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Abstract: Normal aging is associated with changes in volumetric indices of brain atrophy. A quantita-
tive understanding of age-related brain changes can shed light on successful aging. To investigate the
effect of age on global and regional brain volumes and cortical thickness, 3514 magnetic resonance
imaging scans were analyzed using automated brain segmentation and parcellation methods in
elderly healthy individuals (69–88 years of age). The machine learning algorithm extreme gradient
boosting (XGBoost) achieved a mean absolute error of 2 years in predicting the age of new subjects.
Feature importance analysis showed that the brain-to-intracranial-volume ratio is the most important
feature in predicting age, followed by the hippocampi volumes. The cortical thickness in temporal
and parietal lobes showed a superior predictive value than frontal and occipital lobes. Insights from
this approach that integrate model prediction and interpretation may help to shorten the current
explanatory gap between chronological age and biological brain age.

Keywords: aging; MRI; machine learning; XGBoost; feature importance; shapley values; brain
segmentation; cortical parcellation; age prediction; biological aging

1. Introduction

Magnetic resonance imaging (MRI) has revolutionized clinical neuroscience, assisting
in better diagnostics and playing a crucial role in helping to close the gap between basic and
clinical research [1]. The contrast and detail that MRI achieves are unparalleled in detecting
brain abnormalities, tumors, and micro-hemorrhages. Technological advancements—in
particular, software development—are making it possible to assess conditions that went
previously undetected [2]. Furthermore, faster imaging is helping to alleviate the clinical
burden in patients and clinicians alike, with AI-based analysis drastically reducing the
time required for image reconstruction [3,4]. In addition, the ever-increasing computational
capacity and availability of AI techniques are accelerating the use of automated image
post-processing for diagnostics and prognosis assessment in clinics and hospitals. Volu-
metric analysis aiming at quantifying the volume of brain structures and the thickness and
gyrification of cortical areas can be particularly effective in flagging brain abnormalities in
large datasets [5,6].

MRI is also helping to characterize the neuroanatomy of healthy brain aging across
ages and conditions. Several studies show the intricacies of morphological changes visible
for the whole brain [7,8], as well as for the cerebral cortex [9], subcortical grey matter
structures, and white matter integrity differences [10].

Changes in functional abilities and brain structural alterations, such as atrophy, are ex-
pected during aging. However, there is not always a clear separation line that distinguishes
the effects of brain aging from neurodegeneration. For example, white matter hyperintensi-
ties or microbleeds are present in neurological conditions such as Alzheimer’s disease [11],
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and they have also been found in aging asymptomatic individuals [12]. Both normal
aging and neurodegenerative diseases are accompanied by brain morphological changes,
notably atrophy or the loss of tissue volume resulting from cellular death. At advanced
stages of the disease, the cellular loss or synaptic pruning associated with atrophy is more
easily recognizable than at early stages, making the early detection of neurodegenerative
pathologies particularly challenging.

Whole-brain atrophy intended as a diminution of brain volume normalized to the
intracranial volume can be measured with T1-weighted structural MR images. Both grey
matter and white matter decline with aging, with, at the same time, an increase in the size
of the ventricles and cerebrospinal fluid (CSF) volume [13].

Among the subcortical structures in the limbic system and basal ganglia, the hippocam-
pus is arguably the best characterized anatomic volume concerning aging. Hippocampal
volume loss is also a well-recognized biomarker for the diagnosis of Alzheimer’s disease in
cross-sectional [14], longitudinal [15], and meta-analysis [16]. The variation in hippocampal
volume as a function of age studied in the UK Biobank Imaging dataset (N = 19,793) shows
an acceleration in hippocampal volume reduction in middle age (starting at around 50 years
of age) [17]. Age-related atrophy in other subcortical structures varies, with a more rapid
decline in the thalamus and putamen compared to caudate and amygdala [18]. However,
the software libraries used for automated segmentation can introduce variability in the
volume estimates [19].

The “last in first out” hypothesis states that the last brain regions to develop tend to be
the first ones to decline. The hypothesis is rooted in the idea of the lifespan composed of two
stages: first, a developmental phase, and then followed by an aging phase characterized by
progressive cortical thinning, with the onset linked to late-maturing regions of the brain,
such as the heteromodal association cortices [20]. Cortical thinning spans widespread
cortical regions with unequal effects, e.g., being more prominent in the prefrontal cortex and
less so in the parahippocampal cortex [9,21]. Longitudinal estimates of cortical thinning
converge with cross-sectional studies that find significant thinning in the heteromodal
association cortex with a later expected atrophy in the primary cortex, in line with the “last
in first out” hypothesis [22].

Since, as already mentioned, brain volume decline is associated with age, it is possible,
at least in principle, to use the volumetric measurement of brain atrophy to estimate its
age. It is, however, useful to distinguish between biological and chronological age. The gap
between both ages could indicate the aging pace of a given subject; that is to say, a subject
with biological age larger than chronological age would imply a faster than expected aging
decline. On the other hand, a person more chronologically than biologically aged could
indicate that that person is aging more slowly than expected.

Neuroimaging-based studies for chronological age prediction use different features,
acquisition techniques, and MRI sequences [23–25]. In [26], a supervised regression model
used to predict age using the Destrieux atlas of cortical parcellation, obtained a mean
absolute error of 4.05 years [27]. Cortical thickness combined with diffusion MRI has also
been used as an input for predicting brain age in multiple regression models [28,29]. Studies
comparing the performance between linear and nonlinear modeling approaches (e.g.,
neural networks) and combining a wide range of features have shown that performance
gain from larger training can be limited if data are obtained with different acquisition
protocols [30].

