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Highlights:

What are the main findings?
• Our findings indicated that patients with ASD exhibited local hyper-connectivity of brain regions

in functional connectivity and a significant decrease in effective connectivity across hemispheres.

What is the implication of the main finding?
• These resting-state EEG connectivity abnormalities may help to find biomarkers of ASD.

Abstract: Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder that
interferes with normal brain development. Brain connectivity may serve as a biomarker for ASD in
this respect. This study enrolled a total of 179 children aged 3−10 years (90 typically developed (TD)
and 89 with ASD). We used a weighted phase lag index and a directed transfer function to investigate
the functional and effective connectivity in children with ASD and TD. Our findings indicated that
patients with ASD had local hyper-connectivity of brain regions in functional connectivity and
simultaneous significant decrease in effective connectivity across hemispheres. These connectivity
abnormalities may help to find biomarkers of ASD.

Keywords: autism spectrum disorder; EEG; functional connectivity; effective connectivity

1. Introduction

Autism is a heterogeneous neurodevelopmental disorder that affects normal brain
development [1]. Brain connectivity is one of the ways to investigate potential biomarkers
for autism [2]. A recent upsurge in interest in the study of brain connectivity in autism
indicates a paradigm shift away from understanding its biological role in affecting specific
brain regions and toward imaging the brain’s overall connectivity pattern [3,4]. Addi-
tionally, growing evidence on the early development of white matter trajectories suggests
overall connectivity as an early biomarker for ASD, as reported abnormalities appear in the
first year of life [5,6].

Brain connectivity is a broad and multifaceted concept [7]. It can refer to the physical
inter-connectivity (structural connections) of brain regions via axonal bundles, statistical
dependence (functional connection) between time series of brain activity in various brain
regions, or causal interaction (effective connection) between brain regions. Structural con-
nectivity is typically assessed by deterministic or probabilistic fiber bundle imaging using
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diffusion-weighted images recorded by magnetic resonance imaging (MRI) scanners [8,9].
We can calculate the other two types of connectivity using EEG or magnetoencephalogra-
phy [10]. A set of statistical dependencies between neural processes in the brain is referred
to as functional connectivity. In its simplest form, the correlation of neuronal activities can
be used to estimate functional connectivity, which is highly dependent on time (on the
order of hundreds of milliseconds), although it cannot reveal causal links between distinct
neural activities. By ascribing causality to dependency, effective connectivity attempts to ex-
plain or model the interaction between activated brain regions. Compared with functional
connection, effective connectivity calculates directional connection [11,12].

Some previous studies have reported that the connectivity aspect of ASD was the
combination of long-range insufficient connectivity and local excessive connectivity, EEG
studies provided support for this conclusion with a decrease in EEG functional connectivity,
which has been reported in many previous studies [13–16]. However, the results of local
overconnectivity in ASD were not so consistent. A few studies reported local overconnec-
tivity [17–19], while others reported local underconnectivity in ASD [20]. Some studies
have also reported the abnormal functional connectivity of ASD at different frequency
bands. Domínguez reported that in the alpha, theta, and delta frequency bands, children
with ASD exhibited increased connectivity when using EEG coherence compared with
TD children [21]. However, Boersma et al. reported that the EEG connectivity of children aged
2−5 years was not significantly different between the ASD and control groups in 1−30 Hz using
a phase lag index [22]. Other studies have discovered no significant changes in functional
EEG hemisphere connectivity in the gamma band between the low-risk and high-risk
infants [23], and there was no difference in connectivity between 6-month-old infants [24].

In summary, while long-range underconnectivity of ASD was reported, it was likely
that this was related to the task requirements. The reasons for the lack of consistency in
functional connectivity results might be owing to the use of different variables in studies,
such as age, the frequency band of interest, selected functional connectivity index, and
different sample sizes. Additionally, the clinical heterogeneity of ASD and its subgroups
may be the source of the contradictory outcomes.

