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Abstract: Studies have demonstrated that many regions in the human brain include multidirectional
fiber tracts, in which the diffusion of water molecules within image voxels does not follow a Gaussian
distribution. Therefore, the conventional diffusion tensor imaging (DTI) that hypothesizes a single
fiber orientation within a voxel is intrinsically incapable of revealing the complex microstructures of
brain tissues. Diffusion spectrum imaging (DSI) employs a pulse sequence with different b-values
along multiple gradient directions to sample the diffusion information of water molecules in the
entire q-space and then quantitatively estimates the diffusion profile using a probability density
function with a high angular resolution. Studies have suggested that DSI can reliably observe the
multidirectional fibers within each voxel and allow fiber tracking along different directions, which
can improve fiber reconstruction reflecting the true but complicated brain structures that were not
observed in the previous DTI studies. Moreover, with increasing angular resolution, DSI is able
to reveal new neuroimaging biomarkers used for disease diagnosis and the prediction of disorder
progression. However, so far, this method has not been used widely in clinical studies, due to its
overly long scanning time and difficult post-processing. Within this context, the current paper aims to
conduct a comprehensive review of DSI research, including the fundamental principles, methodology,
and application progress of DSI tractography. By summarizing the DSI studies in recent years, we
propose potential solutions towards the existing problem in the methodology and applications of
DSI technology as follows: (1) using compressed sensing to undersample data and to reconstruct
the diffusion signal may be an efficient and promising method for reducing scanning time; (2) the
probability density function includes more information than the orientation distribution function,
and it should be extended in application studies; and (3) large-sample study is encouraged to confirm
the reliability and reproducibility of findings in clinical diseases. These findings may help deepen the
understanding of the DSI method and promote its development in clinical applications.

Keywords: diffusion magnetic resonance imaging; diffusion spectrum imaging; progress; methodology;
application

1. Introduction

Diffusion magnetic resonance imaging (dMRI) is the only way to noninvasively mea-
sure structural connectivity in the human brain, and it has been extensively applied in
clinical studies [1]. As one of the most commonly used dMRI techniques, diffusion tensor
imaging (DTI) reconstructs structural connectivity patterns based on the phenomenon of
the diffusion anisotropy of water molecules in brain tissue. In the DTI model, two metrics,
the apparent diffusion coefficient (ADC) and fraction anisotropy (FA), are particularly sen-
sitive to brain lesions in diseases [2,3], and the fiber tract is tracked by the main direction of
the diffusion tensor [4]. However, in the past twenty years, an increasing number of studies
have reported that the fiber architectures in the human brain are more complicated than
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we thought, such as crossing or branching fibers within a single voxel [5,6]. The distances
revealed by dMRI are far larger than the diffusion scale, implying that each 3D resolution
element (voxel) represents many distinct diffusional environments. This provides a com-
plex diffusion profile that is generally underspecified by the six degrees of freedom of the
tensor model. Therefore, DTI is incapable of resolving multiple fiber orientations within a
single voxel [7]. Additionally, the FA value is lower when a multidirectional fiber exists
in a single voxel, whereas the degeneration of tissue integrity also causes a reduced FA
value. Thus, the FA metric may be inappropriate to evaluate the structural integrity of
the tissue with crossing fibers. This not only affects the accuracy of the DTI technique in
clinical diagnosis but also leads to the failure of fiber tract tracking in complex tissue.

To resolve the multiple fiber orientations within individual voxels, various methods
have been proposed. They have been classified into two types: one is model-based, such as
multi-tensor diffusion imaging [8], diffusion kurtosis imaging (DKI) [9], neurite orientation
dispersion and density imaging (NODDI) [10], the ball and stick model [11], the persistent
angular structure MRI [12], and diffusion orientation transform [12]; the other is model-
free high-angular-resolution diffusion imaging (HARDI), which describes the diffusion
motion by the orientation distribution function (ODF). For instance, diffusion spectrum
imaging (DSI) reconstructs the ODF by applying an inverse Fourier transform (FT) to
the q-space data from the grid sampling scheme [13]; Q-ball imaging (QBI) based on a
Funk–Radon (FR) transform reconstructs the ODF from a single-shell dataset [14]; hybrid
diffusion imaging (HYDI) concurrently performs DSI, Q-ball, and DTI analysis in multi-
shell data [15]; and generalized-sampling imaging (GQI) describes the diffusion behavior
using the spin distribution function (SDF), similar to ODF [16].

Wedeen et al. first proposed the DSI, a multi-b-value and multidirectional q-space
imaging method, which calculates the diffusion ODF by applying the FT to the diffusion
MR signals and conducting radial integration [17]. This method can successfully reveal
crossing fibers. Moreover, the general fraction anisotropy (GFA) produced from DSI is more
sensitive to tissue degeneration in diseased brains and has better accuracy and precision in
identifying the multidirectional fibers than the conventional FA obtained using DTI [18].
Under a relatively unified standard, one prior study [19] compared 19 dMRI approaches,
in which the dMRI methods were classified into four types according to the pattern of the
data sampling scheme: DTI-like (single ball and lower b-value sample), HARDI-like (single
ball and higher b-value sample), DSI-like (Cartesian grid sample), and Strike-like (sparse
sample). The results showed that compared with other high-resolution imaging techniques,
the DSI was more precise and stable than the DTI in terms of both the angular accuracy and
the success rate of reconstructing the crossing fiber and the ability to uncover the minimal
angle of the crossing fiber (Figure 1). However, so far, no study has comprehensively
reviewed the research progress of DSI.
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In this paper, we first simply describe the basic theory of several dMRI techniques.
Second, we illustrate methodological studies on DSI from two perspectives: the improve-
ment in the scanning time and the optimization of post-processing. Third, we primarily
depict the progress of DSI in revealing the tissue microstructures and clinical applications.
Finally, we summarize the paper and illustrate the current problems that remain for DSI.
The design of the entire work is shown in Figure 2.
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2. Methodology