“Brain age” is used in the machine learning literature as the age estimate in a regression
model [31]. Accordingly, the delta or difference between the brain age (estimated) and the
chronological age (given) would be indicative of the health status of the subject. However,
for this approach to be sensible, it requires a model producing accurate estimates of the
biological age. In [32], a bias-adjustment technique was shown to shorten the delta or
difference between the chronological and estimated brain age. However, the pertinence of
any approach that tries to reduce the above-mentioned delta will need to be confronted with
direct assessments of brain age. Recently, new cellular and molecular approaches for brain
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senescence and decline have been put forward. For instance, transcriptome profiling [33],
DNA methylation [34–36], or immune metrics such as the inflammatory clock of aging
(iAge) [37], aim to capture cellular senescence, holding promise for understanding longevity
and neurodegenerative processes.

Although the association between the thinning of cortical areas and aging is recognized,
how cortical thinning and overall brain atrophy progress in elderly healthy subjects is an
open problem. In this study, we address this issue by building a machine learning model to
predict chronological age in a large set of subjects using brain segmentation and cortical
parcellation data, collected in a time horizon of 6 years. Different from other studies, we
tackled not only the model prediction capabilities but also the model interpretability to
assess the importance of the different brain areas, including whole brain and subcortical
volumes and the cortical thickness of sulcal and gyral areas for age prediction using SHAP
(Shapley additive explanations) [38].

2. Methods
2.1. Study Participants

The dataset used in this study comes from a single-center, observational cohort
study [19,39,40]. The participants are home-dwelling elderly volunteers, 69–88 years
of age, and without relevant psychiatric, neurological, or systemic disorders. The partic-
ipants signed informed consent and undertook a yearly systematic clinical assessment,
including medical history, neurological and neuropsychological examinations, and brain
MRI. Apolipoprotein E (APOE) genotype was also studied, with total DNA isolated from
peripheral blood following standard procedures. Ethical approval (CEI PEI 46_2011-v2014)
was granted by the Research Ethics Committee of Instituto de Salud Carlos III, and written
informed consent was obtained from all of the participants. The authors assert that all
procedures contributing to this work comply with the ethical standards of the relevant
national and institutional committees on human experimentation, and with the Helsinki
Declaration of 1975 and its later amendments.

Of the initial 1213 subjects, those diagnosed with mild cognitive impairment (MCI) or
dementia were excluded, resulting in a cohort of 948 healthy elderly subjects. Cognitive
status was determined with the Mini-Mental Status Examination (MMSE), free and cued
selective reminding test (FCSRT), semantic fluency, 101 digit-symbol test and Functional
Activities Questionnaire (FAQ).

The subjects were assessed yearly for six years, with the number of yearly visits
per subject varying from 1 to 6 visits. The distribution of the number of visits with the
corresponding neuroradiological and cognitive assessment is as follows: 19.2% of subjects
with one initial assessment completed, 11.3% of subjects with 2 assessments completed,
8.5% with 3 assessments completed, 8.9% of subjects with 4 assessments completed, 23% of
subjects with 5 assessments, and 29.1% of subjects with all 6 assessments completed.

2.2. MRI Data Acquisition and Preprocessing

For all of the subjects, brain MRIs were collected in 6 yearly visits: 948 in the first visit,
744 in the second, 711 in the third, 622 in the fourth, 529 in the fifth, and 364 in the sixth visit.

The imaging data were acquired on a 3T General Electric scanner (GE Milwaukee)
utilizing the following configuration: T1-weighted inversion recovery, flip angle 12◦, 3-D
pulse sequence, echo time Min. full, time inversion 600 ms, receiver bandwidth 19.23 kHz,
field of view = 24.0 cm, slice thickness 1 mm, Freq. × Phase (288 × 288).

The preprocessing of MRI 3 Tesla images consisted of generating an isotropic brain
image with non-brain tissue removed [41]. We used the FreeSurfer cortical surface recon-
struction pipeline as the initial preprocessing step. The postprocessing was performed with
FreeSurfer [42], version freesurfer-darwin-OSX-ElCapitan-dev-20190328-6241d26 running
under Mac OS X, product version 10.14.5 as described in [43]. Parcellation was performed
using the Destrieux cortical atlas, which is based on the division of the cortex into gyri or
sections of the cortex visible on the pial view, and sulci or the hidden parts of the cortex
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according to the curvature value of the surface [27]. Figure 1 shows two views of the
Destrieux atlas parcellation of the left hemisphere.

Figure 1. Cortical parcellation of the left hemisphere according to the Destriaux atlas.

2.3. Anomaly Detection with the Isolation Forest Algorithm

In this study we computed the brain volume, the mean subcortical volumes of seven
structures—thalamus, putamen, hippocampus, caudate, pallidum, amygdala, accumbens—
and the mean cortical thickness of the 148 regions of interest defined in the Destrieux atlas.
In the first stage, images were manually assessed for quality, and scans considered not
suitable for analysis due to artifacts were discarded. In the second step, we performed
anomaly detection using the scikit-learn Isolation Forest implementation [44], resulting
in a total of 3514 MRI examinations. The alogrithm’s parameters—number of estimators,
number of samples, and contamination level—were set to the default values.