Effective connectivity, as opposed to functional connectivity, calculates directionality.
The majority of previous studies that used effective connectivity methods established brain
networks based on the analysis of relevant algorithms [25]. Some large sample studies
were primarily based on the functional MRI database [26,27]. Few studies have analyzed
the differences in effective connectivity between children with autism and healthy children
using EEG [28]. We selected this study owing to the discrepancy between the research
mentioned results on brain functional connectivity between children with ASD and healthy
children and the research gap regarding differences in effective connectivity. Resting-state
activity is a major factor determining other, more particular, responses to stimuli [29], we
used the resting-state EEG data samples of 179 children with autism and healthy children
to explore the differences in brain connectivity between them, providing a scientific basis
and objective indicators for investigating the biomarkers of brain connectivity of autism.

2. Materials and Methods
2.1. Participants

A total of 179 children aged 3−10 years were enrolled in this study. They were divided
into a typically developing (TD) children group and an ASD group. There were no statistical
differences in age or gender between the two groups, and the participation information is
shown in Table 1. All the TD children were recruited from a local kindergarten, and the
inclusion criteria were as follows: (1) the child guardian agreed to and signed the informed
consent form; (2) the children did not have any mental disorders or history of autism
and/or other mental diseases; (3) the children did not have any nervous system diseases or
other serious physical diseases, and there was no history of severe brain trauma or febrile
seizures; (4) all the children were right-handed. All participants with ASD were diagnosed
by experienced Chinese psychiatrists using the psychoeducational profile (Third Edition)
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and Diagnostic and Statistical Manual of Mental Disorders–V criteria [30]. The inclusion
criteria were as follows: (1) informed consent was obtained from the children’s parents
prior to participation; (2) children with ADHD, RETT syndrome, growth retardation, and
other brain developmental disorders were excluded; (3) there were no serious physical
diseases, history of severe brain trauma, or history of febrile seizures, and all children were
right-handed; (4) except for drugs administered during ordinary behavior training, children
did not receive any psychiatric medicines. This study was conducted per the Declaration
of Helsinki and approved by the ethics committee of Beijing Normal University.

Table 1. Participant information.

TD (n = 90) ASD (n = 89) Differences between Two Groups

Age 5.09 ± 2.27 5.17 ± 1.89 t = −0.497, p = 0.638

Male/Female 76/14 71/18 χ2 = 1.207, p = 0.359

2.2. Data Acquisition

EEGs were recorded in a shielded room where children sat on comfortable chairs with
their eyes open. All children washed their hair and scalp before EEG data acquisition. We
welcomed the children with ASD to the laboratory ahead of time to familiarize them with
the surroundings. We made every effort to keep everyone quiet and to keep movements to
a minimum. However, autistic children were more difficult to stay still for a while, and
EEG data will be seriously interfered, so we have made careful data preprocessing. The
EEG was recorded for approximately 5−10 min. Data were recorded using a 128-channel
HydroCel Sensor Net System (Electrical Geodesics, Inc., Eugene, OR, USA). The electrode
impedance was kept below 50 KΩ throughout EEG acquisition. The sampling frequency
was 1000 Hz, and the reference electrode was Cz.

2.3. Data Preprocessing

MATLAB R2016a and EEGlab V13.5.4b were used for offline data analysis.
After downsampling EEG data to 200 Hz, a 1−45 Hz bandpass filter was employed to

preprocess the EEG signal, which was then segmented to 10 s epochs. To remove eye blink,
muscular artifact, and electromyogram, independent component analysis (ICA) algorithm
was employed. Finally, all channels were re-referenced to an average reference, and
62 electrodes (black dots in Figure 1) were selected, mainly according to the 10-10 electrode
system, for subsequent analysis [31]. At most, 10 epochs were used to for each subject in
the following analysis.

