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Abstract: Background: Intellectual Disability (ID) is a kind of developmental deficiency syndrome
caused by congenital diseases or postnatal events. This syndrome could be intervened as soon as
possible if its early screening was efficient, which may improve the condition of patients and enhance
their self-care ability. The early screening of ID is always achieved by clinical interview, which
needs in-depth participation of medical professionals and related medical resources. Methods: A new
method for screening ID has been proposed by analyzing the facial phenotype and phonetic character-
istic of young subjects. First, the geometric features of subjects’ faces and phonetic features of subjects’
voice are extracted from interview videos, then craniofacial variability index (CVI) is calculated with
the geometric features and the risk of ID is given with the measure of CVI. Furthermore, machine
learning algorithms are utilized to establish a method for further screening ID based on facial features
and phonetic features. Results: The proposed method using three feature sets, including geometric
features, CVI features and phonetic features was evaluated. The best performance of accuracy was
closer to 80%. Conclusions: The results using the three feature sets revealed that the proposed method
may be applied in a clinical setting in the future after continuous improvement.

Keywords: facial features; phonetic features; machine learning; intellectual disability; craniofacial
variability index

1. Introduction

Intellectual disability (ID) is a kind of generalized neurodevelopmental disorder that
mostly occurs before 18 years old [1]. The intelligence and adaptive function of patients are
obviously limited, including many daily social and practical skills. The prevalence of ID is
estimated to be between 1% and 3% [1,2]. The lifetime costs (direct and indirect) of patients
with ID is estimated to be about $1 million per person on average [3]. Common causes of ID
include idiopathic genetic factors, infection or exposure to toxins during pregnancy, infant
trauma at birth, malnutrition or metabolic disorders after birth and other unexplained
causes [2,4–6].

Although there is no specific drug for the treatment of ID, there are a variety of reha-
bilitation programs. Early diagnosis is very important for patients’ long-term rehabilitation
and to learn social skills, and can predict the prognosis of patients and reduce unnecessary
diagnostic experiments [7,8].

The American Association on Intellectual and Developmental Disability defines ID
through measurements in three areas: intelligence (IQ), adaptive behavior and systems
of supports afforded the individual [1]. The World Health Organization (WHO) defines
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the severity of ID into 4 levels according to intelligence quotient (IQ) testing, i.e., mild ID
(score range from 50 to 69), moderate ID (35 to 49), severe ID (20 to 34) as well as profound
ID (below 20) [9].

IQ assessment needs to be conducted by highly trained doctors and is complex and
time-consuming, requiring 60–90 min. In China, only the pediatrics or psychiatric de-
partments of large hospitals have special outpatient services for intelligence assessment.
However, these two departments have the most shortage of doctors, which results in
the delayed diagnosis and subsequent intervention of many children. Limited by social,
economic and medical restriction, insufficient attention has been paid to the diagnosis
and rehabilitation of children with ID, which makes some children miss the best time for
treatment. With the increase of age, there is a growing gap between these children and
normal children, and there are many problems such as psychological and social adaptation,
so it is very necessary to explore a simple, accurate and rapid method that can be used to
screen ID.

With the advancement of artificial intelligence, related technologies have been utilized
to achieve screening or preliminary diagnosis of some kinds of diseases [10]. Analyzing
the subjects’ phonetic and facial features to try to achieve disease diagnosis is becoming
popular [11]. People with ID may have symptoms such as severe speech delay and facial
deformities such as macrostomia and/or open mouth appearance [12]. Children with ID
are at higher risk for speech and language disorders. Speech and language disorders are
one of the key characteristics of people with ID and can have long term negative effects on
a child’s development if not treated early [13]. Some helpful clues for screening ID include
delayed speech, dysmorphic features (minor anomalies), hypotonia of the extremities,
general inability to do things for self, etc. [14].