Isolation Forest is an ensemble method [45] used as an outlier detector in a variety of
datasets [43,46,47]. The algorithm works by isolating each point in the dataset to assess
whether the point is an outlier. The idea behind the algorithm is that points that are outliers
are easier to separate than those that they are not. Thus, for each point and each feature, a
range between the minimum-maximum values is declared. The algorithm randomly selects
a feature and a value and, depending on where the value falls in the range, the range is
switched upwards to the maximum or downwards to the minimum value. The algorithm
proceeds iteratively until the point is isolated; that is, the point is alone inside the range for
all features. Finally, the algorithm considers a point as an outlier depending on the number
of iterations required to isolate it.

2.4. Statistical Analysis

The sample size of the study (number of MRI scans) and demographic (age, sex, educa-
tional attainment level) and genetic information (presence of the APOE4 allele) of each subject
in the study is summarized in Table 1. The MRI scans were performed in a time span of 6
years. The number of MRI examinations that passed visual inspection and automatic anomaly
detection is as follows: year 1: 857 scans, year 2: 683 scans, year 3: 658 scans, year 4: 555 scans,
year 5: 450 scans, year 6: 311 scans, for a total of 3514 MRI examinations.

Table 2 shows the results of the segmentation and cortical parcellation analysis. The
brain-to-intracranial-volume ratio (Brain2ICV) in % or brain-to-intracranial-volume ratio
and the estimated volume of seven subcortical structures for both hemispheres in mm3 are
followed by the average cortical thickness in mm of the regions defined in the surface-based
atlas known as Destriaux atlas [27].

The total intracranial volume (eTIV) estimated by FreeSurfer has previously been re-
ported to have linear correlations of 0.9 with manually estimated intracranial volume [48,49].
Depending on whether CSF is included or not, one can dissociate the total brain volume
(TBV) from the total intracranial volume. The normalized TBV is widely used as an index
for brain atrophy, as the head size remains stable across the life span and serves as a
good measure to reduce between-subject differences with regard to maximum brain size.
Whole-brain volume, on the other hand, changes throughout the life span of an individ-
ual [50,51]. Measurements of total brain volume (TBV) with FreeSurfer are robust across
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field strength [52]. The total intracranial volume acts as a scaffolding of the brain and sets
an upper bound for the brain’s volume. Accordingly, it is possible to build a proxy of the
brain atrophy that an elder person went through in their adult life by computing the ratio
between the brain volume (TBV) and the total intracranial volume (eTIV), which represents
the upper limit of brain volume [53]. Thus, Brain2ICV = TBV

eTIV .

Table 1. The subjects participating in the study had at least one MRI. After anomaly detection, a total
of 3514 neuroradiological assessments were analyzed, with the resulting volumetric analysis shown
in Table 2. The table shows the description of the demographic and genetic variables included in the
study. M: male, F: female, APOE ε(23)ε(23): lacking allele ε4, ε(23)ε4 one allele ε4 and ε4ε4 both
alleles ε4. Educational attainment level, None: no formal education, Primary: primary education
degree, Secondary: secondary high school, University: university studies.

SAMPLE SIZE (MRI Scans) = 3514 NSUBJECTS = 948

Age µ = 74.68± σ = 3.85
Sex F 519, M 280
APOE ε(23)ε(23) : 145, ε(23)ε4 : 647, ε4ε4 : 7
Education None 150, Primary 232,

Secondary 203, University 214

Table 2. The table columns from left to right include the name of the subccortical or cortical area,
the gray matter volume (mm3) for subcortical structures, the cortical thickness (mm) defined for
areas in the surface cortical atlas used, and the p-values of the T-test and the ANOVA test for Sex
and APOE4 variables, respectively. The first row of data shows the brain-to-intracranial-volume
(Brain2ICV) ratio, followed by the subcortical structures: thalamus, putamen, amygdala, pallidum,
caudate, hippocampus, and accumbens. Next, the parcellation defined in [27], in which, the cortex is
divided into gyral and sulcal regions. The brain areas names on the left column are self-descriptive,
with LH and RH referring to each hemisphere: the first letter S, G refers to gyral or sulcal thickness.
(<0.05 (*) <0.01 (**)).

Volume (mm3) Sex p-val APOE PR (>F)

Brain2ICV 0.698± 0.029(%) ** >0.05

LH Th 6000± 653 ** >0.05
RH Th 5848± 582 ** >0.05
LH Pu 3551± 387 ** >0.05
RH Pu 3635± 415 ** >0.05
LH Am 1414± 215 ** **
RH Am 1263± 193 ** *
LH Pa 1721± 252 ** >0.05
RH Pa 1653± 244 ** >0.05
LH Ca 3249± 490 ** >0.05
RH Ca 3430± 252 ** >0.05
LH Hp 3551± 387 ** >0.05
RH Hp 3634± 415 ** **
LH Ac 462± 91 ** >0.05
RH Ac 465± 90 ** >0.05

Avg.Thickness (mm) Sex (p-val) APOE Pr (>F)

RH STempSuperior 2.3± 0.2 ** >0.05
LH STempSuperior 2.4± 0.1 ** >0.05
RH STempSuperior 2.4± 0.1 ** >0.05
LH STempInferior 2.5± 0.1 ** >0.05
RH STempInferior 2.4± 0.1 ** >0.05
LH SOccTempMedandLingual 2.4± 0.2 ** >0.05
RH SOccTempMedandLingual 2.4± 0.2 ** >0.05
LH SOccTempLat 2.5± 0.2 ** >0.05
RH SOccTempLat 2.5± 0.2 ** >0.05
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Table 2. Cont.

