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Abstract: Background: Multi-modal neuroimaging with appropriate atlas is vital for effectively
differentiating mild cognitive impairment (MCI) from healthy controls (HC). Methods: The resting-
state functional magnetic resonance imaging (rs-fMRI) and structural MRI (sMRI) of 69 MCI patients
and 61 HC subjects were collected. Then, the gray matter volumes obtained from the sMRI and
Hurst exponent (HE) values calculated from rs-fMRI data in the Automated Anatomical Labeling
(AAL-90), Brainnetome (BN-246), Harvard–Oxford (HOA-112) and AAL3-170 atlases were extracted,
respectively. Next, these characteristics were selected with a minimal redundancy maximal relevance
algorithm and a sequential feature collection method in single or multi-modalities, and only the
optimal features were retained after this procedure. Lastly, the retained characteristics were served
as the input features for the support vector machine (SVM)-based method to classify MCI patients,
and the performance was estimated with a leave-one-out cross-validation (LOOCV). Results: Our
proposed method obtained the best 92.00% accuracy, 94.92% specificity and 89.39% sensitivity with
the sMRI in AAL-90 and the fMRI in HOA-112 atlas, which was much better than using the single-
modal or single-atlas features. Conclusion: The results demonstrated that the multi-modal and
multi-atlas integrated method could effectively recognize MCI patients, which could be extended
into various neurological and neuropsychiatric diseases.

Keywords: multi-modal neuroimaging; appropriate atlas; mild cognitive impairment; gray matter
volume; Hurst exponent; support vector machine

1. Introduction

Mild cognitive impairment (MCI), generally representing a transition stage between
normal aging and Alzheimer’s disease (AD) [1,2], is clinically characterized by intellectual
deficits, memory complaints and other reduced cognitive functions [3,4]. Overall, MCI
patients progress to AD at an annual rate of 15–26% [5], and half of them will convert
to AD within 3–5 years [6]. As therapeutic treatments become available, objective and
valid biomarkers, which could serve as in vivo surrogates for pathological changes in MCI
patients, are desperately needed because efficient treatments need early initiations before
irreversible brain damage occurs [7].
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Multi-modal neuroimaging techniques, such as resting-state functional magnetic
resonance imaging (rs-fMRI) and structural MRI (sMRI), have been widely utilized to
characterize abnormalities in MCI and AD patients [8,9], and the detected abnormal re-
gions were primarily located in the posterior cingulate gyrus, hippocampus and amygdala,
etc. [10–12]. In addition, several studies have tried to combine multi-modal neuroimaging
data together to distinguish MCI or AD patients from healthy controls (HC) because differ-
ent imaging modalities provide complementary information to each other in comparison
to a single modality [13–15]. However, the multi-modal integration results for MCI or AD
identification were not consistent. Some previous studies demonstrated that integrated
multi-modal data improved the classification performance in differentiating MCI or AD
patients [16,17], while another study concluded the integration did not promote the classifi-
cation accuracy [18]. These discrepancies indicate that the multi-modal integration based
on MCI or AD discrimination needs to be further investigated.

Especially, appropriate brain parcellation is vital to quantitatively detect the functional
and structural abnormalities in MCI and AD patients, but there is no golden standard
atlas for each modality in MCI or AD classification. Currently, the Automated Anatomical
Labeling (AAL-90) atlas is a popular one [19–21], however, it is not refined enough in some
brain regions. Therefore, some more detailed atlases have been proposed, such as the
Harvard–Oxford atlas (HOA-112), the Brainnetome atlas (BN-246), and the newly proposed
AAL3-170 atlas [22–24]. Different atlases bring about a multi-scale perspective of the whole
brain, which may shed light on the multi-modal integration.