Gurovich utilized computer vision and deep learning algorithms to develop a facial
analysis framework, which extracted the facial features of hundreds of genetic syndromes
by analyzing 2D face images. Then, the framework achieved 91% accuracy of top-10-
possible-diseases in identifying 215 different genetic syndromes, which outperformed
clinical experts in three different trials [15]. Abdul-Rahman analyzed 2D facial images
using facial dysmorphology analysis technology, which evaluates the measurement ratio
between different facial landmarks to determine whether there are deformity features.
After comparing the performance of computer-based facial analysis technology against
standard, manual examination in fetal alcohol spectrum disorders (FASD), the result
showed that the facial dysmorphology analysis technology can potentially improve the
diagnosis of alcohol-related neurodevelopmental disorder (ARND) by recognizing FASD-
associated facial anomalies [16]. X-linked hypohidrotic ectodermal dysplasia is a kind of
gene deficiency disease with a conspicuous facial phenotype. Hadj-Rabia designed an
automated facial recognition system, which was non-invasive and achieved the diagnosis of
ectodermal dysplasia for patients at all ages by analyzing their facial images [17]. 2D images
could not represent patients’ facial phenotype well, so more and more researchers utilize
3D facial features to represent patients’ facial phenotype, which is a type of fundamental
for disease diagnosis. Hallgrimsson explored whether syndromes can be diagnosed from
3D images of human faces, and the result showed that 3D facial imaging has considerable
potential to facilitate syndrome diagnosis [18]. Gene defect diagnosis based on facial
phenotype has become a new research hotspot.

Speech has been widely used in the auxiliary diagnosis of mental diseases [19]. For
example, Karmele et al., proposed a non-linear multi-task method for Alzheimer’s Disease
detection based on automatic speech analysis [20]. Charalambos et al., aimed to analyze
whether voice quality and speech fluency distinguished people with mild cognitive im-
pairment from healthy individuals, and the results showed that there were significant
differences between people with mild cognitive impairment and healthy individuals in
parameters such as cepstral peak prominence, shimmer, articulation rate and averaged
speaking time [21]. In order to detect depression and predict its severity with speech assis-
tance, Emna Rejaibi et al., proposed a MFCC-based recurrent neural network framework
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to perform the assessment of depression [22]. Lang He et al., combined handcrafted and
deep-learned features to effectively measure the severity of depression from speech [23].
Ellen W. McGinnis et al., detected children with internalizing disorder from speech and
analyzed the most discriminative speech features [24]. Meng et al., proposed a spontaneous
speech-based framework, which merges mobile inverted bottleneck convolutional blocks
and visual Transformer blocks, for screening mental retardation [25]. Liu et al., proposed a
two stream Non-Local CNN-LSTM network to learn the features of upper body behavior
and facial expression of patients to achieve preliminary screening of mental retardation [26].
In our study, the open-source tool Covara was used to extract some audio features, such as
spectrum and formant, and the open-source tool OpenFace was used to extract information
such as motion unit and eye gaze direction.

At present, the diagnosis of ID is based on clinical evaluation, which means clinicians
need to evaluate the status of subjects through face-to-face communication. Providing an
efficient and automatic screening method for ID without clinical evaluation is helpful for
the diagnosis and early intervention of ID.

In this article, a benchmark data set has been established by collecting the child
subjects’ video data in a clinical setting. By extracting and analyzing the features of the
children’s voice and face, a new analysis system has been established for screening ID
automatically. The contributions of this article are shown as follows:

• Benchmark Dataset: establishing a video data set for automatic screening ID between
6 years old and 17 years old;

• ID measurement based on CVI: By utilizing an open-source face analysis tools, high-
quality 3D facial features are extracted, the subject’s facial phenotype is measured
with facial features and CVI and finally, an important reference for screening ID
is produced;

• ID measurement based on Voice: By extracting multiple phonetic features from the
subjects’ audio, the correlation between acoustic features and ID is explored;

• Automatic Screening of ID: machine learning algorithms are utilized to analyze 3D
facial features and phonetic features, and an analysis system is established to automat-
ically screen children for ID.

However, we have to attack several challenges in order to achieve automatic ID
screening for children between 7 years old and 16 years old. This article attempts to solve
the related problems from the establishment of benchmark data set, extraction of high-
quality 3D facial features and phonetic features, measurement of facial phenotype and the
establishment of a decision-making mechanism for screening ID.