LH GTempMid 2.9± 0.1 ** >0.05
RH GTempMid 2.9± 0.1 >0.05 >0.05
LH GTempInf 2.9± 1.6 >0.05 >0.05
RH GTempInf 2.8± 1.7 >0.05 >0.05

LH GTempSup 2.5± 0.1 ** >0.05
RH GTempSup 2.5± 0.1 ** >0.05
LH GTempSupPlanPolar 3.1± 0.2 * >0.05
RH GTempSupPlanPolar 3.0± 0.72 ** >0.05
LH GTempSupLateral 3.0± 0.1 ** >0.05
RH GTempSupLateral 2.4± 1.7 >0.05 >0.05
LH GTempSupTransv 2.4± 1.7 ** >0.05
RH GTempSupTransv 2.5± 1.8 ** >0.05

RH SIn 2.1± 0.1 ** >0.05
LH SFrontSup 2.1± 0.1 ** >0.05
RH SFrontSup 2.1± 0.1 ** >0.05
LH SFrontMid 2.1± 0.1 ** >0.05
RH SFrontMid 2.1± 0.1 >0.05 >0.05
LH SFrontInf 2.2± 0.1 >0.05 >0.05
RH SFrontInf 2.1± 0.1 >0.05 **
LH SFrontSup 2.2± 0.1 ** >0.05
RH SFrontSup 2.1± 0.1 ** >0.05
LH GFrontSupp 2.6± 1.1 ** >0.05
RH GFrontSupp 2.6± 1.1 ** >0.05
LH GFrontMid 2.5± 1.1 ** >0.05
RH GFrontMid 2.5± 1.1 ** >0.05
LH GFrontInfTriangul 2.5± 1.6 **
RH GFrontInfTriangul 2.5± 1.4 **
LH GFrontInfOrbital 2.7± 0.2 ** >0.05
RH GFrontInfOrbital 2.6± 0.2 ** >0.05
LH GFrontInfOpercular 2.65± 0.13 >0.05 >0.05
RH GFrontInfOpercular 2.65± 0.13 * >0.05
LH GCingPostV 2.4± 0.3 * >0.05
RH GCingPostV 2.5± 0.3 >0.05 >0.05
LH SCingMarginalis 2.1± 0.1 >0.05 >0.05
RH SCingMarginalis 2.1± 0.1 ** >0.05

LH SSubParietal 2.2± 0.1 ** >0.05
RH SSubParietal 2.3± 0.1 ** >0.05
LH SSubOrbital 2.3± 0.2 >0.05 >0.05
RH SSubOrbital 2.3± 0.3 * **
LH SPreCentralSuperior 2.3± 0.1 ** >0.05
RH SPreCentralSuperior 2.3± 0.1 ** >0.05
LH SPreCentralInferior 2.3± 0.1 ** >0.05
RH SPreCentralInferior 2.3± 0.1 >0.05 >0.05
LH SPostCentral 2.1± 0.1 ** >0.05
RH SPostCentral 2.1± 0.1 ** >0.05
RH SPeriCallosal 1.8± 0.3 ** >0.05
LH SParietoOcc 2.2± 0.1 ** >0.05
RH SParietoOcc 2.2± 0.1 ** >0.05
LH SOrbMedOlfact 2.1± 1.6 ** >0.05
RH SOrbMedOlfact 2.1± 1.5 ** >0.05
LH SOrbitalLat 2.1± 1.1 ** >0.05
RH SOrbitalLat 2.1± 1.1 ** *
LH SOrbitalHShaped 2.6± 1.2 ** >0.05
RH SOrbitalHShaped 2.5± 1.2 ** >0.05
LH SOccMideandLunatus 2.3± 1.2 ** >0.05
RH SOccMideandLunatus 2.3± 1.1 ** >0.05
LH SIntraParietandPariettrans 2.1± 0.1 **
RH SIntraParietandPariettrans 2.1± 0.1 **
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Table 2. Cont.

LH GParietalSup 2.3± 1.2 ** >0.05
RH GParietalSup 2.3± 1.2 ** >0.05
LH GParietInfSupramar 2.6± 1.3 ** >0.05
RH GParietInfSupramar 2.6± 1.2 ** >0.05
LH GParietInfAngular 2.5± 1.2 ** >0.05
RH GParietInfAngular 2.5± 1.3 ** **
LH SCollatTransvPost 2.1± 0.1 ** >0.05
RH SCollTatransvPost 2.1± 0.1 ** >0.05
LH SCollTransvAnt 2.6± 0.2 ** >0.05
RH SCollTransvAnt 2.5± 0.2 ** >0.05

LH PoleOcc 3.3± 0.2 >0.05 >0.05
RH PoleOcc 3.3± 0.2 ** >0.05
LH GOccSup 2.1± 1.1 ** >0.05
RH GOccSup 2.4± 1.3 ** >0.05
LH GOccMid 2.5± 0.1 ** >0.05
RH GOccMid 2.5± 0.1 ** >0.05
LH GOccTempMedParahip 3.1± 0.6 ** >0.05
RH GOccTempMedParahip 3.2± 0.2 ** >0.05
LH GOccTempMedLingual 2.1± 0.1 >0.05 >0.05
RH GOccTempMedLingual 2.1± 0.1 >0.05 >0.05
LH GOccTempLatFusi 2.8± 1.5 >0.05 >0.05
RH GOccTempLatFusi 2.8± 1.5 ** >0.05