Further, sMRI provides morphological information about the macroscopic brain tis-
sues, which have been widely adopted to reveal brain atrophy underlying MCI or AD
patients [7]. In contrast, rs-fMRI offers functional signal characteristics (e.g., fluctuation
and coupling), which have been popularly utilized for the diagnosis of MCI and AD pa-
tients [25,26]. Early studies reflect that the blood oxygenation level-dependent (BOLD)
signal in the brain displays scale-free or fractal-like dynamics [27,28]. The fractal-like
dynamics stand for the phenomenon that there is self-similarity in the time course of the
fMRI signal. For example, a voxel with a Hurst exponent (HE) larger than 0.5 indicates
the positively correlated BOLD series, i.e., the changing trend in future time points is
similar to previous time points. Currently, the HE index has been applied to investigate the
characteristics of rs-fMRI signals in autism disorder, normal and pathological aging, major
depressive disorder, AD and individual traits [27–31]. In our previous studies, we found
that the performance of the HE index and the gray matter volume in MCI classification
were both dependent on the brain atlas [6,32]; however, it is still unknown whether the
combination of different atlases could further improve the recognition performance of MCI
patients.

In this study, we proposed a multi-modal and multi-atlas integrated framework to
identify MCI from HC subjects. In detail, the mean gray matter volumes obtained from
the sMRI and the mean HE values calculated from rs-fMRI in the AAL-90, BN-246, AAL3-
170 and HOA-112 atlases were extracted, respectively. Then, these candidate features
were selected with a minimal redundancy maximal relevance (MRMR) algorithm and a
sequential feature collection (SFC) method, and only the remaining optimal features were
served as the input features to construct a support vector machine (SVM)-based modal
to identify MCI form HC subjects. Lastly, the classification performance was compared
between the proposed method and several other benchmark models.

2. Materials and Methods
2.1. Participants

A total of 69 MCI and 61 HC subjects were enrolled in this study, and all subjects
did not take any medications that may have interfered with cognitive functions before
the scan. All patients were collected from the memory clinic of the neurology department
in Nanfang Hospital, which is affiliated with Southern Medical University, and all HC
subjects were collected from the local community by posting advertisements. This study
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was in accordance with the medical research ethics committee of Nanfang Hospital, and
the informed written consent from all participants was obtained following the rules of the
Declaration of Helsinki. All subjects were right-handed, and the subjects of the two groups
matched well in sex, age and years of education. Before they took part in this study, all
subjects underwent physical and psychological examinations, and the cognitive functions
of all subjects were assessed with a standard clinical evaluation, including the Clinical
Dementia Rate (CDR), the Mini-Mental State Examination (MMSE) and the Auditory Verbal
Learning Test (AVLT). A total of 3 MCI and 2 HC subjects were discarded for excessive
head motion, and the detailed neuropsychological and demographic characteristics of the
remaining subjects are shown in Table 1. All subjects were diagnosed by two experienced
experts with the following criteria.

Table 1. Participants’ demographic and clinical characteristics.

Characteristics MCI HC p-values

Gender (M/F) 66 (35/31) 59 (28/31) 0.53 #

Age (years) 67.20 ± 7.22 65.22 ± 7.36 0.13 *
Education (years) 9.83 ± 4.22 10.01 ± 4.29 0.81 *

CDR 0.5 0 0 *
MMSE 23.47 ± 2.71 27.37 ± 3.17 <0.001 *

AVLT-immediate recall 7.12 ± 3.49 11.58 ± 2.25 <0.001 *
AVLT-delay recall 3.67 ± 2.85 9.80 ± 2.80 <0.001 *
AVLT-recognition 8.01 ± 2.56 12.95 ± 2.97 <0.001 *

Values are mean ± S.D unless the S.D was not calculated; M, male; F, female; # The p-value was obtained by
Chi-square test; * The p-values were obtained by the two-tailed two-sample t-test.