2.4. Functional Connectivity

For the preprocessed EEG signals, the brain functional connectivity was assessed to
determine the synchronization degree of EEG time series in corresponding brain regions,
using the weighted phase lag index (wPLI). Stam et al. proposed the calculation method
of PLI to improve phase synchronization [32] based on the notion that the non-zero phase
synchronization between two signals cannot be interpreted by the same source signal
through volume conductivity, thus reflecting the real synchronization between two systems.
However, the sensitivity of PLI to noise and volume conduction may be affected by its
exponential discontinuity since small disturbances will change the phase lag into lead
and vice versa. Small amplitude synchronization effects make this more challenging.
Therefore, to better detect real changes in phase synchronization and reduce the impact of
non-correlated noise, weight was introduced into the phase synchronization index based
on the imaginary part of a cross-spectrum used to obtain wPLI [33].
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Figure 1. Schematic diagram of the functional connectivity in brain regions (A) and transhemi-
spheric connectivity (B). The blue line denotes the connectivity between the electrode pairs as ex-
amples. 
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Figure 1. Schematic diagram of the functional connectivity in brain regions (A) and transhemispheric
connectivity (B). The blue line denotes the connectivity between the electrode pairs as examples.

We defined a time series s(t), and the corresponding analytic signal was as follows:

z(t) = s(t) + jH[s](t) = A(t)ejφ(t) (1)

where A(t) was the instantaneous amplitude of signal s(t) and φ(t) was the instantaneous
phase of s(t).

φ(t) = arg[z(t)] = arctan
(
H[s](t)

s(t)

)
(2)

where the definition of Hilbert Transform of signal s(t) was:

H[s](t) =
1
π

P.V.
∫ ∞

−∞

s(τ)
t− τ

dτ (3)

where P.V. represents the integral in the sense of Cauchy principal value. φ1(t) and φ2(t),
respectively, represent the instantaneous phase of the two signals; thus, the phase difference
of the two signals4φ(t) was as follows:

4 φ(t) = φ1(t)− φ2(t) (4)

PLI was calculated as follows:

PLI = |〈sign[4φ(t)]〉| (5)

wPLI measures the distribution of the phase angle difference between two time series
to the positive or negative part of the imaginary axis in the complex plane, which is defined
as follows:

wPLI =
|E{|ξ{X}sgn(ξ{X})|}|

E(|ξ{X}|) (6)

where X is the cross-spectrum of two time series, ξ{X} represents the imaginary component
of the cross-spectrum, and the calculation based on the imaginary component only increases
the robustness to noise. The value of wPLI was 0−1.

Based on the maximum space coverage, we selected five brain regions to calculate their
connectivity, including the frontal lobe (F), left temporal lobe (LT), parietal lobe (P), right
temporal lobe (RT), and occipital lobe (O). Eight brain regions were selected to calculate
transhemispheric connectivity, including the left frontal lobe (LF), right frontal lobe (RF),
left temporal lobe (LT), left parietal lobe (LP), right parietal lobe (RP), right temporal lobe
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(RT), left occipital lobe (LO), and right occipital lobe (RO). Figure 1 presents a schematic
diagram of the functional connectivity in brain regions and transhemispheric connectivity.

In this study, we calculated the cross-spectrum of two preprocessed EEG epochs,
and then calculated the wPLI value in four canonical frequency bands, that is delta
(1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz) and beta (13–30 Hz). Then, with regard to
the functional connectivity in one brain region, the wPLI was averaged among all electrode
pairs in one brain region, and then averaged among all the epochs. On the other hand, the
transhemispheric connectivity was averaged among the wPLI values of all the electrode
pair in two different brain regions and then averaged among epochs.

2.5. Effective Connectivity

The causal link between EEG signals, i.e., effective connectivity, was calculated using
the direct transfer function (DTF). The DTF algorithm was based on the following Granger
causality hypothesis proposed by economist Granger [34]: Two time series X and Y were
supposed. The accuracy of using the time information before X to predict that after X was
recorded as M, and the accuracy of using the time information before X and Y to predict
that after X is recorded as N. If M is greater than N, it indicates that time series Y will
impact time series X, and X Y are believed to have Granger causality. This method can also
be used to explore the dynamic causal relationship between different time series.