LH SInsSup 2.4± 0.1 >0.05 >0.05
RH SInsSup 2.4± 0.1 ** **
LH SInsInf 2.6± 0.2 ** >0.05
RH SInsInf 2.5± 0.1 >0.05 >0.05
LH SCircInsAnt 2.7± 0.2 >0.05 >0.05
RH SCircInsAnt 2.7± 0.2 ** >0.05
LH GInsularShort 3.4± 0.3 ** >0.05
RH GInsularShort 3.4± 0.3 ** >0.05
LH GCentInsula 3.2± 0.3 ** >0.05
RH GCentInsula 3.3± 0.3 ** >0.05

LH SCentral 2.0± 0.1 ** >0.05
RH SCentral 1.9± 0.1 ** >0.05
LH GPreCentral 2.6± 1.7 ** >0.05
RH GPreCentral 2.6± 1.6 ** >0.05
LH GPostCentral 2.1± 1.5 ** >0.05
RH GPostCentral 2.1± 1.5 ** *
LH SCalcarine 1.9± 0.1 >0.05 >0.05
RH SCalcarine 1.9± 0.1 ** >0.05
LH GRectus 2.5± 0.2 >0.05 >0.05
RH GRectus 2.5± 0.2 >0.05 >0.05
LH GOrbital 2.7± 1.7 ** >0.05
RH GOrbital 2.7± 1.7 ** >0.05
LH GCuneus 1.9± 0.1 >0.05 >0.05
RH GCuneus 1.9± 0.1 ** >0.05
LH LatFisPost 2.3± 0.1 ** >0.05
RH LatFisPost 2.3± 0.1 ** *
LH LatFisAntHoriz 2.1± 0.1 >0.05 >0.05
RH LatFisAntHoriz 2.4± 0.1 ** >0.05

The relationship between volumetric and thickness estimates and the variables Sex
and APOE4 is investigated using regression analysis. We conduct hypothesis testing on the
regression coefficients obtained in the regression model Y = β0 + β1XSex, where the target
variable Y is the chronological age and XSex is the sex of the participants.

The effect of the APOE4 allele on volumetric or cortical thickness estimates in asymptomatic
individuals is approached using ANOVA analysis with the three-valued variable APOE4.
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For the sake of illustration, Figure 2 shows the intracranial volume segmentation and
cortical parcellation analysis obtained for four subjects in the study. The summary of the
automated segmentation and cortical parcellation of the 3514 scans included in the study
are shown in Table 2.

(a) (b)

(c) (d)

(e) (f)

Figure 2. (a,b) show the coronal and sagittal segmentation results. The edge color blue indicates
the demarcation of the white matter surface, and the red edge the pial surface. Plots (c–f) show the
three-dimensional view of the surface analysis for the same subject. (a) Coronal view. (b) Sagittal
view. (c) 3D view of white matter surface. (d) 3D view of pial surface. (e) 3D view of the inflated
surface: giry (green) and sulci (red). (f) 3D view of the thickness map of the inflated surface.

2.5. Age Prediction Analysis

We aim to predict the chronological age of elderly healthy adults using structural
MRI volumetric analysis and demographic features of interest, such as sex, educational
attainment level, and the genetic risk factor in dementia (APOE4). We built two types of
predicting models, linear and nonlinear, and we assessed their performance by testing the
model predictions on a held-out dataset of points not used for training.

Schematically, the prediction problem we aim to resolve can be succinctly described as
the supervised learning model shown in Equation (1)

Γ(X)→ Y (1)
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such that the function Γ maps the input space X = (sex, educational attainment level, APOE4), (sub-
cortical volume estimates), (cortical thickness estimates) into the output space Y = (chronological age).

The dimensionality of the input space X of the model is 153, including the sex of
the individuals (female or male), education level, and the apolipoprotein E gene called
APOE4, together with 150 brain imaging features, namely the brain-to-intracranial-volume
ratio (Brain2ICV), the volume estimates of seven subcortical structures (caudate, pallidum,
putamen, thalamus, hippocampus, amygdala, and accumbens), and the cortical sulci and
gyri thickness based on the parcellation defined in the Destrieux cortical atlas (Figure 1).

We built two supervised learning models: partial least squares (PLS) and extreme
gradient boosting (XGBoost).

The PLS regression model extracts the components of the input X and the output Y
that explain the most shared variance among X and Y [54]. Thus, the two components
maximally correlated correspond to the first component in feature space X and the target
Y. PLS is based on principal component analysis, so it deals with multi-colinearity in the
input space by finding a linear transformation W such that the new input space is linearly
independent while, at the same time, maximizing the covariance between Y and X. Thus, X
is transformed into X′ by a linear transformation W as in X′ = XW.

The nonlinear supervised learning model of choice is the decision-tree-based ensem-
ble machine learning algorithm called extreme gradient boosting, or XGBoost for short.
XGBoost [55] is an implementation of a gradient-boosted trees algorithm that uses a regu-
larized gradient-boosting algorithm to accurately predict the target variable: in our case,
the chronological age. XGBoost combines weaker models with stronger ones, which are
added to improve the overall performance. During training, the gradient descent algorithm
minimizes the loss by adding new trees to predict more accurately than weaker decision
trees. The models here are all regression trees mapping the input data points (X) to one of
the tree’s leaves, which contains the age (Y) that we want to predict. The objective function
that the algorithm tries to minimize combines the difference between the predicted and
target outputs and a penalty term for model complexity.

Formally, given the dataset tuple (X,Y), the gradient tree boosting algorithm tries to
minimize the differentiable loss function L (Equation (2))

L(Y, Γ(X)) (2)

where Γ(X) represents an ensemble of n regression trees that are sequentially added to
incrementally better predict the residuals of previous trees. Formally,

Γn(X) = Γn−1(X) + αngn(X, ρn−1) (3)

with αi and ρi i = 1..n denoting the regularization and the residual parameter, respectively,
for the ith tree. The function gn is trained to predict the residuals of the precedent tree in
the forest (ρi−1).