2. Materials and Methods
2.1. Dataset

The Wechsler intelligence scale for children—China revised edition (WISC-CR), which
is adjusted based on WISC in order to match Chinese culture better, was used to evaluate the
IQ of the subjects in clinical settings. WISC is an individually administered intelligence test
for children between 7 years old and 16 years old, which can be completed without reading
or writing [27]. The WISC consists of several subsets, such as Verbal Comprehension
index (VCI), Perceptual Reasoning Index (PRI), Processing Speed Index (PSI) and Working
Memory Index (WMI). The following four subsets were chosen to evaluate the cognitive
ability of subjects, whose evaluation data constituted the benchmark dataset we used.

• Comprehension: questions about social situations or common concepts.
• Similarities: asking how two words are alike/similar.
• Picture Completion: children are shown artwork of common objects with a missing

part and asked to identify the missing part by pointing and/or naming.
• Block Design: children put together red-and-white blocks in a pattern according to a

displayed model. This is timed, and some of the more difficult puzzles award bonuses
for speed.
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Psychiatrists who have received professional training have been assigned to perform
these evaluations in order to ensure the consistency of evaluation for different subjects.
Meanwhile, the characteristics of WISC also guarantee the consistency of evaluation to some
extent, even if the evaluation tasks have been performed by different psychiatrists [28].

During the evaluation of IQ, the subjects’ audio-visual and social demographic data
were collected simultaneously. A total of 147 children were evaluated and 128 children
met the experimental requirements. Among those subjects who have met the experimental
requirements, there were 92 male children (71.9%). The evaluation results showed that
there were 9 severe patients, 24 moderate patients, 43 mild patients and 52 normal con-
trols. An IP camera and voice recorder were used to collect audio and video data of each
subject during the evaluation. The frame rate of the video was 30, and its resolution was
640 × 480; the audio consisted of dual channels, and its sampling rate was 48 kHz. The
duration of evaluation for the subjects ranged from 10 to 34 min. The sociological data
collected from the subjects mainly included gender, age, height, weight, place of resi-
dence, family medical history, whether the mother had specific diseases during pregnancy,
whether there were abnormal situations at birth, and whether the subject had specific
diseases was as a newborn or infant. The ID label of each subject was determined after
comprehensive consideration of the scale evaluation results and sociological data. Finally,
the video data of 33 patients (i.e., patients with moderate and severe ID) and 37 normal
controls were chosen to construct the benchmark data set. The video size of the data set is
1660 min, 520 min of which belong to 33 patients and the rest were recordings about the
37 normal controls. Table 1 shows the socio-demographic information of the subjects used
to construct the dataset.

Table 1. Characteristics of the subjects.

Variables Number (%) or Mean (SD)

Gender
Male 49 (70.0)
Female 21 (30.0)

Age 9.63 (3.02)
Height 139.41 (19.21)
Weight 37.00 (14.43)
BMI 18.66 (4.80)

2.2. Analysis

(1) Architecture: Figure 1 shows the architecture for screening ID. We processed WISC
test videos of the subjects and extracted facial images and audio of the subjects.
OpenFace and OpenSmile tools were used to extract facial features and phonetic
features. Facial geometric features can be further transformed into CVI features.
Furthermore, machine learning algorithms were utilized to establish a method for
screening ID based on facial features and phonetic features.

