congress of
Phonetic Sciences, Saarbrucken, Germany, 6–10 August 2007; pp. 25–30.

52. Xu, Y.; Wang, Q.E. Pitch Targets and Their Realization: Evidence from Mandarin Chinese. Speech Commun. 2001, 33, 319–337.
[CrossRef]

53. Fant, G. Auditory Patterns of Speech. Models Percept. Speech Vis. 1967, 5, 111–125.
54. Lisker, L. “Voicing” in English: A Catalogue of Acoustic Features Signaling/b/versus/p/in Trochees. Lang. Speech 1986, 29, 3–11.

[CrossRef] [PubMed]
55. Browman, C.P.; Goldstein, L.M. Towards an Articulatory Phonology. Phonology 1986, 3, 219–252.
56. Carré, R. Dynamic Properties of an Acoustic Tube: Prediction of Vowel Systems. Speech Commun. 2009, 51, 26–41. [CrossRef]
57. Fowler, C.A. Coarticulation and Theories of Extrinsic Timing. J. Phon. 1980, 8, 113–133. [CrossRef]
58. Öhman, S.E.G. Coarticulation in VCV Utterances: Spectrographic Measurements. J. Acoust. Soc. Am. 1966, 39, 151–168. [CrossRef]
59. Prom-On, S.; Xu, Y.; Thipakorn, B. Modeling Tone and Intonation in Mandarin and English as a Process of Target Approximation.

J. Acoust. Soc. Am. 2009, 125, 405–424. [CrossRef]
60. Xu, Y.; Liu, F. Tonal Alignment, Syllable Structure and Coarticulation: Toward an Integrated Model. Ital. J. Linguist. 2006, 18, 125.
61. Xu, Y.; Prom-On, S. Economy of Effort or Maximum Rate of Information? Exploring Basic Principles of Articulatory Dynamics.

Front. Psychol. 2019, 10, 2469. [CrossRef] [PubMed]
62. Nam, H.; Goldstein, L.; Saltzman, E. Self-Organization of Syllable Structure: A Coupled Oscillator Model. In Approaches to

Phonological Complexity; De Gruyter Mouton: Berlin, Germany, 2009; pp. 297–328.
63. Cover, T.M. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 1999.
64. Fowler, C.A. An Event Approach to the Study of Speech Perception from a Direct–Realist Perspective. J. Phon. 1986, 14, 3–28.

[CrossRef]
65. Hay, J.; Nolan, A.; Drager, K. From Fush to Feesh: Exemplar Priming in Speech Perception. Linguist. Rev. 2006, 23, 351–379.

[CrossRef]
66. Johnson, K. Resonance in an Exemplar-Based Lexicon: The Emergence of Social Identity and Phonology. J. Phon. 2006, 34, 485–499.

[CrossRef]
67. Pierrehumbert, J.B. Exemplar Dynamics: Word Frequency, Lenition and Contrast. Typol. Stud. Lang. 2001, 45, 137–158.
68. Lacerda, F. Phonology: An Emergent Consequence of Memory Constraints and Sensory Input. Read. Writ. 2003, 16, 41–59.

[CrossRef]
69. Lindblom, B. Emergent Phonology. In Proceedings of the 25th Annual Meeting of the Berkeley Linguistics Society, Berkeley, CA,

USA, 12–15 February 1999; Volume 25, pp. 195–209.
70. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.; Sainath, T.N. Deep Neural

Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Process. Mag.
2012, 29, 82–97. [CrossRef]

71. Seide, F.; Li, G.; Yu, D. Conversational Speech Transcription Using Context-Dependent Deep Neural Networks. In Proceedings of
the Twelfth Annual Conference of the International Speech Communication Association, Florence, Italy, 27–31 August 2011.

72. Zhang, Y.; Qin, J.; Park, D.S.; Han, W.; Chiu, C.-C.; Pang, R.; Le, Q.V.; Wu, Y. Pushing the Limits of Semi-Supervised Learning for
Automatic Speech Recognition. arXiv 2020, arXiv:2010.10504.