MCI criteria: (1) subjective memory complaints, verified by themselves or their rela-
tives; (2) normal or near-normal performance of cognitive functions; (3) normal or near-
normal activities of daily living; (4) a CDR score of 0.5; (5) not meeting the dementia
criteria according to the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders,
4th edition, revised); (6) a cutoff point of AVLT-delay recall: 6 [33]; (7) a threshold of MMSE
score: 19 (no formal education), 22 (1 to 6 years of education), 26 (7 or more years of
education) [33].

HC criteria: (1) a CDR score of 0; (2) normal cognitive and physical status; (3) without
memory complaints; (4) normal activities of daily living.

Exclusion criteria for all subjects were listed as: (1) no other nervous system diseases
that result in cognitive impairments, such as brain tumors, major depressive disorder and
Parkinson’s disease; (2) no systemic diseases that intervene with cognitive functions, such
as severe anemia and syphilis; (3) no history of stroke and alcohol dependence; (4) and no
visible vascular lesions on the sMRI.

2.2. Data Acquisition

All data were acquired on a 3.0 Tesla Siemens scanner with an 8-channel radio fre-
quency coil at Nanfang Hospital. Comfortable foam paddings and a headphone were
simultaneously used to minimize head motion and reduce the scanner noise during the
scan. All participants were told to keep their eyes closed and their minds relaxed, not to
fall asleep and not to move their heads as much as possible. Rs-fMRI images were collected
with an echo-planar imaging (EPI) sequence by using the following parameters: repetition
time (TR) = 2000 ms, echo time (TE) = 40 ms, flip angle (FA) = 90◦, matrix size = 64 × 64,
field of view (FOV) = 240 × 240 cm2, thickness = 4 mm, voxel size = 3.75 × 3.75 × 4 mm3.
A total of 239 volumes were obtained for all subjects within 478 s. Structural images
were collected utilizing a magnetization-prepared rapid gradient echo (MPRAGE) T1-
weighted sequence with the following parameters: TR = 1900 ms, TE = 2.2 ms, inversion
time = 900 ms, FA = 9◦, matrix size = 256 × 256, number of slices = 176, thickness = 1 mm,
voxel size = 1 × 1 × 1 mm3.



Brain Sci. 2022, 12, 751 4 of 13

2.3. Data Preprocessing
2.3.1. fMRI

Data preprocessing for the fMRI data was performed via Statistical Parametric Map-
ping (SPM8, http://www.fil.ion.ucl.ac.uk/spm, accessed on 4 June 2022). The first 10 func-
tional images for all subjects were excluded from analysis, and the remaining 229 volumes
were corrected for different acquisition times between slices. Then, all volumes were re-
aligned to the first image to compensate for head movement effects. A total of 5 subjects,
including 3 MCI and 2 HC, were discarded due to excessive head motion (2 mm and 2◦

in all directions). To improve the spatial normalization accuracy of the fMRI data, the
structural images for all subjects were first co-registered to the functional data, and the
co-registered sMRI data were segmented and then normalized to the standard Montreal
Neurological Institute (MNI) space. The realigned functional images were normalized
to the MNI space by utilizing the parameters obtained from the previous step and then
resampled into a voxel of 3 × 3 × 3 mm3. Several spurious covariates, including the
6 head-motion parameters, the average signals in white matter and cerebrospinal fluid, and
the linear drift were regressed out from the normalized fMRI data. Lastly, all the regressed
images were filtered with a temporal filter (0.01–0.10 Hz) to reduce high-frequency noise
and low-frequency drift and were smoothed with a 4 mm full width at half maximum.

2.3.2. sMRI

All sMRI images were carried out with the VBM8 toolbox implemented in SPM8,
with the following procedures. Firstly, all sMRI images, checked by two experienced
neuroradiologists with no significant artifact and abnormality, were segmented into white
matter, gray matter and cerebrospinal fluid by the ‘New Segment’ tool in the SPM. Then, all
these segmented images were normalized into the Montreal Neurological Institute (MNI)
space by the diffeomorphic anatomic registration through the exponentiated lie (DARTEL)
algorithm, and then the Jacobian matrices were utilized to modulate the normalized images
to preserve the tissue volume information. Lastly, all these modulated data were smoothed
with an 8 mm full width at half the maximum Gaussian kernel.