(2) 3D facial features: Openface2.0 is an open-source facial behavior analysis tool, which
can implement facial landmark detection, head pose estimation, facial action unit
recognition and eye-gaze estimation. It has been widely used in computer vision,
affective computing and human–computer interaction [29]. In this study, Openface2.0
was used to extract 3D facial features from evaluation videos, including facial contour,
eye-gaze [30] and head-pose [31]. The facial features of subjects were chosen, including
3D facial landmarks of the head, to analyze the facial phenotype of subjects. Figure 2a
shows the 68 facial landmarks, which represent facial contour, eye shape, nose and
mouth. Each landmark was represented by an L(x, y, z) to indicate its position in
3D space. Subjects of different ages and genders possessed different scales of faces,
which is not conducive to compare different faces directly. Therefore, the tool scaled
the subject’s face in 3D space, and the scaling ratio is represented by p_scale; finally,
the facial phenotypes of the subjects were compared at same scale. Figure 2b shows
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the subjects’ 2D faces images detected from videos, and Figure 2c shows the 3D facial
landmarks extracted from the 2D face images. Combining the temporal information
of neighbor frames, head-pose landmarks were extracted frame by frame from the
videos. Neighbor frames contain subjects’ action information, which helps to extract
these landmarks more accurately. The head-pose features included three different
features (p_rx, p_ry, p_rz), which measures the 3D rotation degree between the head
and the IP camera. In order to boost the reliability of our algorithm, we filtered the
data according to the condition of confidence ≥0.98 (how confident is the tracker in
current landmark detection estimate), |p_rx| ≤ 0.5, |p_ry| ≤ 0.25 and |p_rz| ≤ 0.5.
Only those data meeting the above conditions, i.e., 22,602 data frames, were chosen
for constructing the algorithm.
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(3) Phonetic Features: Delays in speech development are common and may become more
obvious when contrasted with the speech development of a sibling [14], which is a
guidance for screening ID with phonetic features. Before extracting phonetic features,
speech preprocessing is required, which mainly includes voice activity detection,
speech enhancement and speaker-based speech segmentation. Voice activity detection
can distinguish sound segments from silent segments in audio. The purpose of speech
enhancement is to extract features as pure as possible from speech containing noise
and improve the quality of speech. Speaker-based speech segmentation was mainly
used to extracts the audio of child subjects in order to improve the effectiveness of
our algorithms. The speech segmentation based on Bayesian Information Criterion
was adopted in this study [32].

Every audio was processed by the OpenSmile toolkit to extract the INTERSPEECH
2010 Paralinguistic Challenge feature set, which contains 1582 low-level features [33]. The
INTERSPEECH 2010 Paralinguistic Challenge feature set consists of 34 low-level descriptors
(LLDs) and 34 corresponding deltas as 68 LLDS contour values, and 1428 features can
be obtained from 21 functions. In addition, for the four pitch-based LLDs and their four
delta coefficient contours, 19 functions are used to obtain 152 features. Finally, the number
of pitch onsets (pseudo syllables) and the duration of the total input (two features) are
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appended [34]. The LLDS mainly include loudness, Mel Frequency Cepstral coefficients
(MFCC), linear prediction coding (LPC) coefficients, jitter, shimmer and other phonetic
features. Since the feature dimension is much larger than the sample size, kernel principal
component analysis (KPCA) was used for feature dimension reduction, and radial basis
function (RBF) was selected as the kernel function [35]. Finally, the phonetic dataset was
reduced to 38 dimensions.
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(4) Geometric Features and CVI: ID is often caused by gene deficiency syndrome, abnor-
mal pregnancy, abnormal birth, brain injury, etc., which also often lead to abnormal
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facial phenotypes. There is a certain extent of correlation between ID and facial pheno-
types, so the severity of ID for subjects can be determined through the analysis of their
facial phenotypes [36]. Facial landmarks can represent the facial phenotype of subjects
to some extent, and the analysis results of facial landmarks may be utilized to judge
the degree of ID. Using facial landmarks to define facial phenotypic abnormalities
accurately is a key factor for the performance of the algorithm. Craniofacial variability
index (CVI) has been utilized to describe, characterize, and evaluate craniofacial
morphology, and has been widely used in evaluating dysmorphology, diagnosing
auxiliary and assessing the effect of craniofacial surgery [37]. First, 16 characteristic
measurements of the head and face are obtained, and each measurement is converted
into a standardized z-score. The 16 z-scores are utilized to calculate standard deviation
(SD, i.e., σz), which is the CVI score. Some studies have shown that the CVI of normal
people has an approximate normal distribution, and the CVI of patients with cran-
iofacial syndrome is significantly higher than a normal person; studies also showed
that utilizing a subset of 16 characteristic measurements to calculate CVI can obtain
similar conclusions [38,39]. Considering all videos collected by medical professionals
capture the facial information of subjects, those characteristic measurements of the
face were chosen to calculate the CVI, which included 11 geometric features, as shown
in Figure 2a and Table 2. Table 2 defines the formulas for calculating the 30 geometric
features, and the first 11 features of which were utilized to calculate CVI. The method
of calculating σz, i.e., CVI, was given in [38].