73. Benzeghiba, M.; de Mori, R.; Deroo, O.; Dupont, S.; Erbes, T.; Jouvet, D.; Fissore, L.; Laface, P.; Mertins, A.; Ris, C. Automatic
Speech Recognition and Speech Variability: A Review. Speech Commun. 2007, 49, 763–786. [CrossRef]

http://doi.org/10.1080/17470210701623605
http://www.ncbi.nlm.nih.gov/pubmed/18470815
http://doi.org/10.1038/nrn2113
http://www.ncbi.nlm.nih.gov/pubmed/17431404
http://doi.org/10.1016/j.tics.2006.12.002
http://doi.org/10.1038/nrn2811
http://doi.org/10.1093/cercor/bht257
http://doi.org/10.1016/j.cub.2009.01.017
http://doi.org/10.1016/j.cub.2007.08.064
http://doi.org/10.1016/j.bandl.2009.03.002
http://doi.org/10.1016/j.neuropsychologia.2018.01.006
http://www.ncbi.nlm.nih.gov/pubmed/29317325
http://doi.org/10.1016/S0167-6393(00)00063-7
http://doi.org/10.1177/002383098602900102
http://www.ncbi.nlm.nih.gov/pubmed/3657346
http://doi.org/10.1016/j.specom.2008.05.015
http://doi.org/10.1016/S0095-4470(19)31446-9
http://doi.org/10.1121/1.1909864
http://doi.org/10.1121/1.3037222
http://doi.org/10.3389/fpsyg.2019.02469
http://www.ncbi.nlm.nih.gov/pubmed/31824364
http://doi.org/10.1016/S0095-4470(19)30607-2
http://doi.org/10.1515/TLR.2006.014
http://doi.org/10.1016/j.wocn.2005.08.004
http://doi.org/10.1023/A:1021794005885
http://doi.org/10.1109/MSP.2012.2205597
http://doi.org/10.1016/j.specom.2007.02.006


Brain Sci. 2022, 12, 337 19 of 20

74. Lee, K.-F. Context-Independent Phonetic Hidden Markov Models for Speaker-Independent Continuous Speech Recognition.
IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 599–609. [CrossRef]

75. Agrawal, P.; Ganapathy, S. Robust Raw Waveform Speech Recognition Using Relevance Weighted Representations. arXiv 2020,
arXiv:2011.00721.

76. Sainath, T.; Weiss, R.J.; Wilson, K.; Senior, A.W.; Vinyals, O. Learning the Speech Front-End with Raw Waveform CLDNNs. In
Proceedings of the Interspeech 2015, Dresden, Germany, 6–10 September 2015.

77. Zeghidour, N.; Usunier, N.; Synnaeve, G.; Collobert, R.; Dupoux, E. End-to-End Speech Recognition from the Raw Waveform.
arXiv 2018, arXiv:1806.07098.

78. Deng, L.; Sun, D. Speech Recognition Using the Atomic Speech Units Constructed from Overlapping Articulatory Fea-
tures. In Proceedings of the Third European Conference on Speech Communication and Technology, Berlin, Germany, 19–23
September 1993.

79. Liu, S.A. Landmark Detection for Distinctive Feature-based Speech Recognition. J. Acoust. Soc. Am. 1996, 100, 3417–3430.
[CrossRef]

80. Stevens, K.N.; Manuel, S.Y.; Shattuck-Hufnagel, S.; Liu, S. Implementation of a Model for Lexical Access Based on Features. In
Proceedings of the Second International Conference on Spoken Language Processing, Banff, AB, Canada, 13–16 October 1992.

81. Eide, E. Distinctive Features for Use in an Automatic Speech Recognition System. In Proceedings of the Seventh European
Conference on Speech Communication and Technology, Aalborg, Denmark, 3–7 September 2001.