Feature importance analysis provides insight into the workings of the predictive model
used, allowing for the interpretability of the results. Shapley additive explanations, or
SHAP for short, was originally developed in cooperative or coalitional game theory and
in contrast to non-cooperative Nash equilibrium models [56]. Shapley values show how
much a given feature changes the prediction compared to the prediction at the baseline
value of that feature. The Shapley value [38]-based approach is being increasingly used
by the machine learning community to deal with the interpretable feature subset selection
problem [57].

Formally, the Shapley value Φ is defined via a value function ν of all features in a set S.
Specifically, the Shapley value of a feature value is its contribution to the payout (e.g., if the
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average prediction for all instances is 0.9 and the actual prediction is 0.8, the payout is 0.1)
weighted and summed over all possible value combinations.

Φj(ν) = ∑
S∈{x1,...,xp}\{xj}

|S|!(p− |S| − 1)!
p!

(ν(S ∪ {xj})− ν(S)) (4)

where p is the number of features, S is the subset of features, x is the vector of feature values
of the particular instance to be explained, and ν(S) is the prediction for feature values in S,
marginalized over features that are not included in the set S.

The Shapley value is arguably the best permutation-based method for explaining the
effects of feature values in the average prediction. An important drawback of Shapley
values is that they provide additive contributions (attributions) of explanatory variables. If
the model is not additive, then the Shapley values may be misleading. For a more in detail
description of SHAP values, see [39] and the references within.

3. Results

We conducted hypothesis testing to investigate the relationship between volumetric
and thickness estimates and the variables Sex and APOE4.

In the first case, Sex∼Brain volumetric and thickness, the null hypothesis is H0 : β1 = 0,
and the alternative hypothesis, HA : β1 6= 0. Using the p-value method, H0 is rejected when
the p-value of the test statistic is small (e.g., less than 0.05(*) or 0.01(**)). The null hypothesis is
rejected for Sex in the Brain2ICV variable, all of the subcortical structures, and in the large
majority of cortical thickness areas (Table 2).

Carriage of the APOE4 genotype is the main genetic risk factor for developing late-
onset Alzheimer’s disease. The relationship between APOE4 and brain volumetric and
thickness estimates is investigated using ANOVA, the hypotheses of interest being: H0 :
µ1 = µ2 = µ3 and H1: means are not all equal. The results of the ANOVA analysis with
the three-valued variable APOE4 is indicated in Table 2, column “APOE PR(>F)”. ANOVA
analysis of the APOE4 allele fails to reject the null hypothesis in the large majority of
subcortical and cortical regions. These results are not surprising since the volume and
thickness were not adjusted for cerebral volume, and effect sizes for sex differences are to
be expected in either volume estimates and cortical thicknesses [58,59].

Our results are in agreement with recent studies showing no overall risk effects as-
sociated with APOE4 in healthy adults for cortical thickness and subcortical volume [60].
Nevertheless, we find that the APOE4 genotype may have a deleterious effect on hippocam-
pal and amygdala volumes, which is in agreement with the literature on atrophy of the
hippocampus and amygdala in healthy elderly and impaired memory individuals [61,62].

Table 3 shows the results for the age predictors built, both linear and nonlinear. The
performance is evaluated for the holdout set. The dataset is split into train and test sets. We
use 75% of data for training and the remaining 25% for testing the model performance on
unseen data.

Table 3. Performance metric of PLS and XGBoost models in the test set (unseen subjects). The
performance measures shown in the table are the maximum absolute error (MAE), the maximum
residual error (MXE), the mean absolute percentage error (MAPE), and the median absolute error
(MEDAE).

Test Performance Measure

Model MAE MXE MAPE MEDAE

PLS 2.570177 10.2293404 0.03348523 2.15809710
XGBoost 2.0301 8.7138485 0.0265 1.74578

For the partial least squares regression model (PLS), the age of the subjects can be
estimated with a maximum residual error (MAE) of 2.57 years. Other metrics, such as
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the maximum residual error (MXE), the mean absolute percentage error (MAPE), and the
median absolute error (MEDAE), are also shown in Table 3 (first row).

Next, we build, train, and tune using cross validation the nonlinear regressor using
the extreme gradient boosting algorithm (XGBoost). The optimization or tuning of the hy-
perparameters -η, γ, subsample, colsample by tree, max depth, and min child weight is performed
using the grid search method [63].

The hyperparameters η and γ correspond to the learning rate and the minimum
loss reduction, respectively. The learning rate, also called the shrinkage rate, η, is used
to prevent overfitting. The minimum loss reduction γ acts as a pseudo-regularization
hyperparameter in gradient boosting: the higher the γ, the higher the regularization. The
hyperparameters subsample and colsample by tree control the sampling of the dataset at each
boosting round: subsample is the fraction of observations (rows) and colsample by tree is
the fraction of features (columns) used to train each tree. The hyperparameters max depth,
min child weight add constraints on the architecture of the trees: max depth is the maximum
number of nodes allowed from the root to the farthest leaf (a very large max depth can
cause overfitting) and min child weight is the minimum weight required in order to create a
new node in the tree.

The XGBoost model achieves a mean absolute error (MAE) equals to 2.03, which is a
21% improvement relative to the partial least squares (PLS) model (MAE = 2.57) as shown
in Table 3 (last row).