Table 2. Geometric features of facial phenotype.

ID Name Formula ID Name Formula ID Name Formula

F01 ex-ex |Pe08 − Pe42| F11 n-gn |Pf27 − Pf8| F21 h-re |Pe17 − Pe11|

F02 en-en |Pe14 − Pe36| F12 w-le |Pe08 − Pe14| F22 w-nb |Pf31 − Pf32 − Pf33 −
Pf34 − Pf35|

F03 t-t |Pf01 − Pf15| F13 w-re |Pe36 − Pe42| F23 h-nb |Pf27 − Pf28 − Pf29 −
Pf30|

F04 zy-zy |Pf02 − Pf14| F14 la-le ∠(Pe17 − Pe08 − Pe11) F24 a-nb ∠(Pf31 − Pf30 − Pf35)

F05 al-al |Pf31 − Pf35| F15 ra-le ∠(Pe17 − Pe14 − Pe11) F25 ia-lm ∠(Pf61 − Pf60 − Pf67)

F06 t-sn-t |Pf1 − Pf33 − Pf15| F16 la-re ∠(Pe45 − Pe36 − Pe39) F26 oa-lm ∠(Pf49 − Pf48 − Pf59)

F07 go-go |Pf03 − Pf13| F17 ra-re ∠(Pe45 − Pe42 − Pe39) F27 ia-rm ∠(Pf63 − Pf64 − Pf65)

F08 mu-mu |Pf48 − Pf54| F18 a-le-nb ∠(Pe08 − Pe14 − Pe36) F28 oa-rm ∠(Pf53 − Pf54 − Pf55)

F09 t-gn-t |Pf01 − Pf08 − Pf15| F19 a-re-nb ∠(Pe42 − Pe36 − Pe14) F29 a-2e ∠(vec(Pe14 − Pe08),
vec(Pe36 − Pe42))

F10 n-sn |Pf27 − Pf33| F20 h-le |Pe17 − Pe11| F30 a-s ∠(vec(Glx, Gly, Glz),
vec(Grx, Gry, Grz))

Table 3 shows the distribution of CVI for the normal group and positive group. The
CVI of the positive group was higher than that of normal group, which means that it may
be feasible to screen ID using the CVI. However, there is no way to judge whether a subject
with a certain CVI belongs to the positive group or not. To this end, we need to build a
model to screen ID utilizing all the features we obtained, including CVI.

(5) Machine Learning: The algorithms we chose to build the classification models for
screening ID are Random Forest [40], AdaBoost [41] as well as Gaussian Naive
Bayes [42]. All algorithms were implemented using the scikit-learn package [43]
in Python.



Brain Sci. 2023, 13, 155 8 of 11

Table 3. Percentile distribution of the CVI in the two groups.

Percentile σNor σPos Percentile σNor σPos

5th 0.404 0.577 70th 0.951 1.334
10th 0.461 0.638 75th 1.016 1.427
15th 0.503 0.685 80th 1.085 1.521
20th 0.537 0.730 85th 1.173 1.631
25th 0.567 0.776 90th 1.297 1.807
50th 0.744 0.996 95th 1.502 2.479

3. Results

As shown in Table 4, non-CVI-related geometric features, all geometric features (in-
cluding CVI) and phonetic features were utilized to establish a classification models for
screening ID. Accuracy, precision, recall as well as the F1 score of the three algorithms for
the three feature sets are given in Table 4. Based on geometric features, Native Bayes had
the best performance compared to the other two algorithms, with an accuracy of 0.714
and F1 score of 0.715. Based on the fusion of CVI features and geometric features, Native
Bayes also had the best performance, with an accuracy of 0.772 and F1 score of 0.749. Based
on phonetic features, Native Bayes still had the best performance, with an accuracy of
0.796 and F1 score of 0.754. Among the three types of features, it was obvious that the best
performance appeared when phonetic features were used for building the algorithms. The
results also showed that phonetic features and all geometric features outperformed the
non-CVI-related geometric features. In addition, the Gaussian Naive Bayes algorithm had
the best performance among the three machine learning algorithms.