82. Erler, K.; Freeman, G.H. An HMM-based Speech Recognizer Using Overlapping Articulatory Features. J. Acoust. Soc. Am. 1996,
100, 2500–2513. [CrossRef]

83. Espy-Wilson, C.Y.; Pruthi, T.; Juneja, A.; Deshmukh, O. Landmark-Based Approach to Speech Recognition: An Alternative to
HMMs. In Proceedings of the Eighth Annual Conference of the International Speech Communication Association, Antwerp,
Belgium, 27–31 August 2007; Citeseer: Princeton, NJ, USA, 2007; pp. 886–889.

84. Hasegawa-Johnson, M.; Baker, J.; Borys, S.; Chen, K.; Coogan, E.; Greenberg, S.; Juneja, A.; Kirchhoff, K.; Livescu, K.; Mohan,
S. Landmark-Based Speech Recognition: Report of the 2004 Johns Hopkins Summer Workshop. In Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP’05), Philadelphia, PA, USA, 23 March 2005;
IEEE: Piscataway, NJ, USA, 2005; Volume 1, p. I-213.

85. Xie, Y.; Hasegawa-Johnson, M.; Qu, L.; Zhang, J. Landmark of Mandarin Nasal Codas and Its Application in Pronunciation
Error Detection. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Shanghai, China, 20–25 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 5370–5374.

86. Yang, X.; Kong, X.; Hasegawa-Johnson, M.; Xie, Y. Landmark-Based Pronunciation Error Identification on Chinese Learning. In
Proceedings of the Speech Prosody, Boston, MA, USA, 31 May–3 June 2016; pp. 247–251.

87. Lin, H.B.; Repp, B.H. Cues to the perception of Taiwanese tones. Lang. Speech 1989, 32, 25–44. [CrossRef]
88. Wang, S.W. Phonological Features of Tone. Int. J. Am. Linguist. 1967, 33, 93–105.
89. Chao, Y.R. Language and Symbolic Systems; Cambridge University Press: Cambridge, UK, 1968; Volume 260.
90. Clements, G.N.; Michaud, A.; Patin, C. Do We Need Tone Features? In Tones and Features; De Gruyter Mouton: Berlin, Germany,

2011; pp. 3–24.
91. Hyman, L.M. Do Tones Have Features? In Tones and Features; De Gruyter Mouton: Berlin, Germany, 2011; pp. 50–80.
92. Laniran, Y.O. Intonation in Tone Languages: The Phonetic Implementation of Tones in Yoruba. Ph.D. Thesis, Cornell University,

Ithaca, NY, USA, 1992.
93. Morén, B.; Zsiga, E. The Lexical and Post-Lexical Phonology of Thai Tones. Nat. Lang. Linguist. Theory 2006, 24, 113–178.

[CrossRef]
94. Zsiga, E.; Nitisaroj, R. Tone Features, Tone Perception, and Peak Alignment in Thai. Lang. Speech 2007, 50, 343–383. [CrossRef]
95. Shi, F.; Liao, R. Essays on Phonetics; Beijing Language and Culture Press: Beijing, China, 1994.
96. Zhu, X. Records of Shanghai Tonal Experiments; Shanghai Education Press: Shanghai, China, 2005.
97. Zhu, X. Phonetics; Commercial Press: Beijing, China, 2010.
98. Xu, Y. Contextual Tonal Variations in Mandarin. J. Phon. 1997, 25, 61–83. [CrossRef]
99. Xu, Y. Effects of Tone and Focus on the Formation and Alignment of F0 contours. J. Phon. 1999, 27, 55–105. [CrossRef]
100. Yuan, J.; Ryant, N.; Cai, X.; Church, K.; Liberman, M. Automatic Recognition of Suprasegmentals in Speech. arXiv 2021,

arXiv:2108.01122.
101. Lin, J.; Li, W.; Gao, Y.; Xie, Y.; Chen, N.F.; Siniscalchi, S.M.; Zhang, J.; Lee, C.-H. Improving Mandarin Tone Recognition Based on