2.4. Feature Extraction under Four Atlases

The range scaled (R/S) method was utilized to calculate the HE values at a voxel
level, and the detailed principles for the calculation of the HE index were described
in previous studies [27,34]. In this paper, the averaged HE values in every region of
interest (ROI) of the AAL-90, BN-246, AAL3-170 and HOA-112 atlases were extracted,
respectively, as the candidate features to identify the MCI from HC subjects. The AAL-
90 atlas partitions the whole cerebral cortex into 90 regions (without cerebellum), while
the BN-246 atlas contains 210 cortical and 36 subcortical brain regions. The AAL3-170 atlas
(https://www.oxcns.org/aal3.html, accessed on 4 June 2022) is an improved version of
the AAL-90 atlas that partitions the whole brain into 166 ROIs. Moreover, two small
regions of the AAL3 atlas were not defined (numbers 133–134), as the original voxel size of
1 × 1 × 1 mm3 was resampled into 3 × 3 × 3 mm3, and the cerebellum regions (numbers
95–120) were excluded; therefore, the remained number of regions of the AAL3-170 atlas
was 138. The HOA-112 atlas partitions the brain into 112 brain regions, but the brain
stems (numbers 97–98) in the HOA-112 atlas were excluded for subsequent analysis. Based
on the above-mentioned four atlases, the processed sMRI images were also employed to
extract the volume in every ROI of these four atlases, respectively, by using the following
Matlab code (http://www.cs.ucl.ac.uk/staff/G.Ridgway/vbm/get_totals.m, accessed on
4 June 2022). The above-mentioned four atlases used for the calculation of functional and
structural features are shown in Figure 1.

http://www.fil.ion.ucl.ac.uk/spm
https://www.oxcns.org/aal3.html
http://www.cs.ucl.ac.uk/staff/G.Ridgway/vbm/get_totals.m
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2.5. Feature Selection

Considering that some features are irrelevant or redundant for MCI identification, a
feature selection algorithm is essentially needed to obtain the optimal features for classi-
fication. Prior studies have indicated that correctly reducing the number of features can
not only speed up computation but also improve the classification performance [19,35].
Therefore, the MRMR method, in combination with the SFC algorithm, was utilized for
obtaining a subset of discriminative features. In detail, the MRMR score for a feature set is
defined as:

MRMR = MAXs{
1
|s|∑fi∈s

I( fi, c)− 1
|s|2 ∑

fi∈s
I( fi, f j)} (1)

where the relevance between the feature set S and K classes C = {C1, C2, C3, . . . , Ck} is
calculated by the mean values of mutual information between the individual feature fi
and C, and the redundancy of all features in the feature set S is the mean value of mutual
information between features fi and fj. The top 50 features extracted by the MRMR method
were then utilized for the SFC algorithm to select the optimal subset of features [36].
In detail, the first feature was selected as the starting point, and the first 2 features of
the extracted 50 features were used to compute the classification performance. Then,
the first 3 features were utilized for computing the classification performance, and the
procedure was continued until all 50 features were used. After this loop, the first feature
was eliminated and the second feature served as the starting point, and the classification
process was repeatedly performed with the feature numbers, ranging from 2 to 49. The
starting point was then circularly set from the 3rd feature to the 49th feature to repeat a
similar process. Lastly, the optimal subset of features was determined by comparing the
classification performance of all the subsets.