The following multivariate autoregression model for 62-channel EEG signals
was established:

Xt =
p

∑
i=1

A(i)X(t− i) + ε(t) (7)

where p is the model order; A(i) is the 62× 62 coefficient matrix; ε(t) is multivariate white
noise. Equation (7) was Fourier transformed as follows:

X( f ) = A−1( f )ε( f ) = H( f )E( f ) (8)

where f is frequency; and H( f ) is the transfer matrix of the system, represented as follows:

H( f ) = [
p

∑
i=1

A(i)e−2π f it]

−1

(9)

The connectivity strength between i and j was obtained by normalization, divided by all
inflows of the channel i and the normalized DTF was regarded as a value between 0 and 1,
representing the ratio of inflows from channel j to channel i. The definition formula was
as follows:

DTF2
j→i( f ) =

∣∣Hij( f )
∣∣2

∑l
m=1

∣∣∣Him( f )
∣∣∣2 (10)

Given that the directionality of effective connections is canceled out when averaged
over brain regions, we only calculated effective connections across hemisphere brain
regions. All channel EEG signals in the left and right frontal (LF and RF), left and right
temporal lobes (LT and RT), left and right parietal lobes (LP and RP), and left and right
occipital lobe (LO and RO) brain regions were averaged across the hemisphere. Since the
MVAR model assumes that the signal is stationary, we used the data segmentation method
to treat the EEG signal as quasi-stationary. Specifically, the preprocessed 62-channel EEG
signal was divided into 10 s epochs (2000 data points). For each epoch, DTF was calculated
in the frequency range of 1–30 Hz, and the frequency step was 1 Hz.

A surrogate data set was constructed by randomly disrupting the phase on each
channel of this multichannel data. Surrogate times were set to 100. Then, DTFsurrogate
was calculated on this multi-channel surrogate data, and the obtained 100 DTFsurrogate
values were arranged from largest to smallest. Using the fifth DTFsurrogate value as the
threshold (significance level is set to 0.05), the DTF value calculated from the EEG signal
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(DTFEEG) was compared with this threshold. If DTFEEG was greater than this threshold,
it is considered to have a significant causal relationship. Finally, all significant DTFEEG
values were averaged across all epochs and four canonical frequency bands and used as
the effective connectivity in transhemispheric regions.

2.6. Statistical Analysis

Statistical analyses were performed using MATLAB software (Mathworks Corp.,
Natick, MA, USA). A paired two-sample t-test with false discovery rate (FDR) adjustment
for multiple comparisons was conducted to identify the differences of wPLI and DTF values
between the TD and ASD groups. p < 0.05 was considered statistically significant.

3. Results
3.1. Functional Connectivity Differences in Two Groups

In the four frequency bands, the connectivity in most of the brain regions of the ASD
group was higher than that of the TD group. The frontal lobe (p = 0.0257, t = 208344)
and parietal lobe (p = 0.0389, t = 2.6923) of the theta band revealed significant differences,
and the left (p = 0.0055, t = 3.1912) and right temporal lobes (p = 0.0206, t = 2.9077) of the
beta band exhibited significant differences, as presented in Figure 2. Simultaneously, we
calculated the transhemispheric connectivity of the two groups. No significant differences
were observed in the statistical analysis. In some bands, the connectivity of some brain
regions in the ASD group was higher than that in the TD group, such as the left frontal lobe
and the right temporal lobe in the delta band, the left parietal lobe and the right temporal
lobe in the theta band, the left frontal lobe and the right parietal lobe in the alpha band,
and the left parietal lobe and the right occipital lobe in the beta band. However, in some
frequency bands, connectivity in the ASD group was lower than in the TD group. For
instance, the left temporal lobe and the right parietal lobe in the delta frequency band, the
left parietal lobe and right occipital lobe in the theta frequency band, the left occipital lobe
and right temporal lobe in the alpha frequency band, and the left frontal lobe and right
parietal lobe in the beta frequency band. The results are presented in Figure 3, considering
the transhemispheric brain region connectivity in the alpha frequency band as an example.

3.2. Effective Connectivity Differences between the Two Groups

We calculated the DTF values between the ASD and TD groups in the transhemispheric
brain region. These results after FDR multiple test correction are depicted in Figure 4. Based
on the bar chart, the blue block indicates that the DTF value of the ASD group is lower than
that of the TD group in the delta, theta, alpha, and beta frequency bands. The results reveal
that the effective brain connectivity of the ASD group in the transhemispheric brain region
was lower than that of the TD group.
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4. Discussion

Although the autistic brain has been reported to exhibit a pattern of long-range
underconnectivity and local overconnectivity, the results remained unreproducible and
conclusions were divergent regarding the nature of altered connectivity in ASD. In this
study, we focused on resting-state EEG, because the fundamental importance of the on-
going nervous system activity has been widely recognized today, and a more in-depth
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investigation of brain activity in periods of minimal sensory perturbation has been advised,
as it may provide the best opportunity to study the intrinsic connectivity of the brain [29].
We found robust differences between ASD and TD children during a resting state, reflecting
contrasting patterns of over- and underconnectivity.