For the sake of comparison, the performance metrics of the two models built—PLS and
XGBoost—are compared with two dummy models: one always tries to predict the mean
and the other the median age of the subjects. The mean absolute error (MAE) achieved by
the former is 3.258 (PLS MAE = 2.57, XGboost MAE = 2.030) and the median absolute error
(MEDAE) achieved by the latter is 2.850 (PLS MEDAE = 2.158, XGboost MEDAE = 1.745)
(Figure 3). The R2 by the dummy models is, as expected, 0.0, whereas R2 = 0.353 for PLS
and R2 = 0.5915 for XGBoost.

Figure 3. Mean and median absolute error for the dummy, PLS, and XGBoost models. The XGBoost
model shows superior results to the PLS.

Our results show that both linear and nonlinear models achieved a maximum mean ab-
solute error of fewer than three years, which is below previous studies. For example, in [26],
the mean absolute error achieved using a Gaussian process regression (GPR) algorithm in a
sample of 2911 cognitively normal subjects (age 45–91 years) was 4.05. Relevance vector
machine algorithms have been used as well to predict brain age, as in [28,64,65], all with a
mean absolute error of around 4.5 years. Neuroimaging techniques other than T1-weighted
MRI for brain age prediction—for example, diffusion tensor imaging in a cohort of 188
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subjects aged 4–85 years—obtained a mean absolute error, depending on the age group and
sex, between 6 and 10 years [66]. Neuroanatomical prediction studies of biological maturity
using resting-state fMRI [67] in a cohort of 238 young subjects 7–30 years reported 55% of
the sample variance, and, in multimodal studies combining MRI and diffusion-weighted
imaging to predict child age, nonlinear modeling was able to account for more than 92% of
the variance in age [68].

3.1. Feature Importance

In addition to build predictive models of chronological age from age, sex, APOE4
gene, and brain volumetric estimates, it is of particular interest to understand the relative
feature importance among predictors. The identification of brain regions and structures
may help us to characterize the localized effects of normal brain aging and to use the age
predictors as potential biomarkers for neurodegenerative diseases [69,70].

The approach used here for addressing the feature selection problem at hand is Shapley
values. Shapley or SHAP values can be used to decompose predictions into the sum of the
effect of each feature.

Figure 4 shows the twenty most important features for predicting the chronological age
of the subjects in the test set according to the Shapley value method. The most important
features are the brain-to-intracranial-volume rate (Brain2ICV) followed by the volume
of the hippocampi and the sulcal thickness of the occipito-temporal medial and lingual
cortical regions.

Figure 4 shows the relative importance of the features for predicting the chronological
age. On the left, Figure 4b, are the absolute Shapley values of the most important features,
and on the right, Figure 4b, are the SHAP values for each subject. Thus, Figure 4a is the
aggregate plot of Figure 4b. Every dot in Figure 4b represents a different subject in the
test set, colored by red or blue if the feature for that subject tends to push towards the
right (more age) or to the left (less age) in the model predictions. For example, large (red)
values in the top feature (Brain2ICV) decrease the prediction of age; that is, subjects with a
larger brain-to-intracranial-volume ratio will tend to be less aged than subjects with small
(blue) values. The same can be said for the rest of the features according to the figure, with,
however, a few exceptions, such as the thickness of the rectus in the left hemisphere, the
thickness of the sulci in the circular anterior insula, and the left caudate volume, which
seem to have the opposite effect (big values seem to push towards more age).

The brain-to-total-intracranial-volume ratio or Brain2ICV = TBV
ICV and the hippocampi

are, according to SHAP values, the most important variables in predicting chronological
age. The key role of the hippocampus in learning and memory makes it a structure of
particular interest to study the effects of normal aging in the brain [71,72]. A recent study
with a large normative database confirms that hippocampal volume loss accelerates in
middle age [17]. Interestingly, the brain-to-intracranial-volume ratio and the hippocampi
volume are more important (SHAP value) in predicting chronological age than the cortical
thickness of individual regions. We argue that the thickness of cortical areas could be more
sensitive to the biological age than it is to the chronological age. How the current results
are subject to change when predicting the biological age of the brain using, for example,
DNA methylation directly from the brain [35] or the inflammatory aging clock [37], is a
matter of future studies [73].
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(a)

(b)

Figure 4. Study of the most important features based on the computation of the SHAP values for each
feature and sample of the total of 804 subjects in the test set, both in aggregate (a) and for each data
point (b). The vertical axis of each figure represents the features ranked by importance (top to bottom)
calculated as the sum of the SHAP value magnitudes over all samples (horizontal axis). (a) Shapley
values averaged for all subjects. The most important feature according to the SHAP values is the brain-
to-intracranial-volume rate, followed by the volume of the hippocampi. (b) Shapley values for each
subject. When the point distribution is clustered around 0, it indicates that the feature is unimportant;
the more spread the distribution is, the more important the SHAP value is for predicting age.

3.2. Feature Importance of Cortical Gyri and Sulci

The evaluation of the importance of features for predicting chronological age can also
be conducted by grouping the cortical areas based on their location (hemisphere and lobe)
and type (sulci or gyri). Since the Destriaux atlas used for automated cortical parcellation
identifies the location of sulci and gyri in the different brain lobes and the insula, it is possible
to plot the relative importance of the cortical areas for predicting chronological age.