Table 4. Algorithm performance based on three different types of features.

Accuracy Precision Recall F1 Score

Classifier Geometric Features (30)

Random Forest 0.715 0.698 0.715 0.693

AdaBoost 0.653 0.644 0.653 0.648

Native Bayes 0.714 0.717 0.714 0.715

Classifier CVI Features + Geometric Features (31)

Random Forest 0.743 0.748 0.743 0.745

AdaBoost 0.715 0.714 0.715 0.715

Native Bayes 0.772 0.773 0.772 0.749

Classifier Phonetic Features (38)

Random Forest 0.759 0.677 0.677 0.677

AdaBoost 0.754 0.666 0.684 0.675

Native Bayes 0.796 0.690 0.832 0.754

The results with the best performance among 3 algorithms on three different feature sets are shown in bold font.

Next, we determined how to judge whether our proposed models are effective or not.
An intuitive method is that the performance of these models should be at least better than
random guesswork. In [44], a measurement was proposed to judge whether a classifier
built on a particular data set performs better than random guesswork, and based on a
custom data set, the classification accuracy of the proposed models must be larger than
0.646 if outperforms random guesswork. As shown in Table 4, the accuracy of the proposed
models was almost 75%, which is 10 percentage points higher than 64.6%. The results
showed that our work has the potential to be applied in clinical settings.
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4. Discussion

Early diagnosis of ID is valuable because it allows the identification of children with
risk, supportive counseling for parents, and potential stimulation programs for children.
However, the diagnosis of ID in young children is frequently missed. Therefore, the auto-
matic method for screening ID explored in this article provides a new perspective, which
evaluates the risk of ID by analyzing subjects’ phonetic features and facial phenotype.
Developmental assessment should be a part of routine pediatric care for all preschool chil-
dren [45], and the method we proposed is quite suitable in terms of massive throughput of
assessment and feasible assessment for very young children. A developmental pediatrician
or clinical psychologist should still perform a formal assessment once ID is suspected after
assessment with proposed method.

Children should be examined closely for dysmorphic features or minor abnormalities,
such as unusual eyebrow patterns, eyes that are widely or closely spaced, low-set ears or
abnormal palmar crease patterns. Minor abnormalities are defined as defects that have
unusual morphologic features [46]. Minor physical abnormalities involve the head, eyes,
ears, hands, mouth or feet, and are readily recognized even on simple examination [47].
If children have head circumferences that falls below the 5th percentile (microcephaly) or
above the 95th percentile (macrocephaly), ID is suspected [12]. The presence of three or
more minor abnormalities in newborns is correlated with a 90% risk of coexistent major
abnormalities [48].

The study of [49] showed that the presence of ID is closely related to the level of speech
ability. ID is the most common factor in speech delay [50,51]. Hearing loss and speech
dystonia are common in patients with ID. The speech of children with ID is influenced
not only by their cognitive impairment, but also by certain specific factors [52]. In general,
the more severe the ID, the slower the acquisition of communicative speech. In children
with ID, the development of language is relatively more delayed than other aspects of
development [50]. Incorrect pronunciation and slurred speech are one of the clinical
manifestations of speech retardation. Our findings suggest that the phonetic features of
children with ID are somewhat distinguishable from normal controls.

In the future, more and more video data of new subjects should be collected, so as
to improve the performance of our proposed method. Furthermore, the authors will try
to establish more efficient methods from the perspective of dynamic analysis of subjects’
facial behavior patterns for screening ID. A valuable future study that we have planned
is to mock the evaluation process done by a pediatrician into an applet of WeChat, which
enables guardians help subjects to complete professional evaluation which usually done by
pediatricians, so as to enable large-scale screening.
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