4.1. Analysis of Functional Connectivity Differences between the ASD and TD Groups

Our findings revealed an increase in functional connectivity of the frontal and parietal
lobes of the delta band in brain regions of children with autism, which is consistent with
previous results. The lack of dorsolateral prefrontal lobe inhibition may be linked to the
increase in frontal connectivity. The increase in parietal lobe connectivity may be related to
the attention deficit and hyperactivity disorder linked to children with autism. This finding
suggested that the autistic brain may be more prone to processing local information owing
to the imbalance of excitation and inhibition of local neurons in the brain. Our findings also
confirmed Casanova’s previous hypothesis that the autistic brain has relatively smaller,
but a greater number of, microcolumns, which propitiates an excess of shorter connections
(e.g., arcuate fibers) [35]. Simultaneously, our results prove that the common cognitive
impairment of autism may be attributed to their increased neural synchronization in the
slow wave band.

Our study also demonstrated that the functional connectivity of the left and right
temporal lobes of the brain in the ASD group was higher than that of the TD group
in the beta frequency band. High-frequency priority is associated with more localized
processes, whereas activity priority in the lower-frequency band is associated with broader
comprehensive processes [36,37]. Top-down comprehensive processes involving long-
range connectivity (the process of creating perception by fusing previous knowledge of
the world with the incoming signals from the senses) are usually associated with slower
rhythms (delta and theta) [38], whereas local synchronization is typically related to faster
frequencies (beta and gamma) through the cortical network of the bottom-up process (the
process of modifying the internal representation of the world to reduce its discrepancy
with sensory data) [39]. However, since functional connectivity in the high-frequency band
has not previously been studied, our findings served as a basis for this judgment. Our
research findings did not exhibit significant differences in functional connectivity between
the ASD and TD groups across hemispheric brain regions. A possible explanation for this
is that our subjects were children, and their brain development was not complete. Most
previous studies on functional connectivity across brain regions were conducted on adults
with autism. Their conclusions were inconsistent owing to the variations in the quantity
and aptitude of subjects. Our findings supported the notion that hemispheric brain regions
in children with autism have aberrant functional connectivity.

4.2. Analysis of Effective Connectivity Differences between the ASD and TD Groups

Currently, the analysis of effective connectivity is mostly focused on fMRI research, and
limited research has been performed using EEG to calculate autism effective connectivity.
In this study, a DTF algorithm was used to calculate effective connectivity. The results
revealed that the effective connectivity across brain regions of children in the TD group
was higher than in the ASD group in all four frequency bands (delta, theta, alpha, beta),
which is consistent with findings provided by fMRI in previous studies [40]. The aberrant
direction of information flow between brain regions of children with autism and the lower
effective connectivity impeding information interchange in their brains were revealed by
our results.

5. Limitations of This Study

Although this study suggested differences between the ASD and TD groups, there
were still some limitations. (1) This connectivity analysis was conducted in electrode-based
brain regions, and source localization tool was not used. (2) There was a lack of EEG data
on infants and adolescents, meaning it was not possible to complete the difference analysis
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for all age groups. (3) There was a lack of comparison between different connectivity
calculation methods. (4) Sophisticated statistical models should be used to analyze the
contribution of age to the differences in connectivity and development patterns. (5) Some
autistic children did not complete the usual confirmatory instruments, such as the ADOS.
Our subjects might include patients with many genetic disorders, which could have affected
the results. Further work is needed to better understand the complex interactions between
frequency bands and brain regions, and how they relate to different cognitive processes.
Suitable event-related protocol will need to be devised in a principled way and for the
recruitment of subjects, we would confirm their clinical information more carefully.
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