Figure 5 depicts the aggregate importance of sulci and gyri cortical areas according to
hemispheres Figure 5a and lobes Figure 5b. The aggregate importance is computed as the
mean average of the SHAP values normalized. According to the SHAP values, the total
sulcus thickness in the right hemisphere contains, on average, more information regarding
the chronological age of the subject than gyrus thickness in either hemisphere (0.238, 0.248)
and sulcus thickness in the left hemisphere (0.169). Our results indicate that the thickness
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of temporal lobe areas is a better predictor of chronological age than the frontal lobe, and,
particularly, in cortical sulcal areas. This is in agreement with neuroanatomical evidence
that indicates that between one-half to two-thirds of the cortical surface lies in the sulci and
the lateral fossa of the brain [27].

Figure 5b shows the relative importance according to the SHAP values of sulci and
gyri in the different brain lobes and the insula. The sulci areas in the temporal lobe are
more important for predicting age than the rest of the parcellations. It is important to
realize that the estimates depicted in the figure must be interpreted only in relative terms
and not in absolute terms; that is to say, the sulci in the temporal lobe are more important
for predicting chronological age than sulci and gyri in the frontal lobe. Likewise, the total
thickness of sulci and gyri in both frontal and parietal lobes contains, according to this
analysis, less information regarding the chronological age than the thickness of sulci and
gyri in the temporal lobe.

(a)

(b)

Figure 5. SHAP importance grouping cortical areas by hemisphere, lobe, and type of fold. (a) SHAP
feature importance in relative terms for brain cortical areas depending on the hemisphere and the
cortical surface type (sulci, gyri). As shown in the figure, the aggregate importance of sulci in the right
hemisphere for predicting chronological age is 0.346 and is computed as the mean of the SHAP values
of right sulci areas normalized by the total of sulci and gyri areas in both hemispheres. (b) SHAP
feature importance in aggregate for brain cortical areas falling in brain lobes—frontal, occipital,
parietal, temporal—and the insula. According to the SHAP values calculated, the temporal lobe
contains more information for predicting age than the sulci and gyri-located regions in the other
brain lobes.
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4. Discussion

It has been suggested that the estimates of brain age from neuroanatomical data may
suffer from systematic bias manifested as underestimated brain age for older subjects and
overestimated for younger ones [74]. A plausible explanation for this bias may rely on the
age distribution with non-normal or skew-normal distributions playing a putative role
in introducing a confounding effect [75]. Nevertheless, characteristics of the sample data
used to train the models can lead to different estimates of the mean absolute error in age
predictions [76], with some studies having a wide range of ages [66,77,78] while others
concentrating on a limited range [68].

In a healthy adult population, we may expect both maturation and aging effects in
the brain, with an opposing rate of incidence; that is, being maturation prevalent during
youth and aging during old age. The cortical thickness declines due to normal aging, with
a more visible cortical thinning effect in areas responsible for executive processing tasks
and episodic memory retrieval, which are also known to be associated with age-related
cognitive decline [79].

The last in, first out hypothesis implies that late-maturing regions of the brain, such as
the heteromodal association cortices in the frontal lobe, could be particularly vulnerable to
the age-related loss of structural integrity [20]. However, the idea of brain aging following
a simple pattern of neural decline with the prefrontal cortex as the region most disrupted
is being challenged by studies that suggest a more intricate picture. For example, the
prefrontal cortex could play a compensatory role [80] or, as suggested in [81], normal aging
could reflect non-specific neural responses rather than the predictable decline of target
areas or compensation.

While this study benefits from being single-center using an identical protocol for image
acquisition, the generalization of prediction models coming from multi-site datasets is
becoming a crucial problem in need of a solution[82]. A promising approach for achieving
acceptable harmonization and coherence prediction results is transfer learning [83]. A
recent study [84] used a transfer learning approach to build brain age prediction models
from diffusion MRI datasets extracted from the CamCAN repository [85] achieved MAE
within 4 to 5 years. Although not directly comparable, it is worth noting that the range of
chronological ages in our study is within 69-88 years, while in [84] prediction is from an
adult population (18 and older) with a smaller dataset (616 samples).

For a comprehensive evaluation of machine learning algorithms for age prediction,
see [86]. Support vector regression (SVR) achieved the best accuracy in predicting age in
healthy subjects: MAE∼3 and MAE∼5 years for training and test sets (N=788+88). The
performance of the SVR in our dataset is shown in the Supplementary Material. The
reduction in the prediction error indicated in our study may respond to several factors,
such as the large single-center dataset, the scalability of the tree boosting algorithm, and
the mapping from input features to output data. The input space in this study is the
product of segmentation and parcellation methods used to extract subcortical volumes and
cortical thickness, which is admittedly more computationally demanding than grey matter
intensities extracted from the whole brain [87,88].

Lastly, it should be remarked that our model predicts chronological age and not
biological brain age, which cannot be directly measured but could, however, be estimated
via proxies such as DNA damage.

5. Conclusions

We trained machine learning models to predict chronological age. We find that
the non-linear regression modeling extreme gradient boosting (XGBoost) obtains better
results than the partial least squares (PLS) model; in particular, XGBoost achieves a mean
absolute error of 2 years. Secondly, we find that the best predictor of chronological age is
the brain-to-intracranial-volume ratio, followed by the hippocampi volume. Thirdly, the
thickness of sulci is more important in predicting age than the thickness of gyri, and this is
particularly the case for sulci in the temporal lobe. Our results show that simple volumetric
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features, such as the brain-to-intracranial-volume ratio and hippocampal volume, are no
less important in predicting chronological age than the cortical thickness of any specific area
in the Destriaux atlas. Ultimately, these results enable future research in the gap between
the brain’s biological and chronological age. The operationalization of this gap using the
methodology proposed here may derive into a frailty index for healthy individuals or a
potential biomarker for neurodegenerative disorders.
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