2.6. SVM Based Classification

The SVM method aims to seek the optimal class-separating hyper-plane with the
maximum margin in the feature space [37]. In this paper, the LibSVM package (http:
//www.csie.ntu.edu.tw/~cjlin/libsvm, accessed on 4 June 2022) integrated into Matlab
was utilized for SVM implementation, and the radial basis function (RBF), which could
deal with the nonlinear relationships between the feature vectors and the class labels, was
served as the kernel function in SVM. In addition, a grid search method was adopted
to optimize two parameters of SVM: the C, adjusting the importance of error separation,
and the γ, representing the width of the RBF kernel function with the adjusting range
of C = 2−8, 2−7.5, . . . , 28 and γ = 2−8, 2−7.5, . . . , 28. These two parameters were opti-
mized by an internal LOOCV loop that was only carried out on the training data, and
an external LOOCV loop was performed to estimate the classification performance of
accuracy, sensitivity and specificity, which represents the correct discrimination rate of all
samples, MCI patients and HC subjects, respectively. It is worth noting, however, that the
parameter optimization and feature selection were only carried out on the training data,
and the classification performances of these optimally combined features selected by the
SFC algorithm were deemed as the final results.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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In this paper, four different classification strategies were adopted and compared, in-
cluding single-modality with single-atlas, single-modality with multi-atlas, multi-modality
with single-atlas and multi-modality with multi-atlas. First, single-modality with single-
atlas models were, respectively, constructed by applying every atlas to GMV or HE to
identify MCI patients. After that, multi-atlas bagging on single-modality models was
constructed by using the optimal three atlases from each modality to form a major vot-
ing model. Then, the multi-modality with single-atlas models was created by applying
every atlas to multi-modality data, respectively. Lastly, the optimal two atlases from each
modality were selected to generate four kinds of multi-modal and multi-atlas integration
frameworks for MCI identification. Notably, not all atlases were used here in order to
decrease the computational burden.

3. Results
3.1. Classification Performance of Different Models

By applying the proposed classification method to identify MCI patients from HC
subjects, our proposed multi-modal and multi-atlas integration method obtained a best
accuracy of 92.00%, a specificity of 94.92% and a sensitivity of 89.39% when using the
structural data in the AAL-90 atlas and the functional data in the HOA-112 atlas. In
contrast, when single-modal and single-atlas features were used, rs-fMRI obtained a best
accuracy of 87.20%, a specificity of 86.44% and a sensitivity of 87.88% with the HOA-
112 atlas, and sMRI achieved a best accuracy of 84.8%, and a specificity of 88.14% and
a sensitivity of 81.82% with the AAL-90 atlas. When using single-modality data with
multi-atlas, the bagging results of sMRI and rs-fMRI achieved an accuracy of 86.40% and
88.80%, respectively. Furthermore, when using multi-modality data with a single atlas,
the best performance was received by the HOA-112 atlas with an accuracy of 88.0%. The
comparisons of classification performance in different models are summarized in Table 2.
In addition, the receiver operating characteristics (ROC) curves of single-modality with the
single-atlas model and multi-modality with the multi-atlas model are shown in Figure 2,
and the best area under curve (AUC) values of the corresponding models were 0.9081 and
0.9502, respectively, indicating a powerful discrimination ability of our proposed method.
Lastly, the best classification results under a different number of features ranging from 2 to
50 are shown in Figure 3.

Table 2. The MCI classification performance in different models.

Modality Atlases
No.

Selected
Features

Accuracy Specificity Sensitivity AUC Values

sMRI

AAL-90 5 84.80% 88.14% 81.82% 0.8970
AAL3-170 18 79.20% 79.66% 78.79% 0.8405

BN-246 16 81.60% 81.36% 81.82% 0.8451
HOA-112 7 81.60% 77.97% 84.85% 0.8046
Bagging 28 86.40% 84.75% 87.88% -

fMRI

AAL-90 7 78.40% 75.76% 81.36% 0.8007
AAL3-170 14 82.40% 86.44% 78.79% 0.8644

BN-246 9 80.80% 76.27% 84.85% 0.8562
HOA-112 17 87.20% 86.44% 87.88% 0.9081
Bagging 40 88.80% 89.83% 87.88% -