DNN by Combining Acoustic and Articulatory Features Using Extended Recognition Networks. J. Signal Process. Syst. 2018, 90,
1077–1087. [CrossRef]

102. Gauthier, B.; Shi, R.; Xu, Y. Learning Phonetic Categories by Tracking Movements. Cognition 2007, 103, 80–106. [CrossRef]
103. Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [CrossRef]
104. Krebel, U.-G. Pairwise Classification and Support Vector Machines. In Advances in Kernel Methods: Support Vector Learning; The

MIT Press: Cambridge, MA, USA, 1999; pp. 255–268.
105. Wehrens, R.; Kruisselbrink, J. Flexible Self-Organizing Maps in Kohonen 3.0. J. Stat. Softw. 2018, 87, 1–18. [CrossRef]
106. Rose, P. Considerations in the Normalisation of the Fundamental Frequency of Linguistic Tone. Speech Commun. 1987, 6, 343–352.

[CrossRef]

http://doi.org/10.1109/29.52701
http://doi.org/10.1121/1.416983
http://doi.org/10.1121/1.417358
http://doi.org/10.1177/002383098903200102
http://doi.org/10.1007/s11049-004-5454-y
http://doi.org/10.1177/00238309070500030301
http://doi.org/10.1006/jpho.1996.0034
http://doi.org/10.1006/jpho.1999.0086
http://doi.org/10.1007/s11265-018-1334-2
http://doi.org/10.1016/j.cognition.2006.03.002
http://doi.org/10.1145/1961189.1961199
http://doi.org/10.18637/jss.v087.i07
http://doi.org/10.1016/0167-6393(87)90009-4


Brain Sci. 2022, 12, 337 20 of 20

107. Xu, Y.; Prom-On, S. Toward Invariant Functional Representations of Variable Surface Fundamental Frequency Contours: Synthe-
sizing Speech Melody via Model-Based Stochastic Learning. Speech Commun. 2014, 57, 181–208. [CrossRef]

108. McLoughlin, I.V.; Xu, Y.; Song, Y. Tone Confusion in Spoken and Whispered Mandarin Chinese. In Proceedings of the 9th
International Symposium on Chinese Spoken Language Processing, Singapore, 12–14 September 2014; IEEE: Piscataway, NJ,
USA, 2014; pp. 313–316.

109. Tupper, P.; Leung, K.; Wang, Y.; Jongman, A.; Sereno, J.A. Characterizing the Distinctive Acoustic Cues of Mandarin Tones.
J. Acoust. Soc. Am. 2020, 147, 2570–2580. [CrossRef]

110. Fujisaki, H.; Hirose, K. Analysis of Voice Fundamental Frequency Contours for Declarative Sentences of Japanese. J. Acoust. Soc.
Jpn. 1984, 5, 233–242. [CrossRef]

111. Saltzman, E.L.; Munhall, K.G. A Dynamical Approach to Gestural Patterning in Speech Production. Ecol. Psychol. 1989, 1, 333–382.
[CrossRef]

112. Halle, M.; Stevens, K. Mechanism of Glottal Vibration for Vowels and Consonants. J. Acoust. Soc. Am. 1967, 41, 1613. [CrossRef]
113. Liu, F.; Xu, Y.; Prom-on, S.; Yu, A.C.L. Morpheme-like Prosodic Functions: Evidence from Acoustic Analysis and Computational

Modeling. J. Speech Sci. 2013, 3, 85–140.
114. Birkholz, P.; Schmaser, P.; Xu, Y. Estimation of Pitch Targets from Speech Signals by Joint Regularized Optimization. In Proceedings

of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 2075–2079.

