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Abstract: The pathological basis of migraine is not fully understood. Familial hemiplegic migraines
(FHM) are monogenic forms of severe migraine, caused by mutations in genes encoding various neu-
ronal and/or astrocytic ion transporting proteins. The leading hypothesis regarding the mechanism
underlying migraine in FHM is that enhanced electrical excitability leads to increased extracellular
potassium levels with subsequent cortical spreading depression. In this short commentary we would
like to propose an additional mechanism distinct from enhanced electrical excitability per se. Rather,
we propose that FHM mutations cause substantially increased energy expenditure of neurons for
re-establishing ion gradients and/or for increased synaptic activity, a mechanism we call neuronal
fatigue. Such a metabolic mechanism had been proposed earlier for common migraine and has
received recent experimental evidence in particular for the case of FHM3. The hypothesis could
be tested in future studies of FHM related models that would need to take metabolic parameters
into account.
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Migraine is a severe form of headache, which affects a large percentage of the human
population with women being more afflicted than men. It is a painful and debilitating
neurological condition, which is often pharmacologically difficult to control [1,2]. The
pathological mechanisms underlying migraine are likely diverse. Generally, two different
hypotheses have been put forward to explain the basis of migraine: the vascular hypothesis,
which focuses on the observed dilation of blood vessels as the migraine trigger, and the
neuronal hypothesis that focuses on alterations of neuronal excitability as an upstream
triggering event [3].

Significant evidence in favor of the neuronal hypothesis was provided by rare mono-
genic forms of severe migraine, called familial hemiplegic migraine (FHM). Three different
forms of FHM have been described. FMH1 is caused by gain-of-function mutations in
CACNA1A, which encodes the presynaptic voltage-gated Ca2+ channel CaV2.1 [4,5]. FHM2
is caused by loss-of function mutations in the ATP1A2 gene encoding the glial-specific
isoform of the α2 subunit of the Na+/K+ ATPase [6,7]. Finally, gain-of-function mutations
in SCN1A, which encodes the voltage-gated Na+ channel NaV1.1, lead to FHM3 [8,9].
Thus far, investigations of the various migraine mutations in vitro and in knock-in animals
have focused on effects on neuronal excitability [10]. For example, FHM1 mice exhibited
increased calcium currents in cerebellar granule cells, enhanced neurotransmission at the
neuromuscular junction, and enhanced excitatory transmission in cortical synapses [11,12].
In heterozygous FHM2 mice, the level of the α2 subunit of the Na+/K+ ATPase was reduced
to 50%, and defects in glial-mediated clearance of glutamate were found [13,14]. In FHM3
mice, increased excitability has been observed for inhibitory interneurons [15], in agree-
ment with the predominant relevance of NaV1.1 in these cells. Importantly, all FHM mice
showed increased susceptibility to cortical spreading depression [11–16], which is believed
to accompany the phenomenon of aura in migraines with aura [3]. While these alterations
of the excitability of the neural network likely play an important role in migraine induction,
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with extracellular K+ accumulation being a possible trigger [17], no clear common neural
mechanism emerged from these studies.

Here, we would like to point to another cellular effect that might be common in all
FHM migraine phenotypes. The brain contributes with about 20% to the total body energy
consumption and the main energy consuming process is the maintenance of ionic gradient
across membranes [18]. Not surprisingly, all processes of the brain have to be highly
optimized in their energetic efficiency [19,20]. A significant energetic cost is associated
with neural firing, especially if it occurs at high frequency [19]. Unavoidably, each action
potential causes a certain increase in extracellular K+ and in intracellular Na+. The K+ and
Na+ concentrations have to be re-established by the Na+/K+ pump, partially delegated to
glia cells employing K+ buffering processes [21]. In fact, the Na+/K+ pump accounts for
about 50% of basal brain glucose oxidation [18]. Similarly, synaptic transmission is a costly
process, involving the continuous build-up of complex SNARE protein machineries [20].
The cost is high in order to assure the speed and robustness of synaptic transmission.

Now, in addition to alterations in excitability properties per se, all FHM mutations are
predicted to decrease the energetic efficiency of the processes in which they are involved.
Gain-of-function mutations of CaV2.1 lead to an increase of vesicular neurotransmitter
release, increasing the energy demand of the pre-synapse, and also the post-synapse.
Similarly, defects of the glial Na+/K+ pump lower the capacity of glial mediated K+ uptake,
increasing consequently the metabolic burden on neurons, which have to handle themselves
a larger percentage of K+ uptake. Finally, gain-of function SCN1A mutations significantly
increase the ion fluxes during a single action potential [22,23], again increasing metabolic
demand. In this regard, Hu et al. found that the kinetic properties of K+ and Na+ channels
in fast spiking interneurons are exquisitely tuned to maximize energetic efficiency [24].
It can thus be predicted that in certain stressful situations, for all three FHM genotypes,
mitochondrial capacity of affected neurons is not sufficient to sustain the increased energy
demand. The exhaustion of mitochondrial capacity could lead to a condition that we call
“neuronal fatigue” resulting in complete membrane depolarization and loss of excitability.

Since neuronal fatigue of single neurons increases the chance of fatigue also in neigh-
boring neurons, we hypothesize that, at least in familial hemiplegic migraine, neuronal
fatigue might underlie the processes of cortical spreading depolarization and K+ accumula-
tion. To test this hypothesis, we propose to focus in future studies of animal FHM models
on metabolic aspects, in particular on neuronal energy consumption upon stimulation of
elevated electrical activity, see [25].

What about common migraine? A connection between migraine and brain metabolism
has been suspected since a long time [26,27]. Mostly clinical evidence suggested that
migraine is a response to reduced energy available to the brain [27]. For example, ex-
perimentally induced hypoxia in patients suffering from migraine with aura was able to
trigger migraine and aura attacks [28,29]. A predictable effect of hypoxia induced metabolic
reduction is a decrease of cellular ATP, which can be expected to lead to an activation KATP
channels. This might be related to the induction of migraine with and without aura by the
KATP opener levcromakalim [30,31].

However, most previous studies have focused on the effects of hypoxia on the an-
tioxidant capacity of the brain, hypothesizing that reactive oxygen species are mostly
responsible for migraine generation [27].

In contrast, we speculate that neuronal fatigue, i.e., neuronal depolarization caused
by excessive neuronal energy consumption or insufficient energy supply, might be the
initial migraine triggering event. Neuronal fatigue of a sufficient number of neurons
could then be followed by substantial mitochondrial ROS production, causing migraine
associated pain (e.g., via calcitonin gene-related peptide [27]). In parallel, under certain
conditions, neuronal fatigue would lead to cortical spreading depression, underlying aura.
To test the hypothesis, one would need to measure in sufficient temporal and spatial
resolution neuronal membrane potential, neuronal energy consumption, extracellular K+
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concentration, and pain sensation, clearly not a simple task. Studies of neuronal energy
consumption in animal models of familial hemiplegic migraines could be a first step.
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