sMRI + fMRI

AAL-90 11 86.40% 84.75% 87.88% 0.8891
AAL3-170 12 82.40% 79.66% 84.85% 0.8580

BN-246 14 84.80% 83.05% 86.36% 0.8783
HOA-112 22 88.00% 86.44% 89.39% 0.9124

AAL-
90+AAL3-

170
8 87.20% 89.83% 84.85% 0.8903

AAL-
90+HOA-112 26 92.00% 94.92% 89.39% 0.9502

BN-
246+AAL3-

170
20 86.40% 86.44% 86.36% 0.8914

BN-
246+HOA-

112
29 88.00% 88.14% 87.88% 0.9135
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3.2. Between-Group Differences in HE Index and Gray Matter Volume

Figure 4 displayed the abnormal brain regions that demonstrated the most discrimi-
native powers for identifying MCI patients from HC subjects in a single atlas or different
combinations of multi-atlases. Overall, the structural gray matter volume abnormalities
were predominately involved in the bilateral posterior cingulate gyrus, bilateral amygdala,
left inferior frontal gyrus, right hippocampus, left basal ganglia and left putamen. The
functional HE abnormalities were mainly located in the bilateral hippocampus, bilateral
inferior frontal gyrus, bilateral thalamus, left fusiform, left posterior cingulate gyrus and
left putamen. In addition, the weighted contributions of these most discriminative features
in the single-modal and multi-modal models are shown in Figure 5.
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4. Discussion

In this study, we proposed a multi-modal and multi-atlas integrated framework to
identify MCI patients from HC subjects, and compared the performance with three other
kinds of single-modal or single-atlas models. Our results found that the classification per-
formance of the proposed method was superior to these benchmark models, and obtained
the best accuracy of 92% when applying the AAL-90 on GMV and the HOA-112 atlas on
HE, indicating these multi-modal data were effectively fused in the MCI classification.
Thus, this proposed method is effective in detecting complementary and comprehensive
information from multi-modal data for MCI classification.

To improve the classification performance, three key elements were taken for the
proposed integration method to identify MCI patients. First, considering multi-modal
neuroimaging data can provide complementary information compared to a single modal-
ity, thus sMRI and fMRI data were both utilized for MCI discrimination, and our results
validated that the combined information can enhance the classification performance. Sec-
ond, some studies suggested that correctly selecting the optimal features could not only
speed up the computation but also improve the classification performance [19,32], thus the
MRMR method, together with the SFC algorithm, was adopted for feature selection, and
the discrimination performance was significantly enhanced in comparison to the model
without feature selection. In fact, we attempted the proposed classification method for
all features without feature selection, and the accuracy rates were 62.40%, 59.20%, 59.20%
and 60.80% using single functional data and 57.60%, 59.20%, 57.60% and 64.80% by using
single structural data in the AAL-90, BN-246, AAL3-170 and HOA-112 atlases, respectively,
which were significantly lower than those after feature selection. It is worth noting that the
feature selection was only carried out on the training data, which can avoid the over-fitting
of the classifier. Third, the RBF kernel function, which can handle the condition when
the relationships between labels and features are nonlinear, and the grid search method,
which has a high learning accuracy and can be implemented with parallel processing, were
simultaneously utilized for MCI classification, which also had an important impact on
classification performance. In addition, we have tested the linear kernel function to replace
the RBF kernel in the single-modal models, and the recognition rates were 80.00%, 76.80%,
76.00% and 76.80% using single structural data and 74.40%, 76.00%, 77.60% and 81.60%
using single functional data in the AAL-90, BN-246, AAL3-170 atlases and HOA-112 atlas,
respectively, which were lower than those with the RBF kernel function. Taken together,
the proposed method is more effective in identifying MCI patients from HC subjects.