115. Chen, S.-H.; Wang, Y.-R. Tone Recognition of Continuous Mandarin Speech Based on Neural Networks. IEEE Trans. Speech Audio
Process. 1995, 3, 146–150. [CrossRef]

116. Peng, G.; Wang, W.S.-Y. Tone Recognition of Continuous Cantonese Speech Based on Support Vector Machines. Speech Commun.
2005, 45, 49–62. [CrossRef]

117. Perkell, J.S.; Klatt, D.H. Invariance and Variability in Speech Processes; Lawrence Erlbaum Associates, Inc.: Mahwah, NJ, USA, 1986.
118. Sipser, M. Introduction to the Theory of Computation. ACM Sigact News 1996, 27, 27–29. [CrossRef]
119. Chen, Y.; Xu, Y. Intermediate Features Are Not Useful for Tone Perception. In Proceedings of the International Conference on

Speech Prosody, Tokyo, Japan, 25–28 May 2020; ISCA: Singapore, 2020; pp. 513–517.
120. DiCanio, C.; Nam, H.; Whalen, D.H.; Timothy Bunnell, H.; Amith, J.D.; García, R.C. Using Automatic Alignment to Analyze

Endangered Language Data: Testing the Viability of Untrained Alignment. J. Acoust. Soc. Am. 2013, 134, 2235–2246. [CrossRef]
[PubMed]

121. Remijsen, B.; Ayoker, O.G. Contrastive Tonal Alignment in Falling Contours in Shilluk. Phonology 2014, 31, 435–462. [CrossRef]
122. Hombert, J.-M. Consonant Types, Vowel Quality, and Tone. In Tone; Elsevier: Amsterdam, The Netherlands, 1978; pp. 77–111.
123. Xu, Y.; Xu, A. Consonantal F0 Perturbation in American English Involves Multiple Mechanisms. J. Acoust. Soc. Am. 2021, 149,

2877–2895. [CrossRef]
124. Lin, M.; Li, Z. Focus and Boundary in Chinese Intonation. In Proceedings of the ICPhS, Hong Kong, China, 17–21 August 2011;

Volume 17, pp. 1246–1249.
125. Ittichaichareon, C.; Suksri, S.; Yingthawornsuk, T. Speech Recognition Using MFCC. In Proceedings of the International Conference

on Computer Graphics, Simulation and Modeling, Pattaya, Thailand, 28–29 July 2012; pp. 135–138.
126. Nolan, F. A Recent Voice Parade. Int. J. Speech Lang. Law 2003, 10, 277–291. [CrossRef]
127. Barras, C.; Gauvain, J.-L. Feature and Score Normalization for Speaker Verification of Cellular Data. In Proceedings of the 2003

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’03), Hong Kong, China, 6–10 April 2003;
IEEE: Piscataway, NJ, USA, 2003; Volume 2, pp. 49–52.

http://doi.org/10.1016/j.specom.2013.09.013
http://doi.org/10.1121/10.0001024
http://doi.org/10.1250/ast.5.233
http://doi.org/10.1207/s15326969eco0104_2
http://doi.org/10.1121/1.2143736
http://doi.org/10.1109/89.366544
http://doi.org/10.1016/j.specom.2004.09.004
http://doi.org/10.1145/230514.571645
http://doi.org/10.1121/1.4816491
http://www.ncbi.nlm.nih.gov/pubmed/23967953
http://doi.org/10.1017/S0952675714000219
http://doi.org/10.1121/10.0004239
http://doi.org/10.1558/sll.2003.10.2.277

	Introduction 
	Feature-to-Percept Theories 
	Distinctive Feature Theories 
	Auditory Theories 
	Motor Theories 

	Feature-to-Percept vs. Direct Phonetic Perception 
	Tone Recognition: A Test Case 

	Methods and Materials 
	Recognition Models 
	Support Vector Machine (SVM) 
	Self-Organizing Map (SOM) 

	Material 
	Overall Design 

	Results 
	Experiment 1—Full f0 Contour 
	Experiments 2–3: Pitch Level Representation 
	Experiment 2—Distinctive Feature Style (Two Level) Representation 
	Experiment 3—Five-Level Representation 

	Experiment 4—f0 Profile Representation 
	Experiment 5—qTA Articulatory Feature Extraction 

	Discussion 
	Conclusions 
	References