In this paper, the overlapping abnormal brain regions in both the gray matter volume
and the functional HE characteristic were involved in the left posterior cingulate gyrus, left
inferior frontal gyrus, right hippocampus and left putamen. All these abnormal regions
were consistent with prior studies that analyzed the functional or structural data of MCI
patients with conventional statistical analyses [2,19,38]. The posterior cingulate gyrus
and hippocampus belong to the default mode network (DMN), supporting the aberrant
behaviors of DMN in MCI patients, which was consistent with many previous MCI or AD
studies [39,40]. The inferior frontal gyrus has been detected with a significant amplitude
of low-frequency fluctuations (ALFF) abnormality [41], and the putamen was found with
significant atrophy in MCI patients [42]. These consistent findings suggested that the
abnormalities in these regions were associated with the mechanisms underlying AD and
MCI patients. Moreover, some discrepancies in the detected abnormal regions between
structural data and functional data were also found, such as the gray matter atrophy in
the amygdala and basal ganglia, and the HE abnormalities in the thalamus and fusiform.
The main reason for these discrepancies may be attributed to the specificity of sMRI and
fMRI. The gray matter volume obtained from the sMRI data reflects the morphological
information, and the abnormalities in the amygdala and basal ganglia were consistent with
prior MCI or AD studies [42,43]. The HE index acquired from the fMRI data reflects the
persistent behavior of brain activities, and it has been even proposed as a measure of online
information-processing efficiency: higher HE values are related to longer memory dynam-
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ics, higher temporal redundancy and less freedom to vary [28]. The HE abnormalities in
the thalamus and fusiform reflect that the persistent pattern in these regions was changed,
which may provide a unique perspective to understand the functional alterations in MCI
patients.

Different brain parcellation schemes may generate ROIs with distinct sizes and lo-
cations, which results in a unique feature representation and therefore influences the
classification performance. The AAL-90 atlas is created based on 27 high-resolution T1-
weighted images of a young man, and the initial aim of this template was to offer a
standard anatomical reference for fMRI data. However, the borders of every ROI in the at-
las were defined using sulcal landmarks but with poor consistency to the cytoarchitectonic
borders [44,45], resulting in variable sulcal and gyral patterns [45]. The HOA-112 atlas
incorporates information on sulcal and gyral geometry [46], which may better reflect the
individual variability. The BN-246 atlas is a probabilistic atlas generated from 40 MRI
data of healthy subjects, which is created by identifying sub-regions that were maximally
different from each other and maximally homogeneous internally with the local structural
connectivity [23]. Our single-modality with single-atlas models revealed that different
atlases obviously affected the MCI classification, implying future studies should pay more
attention to the choice of brain atlas in related studies. Moreover, the bagging strategy did
not improve the classification performance significantly, indicating that multi-atlas fusion
in single-modal data may be limited by the similarity of extracted information from these
atlases. Furthermore, multi-modal data with a single atlas also did not promote the classi-
fication accuracy, which may be biased by the atlas dependent attribute for multi-modal
imaging data.

Several limitations need to be mentioned. First, all the selected atlases in the study
exclude the cerebellum and brain stem, which may also provide some contribution to MCI
discrimination. Second, some other atlases existed in the neuroimaging studies nowadays,
and these atlases can also be used for differentiating MCI patients. Third, considering the
samples utilized in this work are not very large, the obtained classifier may not be robust
enough. In the next step, we will apply our method to a large dataset to further validate
the classification performance. Fourth, this study lacks information on amyloid-beta, tau
deposition and APOE genotype, which can also affect brain structure and function.

5. Conclusions

In this paper, we proposed a multi-atlas and multi-modal integrated framework to
identify MCI in HC subjects. The results demonstrated its obvious superiority in compari-
son to other single-modality or single-atlas models, which can be used to improve the early
diagnosis of MCI and can be extended into other neurological and neuropsychiatric disease
classifications.
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