It is well known that in the classic Stejskal–Tanner experiment, the MR signal is made
proportional to the voxel average dephasing for a specified diffusion duration ∆:

S∆ = S0

〈
eiΦ
〉

, (1)

where S0 is a constant that can be computed by the spin-echo experiment without
diffusion weighting, and S∆ and Φ represent the MR signal with diffusion weighting
and dephasing, respectively.

We assume in the first instance that the duration δ of the diffusion sensitiz-
ing gradient is negligible compared to the mixing time ∆. Thus, we have Φ =
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)
, where

→
x (0) and

→
x (∆) must be understood as the

spin position at the time of the application of the first and second diffusion gradient
pulses, respectively. The gradient wave vector is defined as

→
q = δγ

→
g , where γ is the

gyromagnetic ratio,
→
g is the gradient vector, and

→
r is the relative spin displacement

between the first diffusion gradient and second diffusion gradient.
Considering the voxel average as an expectation E(·), the MR signal is proportional to

the characteristic function of the relative spin displacement vector. This yields a Fourier
relationship between the MR signal and the underlying density

→
p ∆(

→
r ):

S∆(
→
q ) = S0E(eiΦ) = S0

∫
→
p ∆(

→
r )ei

→
q ·→r d3→r (2)

where
→
p ∆(

→
r ) represents the density of the average relative spin displacement in a voxel.

If the diffusion process is assumed to be Gaussian, the deformation of Equation (2)
condenses to the known diffusion equation in the DTI:

S∆(
→
q ) = S0e−bgT Dg (3)

where
→
g is the unit vector

→
q /
∣∣∣→q ∣∣∣, b = τ

∣∣∣→q ∣∣∣2, and D is the three-dimensional diffusion
tensor. DTI data are usually collected using an optimized 30 direction and a constant
b-value equal to 1000 s/mm2, and the scanning time is relatively short (approximately
6 min).

Model-free dMRI techniques, like HARDI and QBI, require more gradient directions,
such as 82, 120, 257, and 515 [20]. The b-value is generally higher (2000~3000 s/mm2) than
DTI, and the data scanning time lasts from 15 to 30 min.

Currently, the most complex sampling scheme is the DSI, which collects the data
points of the whole q-space to depict the diffusional behavior of water molecules. Gen-
erally, the gradient directions range from 102 to 515, the bmax value ranges from 6000 to
12,000 s/mm2 [21], and the scanning time is >35 min.

Practically, to exclude the phase shifts arising from tissue motion [22], the probability
density function (PDF) is reconstructed by taking the FT of the modulus of the complex
MR signal:

→
p ∆(

→
r ) = S−1

0 (2Π)−3
∫ ∣∣∣S∆(

→
q )
∣∣∣ei
→
q ·→r d3→q (4)

Since
→
p ∆(

→
r ) is a measured quantity calculated by FT, we simply refer to it as the

diffusion spectrum [23].
DSI sampling is initially acquired by combining the 515 gradient directions and

bmax > 10,000 s/mm2, which leads to a long scanning time of up to dozens of hours and
significantly prevents its clinical extension. The conventional data analysis steps of DSI are
as follows [23]:

(1) Image denoising;
(2) 3D discrete Fourier transform to obtain the PDF;
(3) Radial integration for the PDF to acquire the ODF;
(4) Calculation of the metrics based on the ODF, such as GFA;
(5) ODF-based tractography.

For tractography, Wedeen et al. proposed an algorithm to construct fiber tracks, which
has been extensively applied to DSI studies [23]. This method uses a streamlined algorithm,
or Eulerian integration, and can be modified to accommodate multiple directions per point.

Actually, the validity of the Fourier relation between E(q) and PDF is questionable, as
the essential requirement for this relation is not satisfied in practice [24]. Interestingly, the
reconstruction described in Equation (4) still remains valid with noninfinitesimal diffusion-
encoding gradients [25]. Moreover, Lin et al. evaluated the error of the DSI using scanning
sequences with both short- and long-gradient pulse widths in a rat model [26]. They found
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that the bias of the primary orientation between the two sequences was approximately 10◦,
suggesting that the effect of the finite gradient pulse widths on the primary orientation is
not critical. Yang et al. investigated the effect of a finite δ on the DW signal measured as a
function of the gradient direction through simulation data and experimental models [27].
Their results indicated that a long δ would lead to a boost in the DW signal in the transverse
plane of the fiber and stretch out the shape of the measured diffusion profile, which might
improve the contrast between DW orientations.

2.1. Improvement in the Scanning Scheme
2.1.1. Challenges

The overlong scanning time under the current sampling scheme is the most serious
problem, preventing the clinical application of DSI, which may result in a break in the
experiment due to the body condition of patients and excessive head motion during
scanning. Various methods have been proposed to shorten the acquisition time of DSI
data. Considering the geometric symmetry of diffusion anisotropy, several studies created
full-spherical DSI data by exploiting hemispherical or subsampled data (see Table 1). Both
phantom and rat brain models showed that this scheme could decrease the DSI acquisition
time while preserving the patterns and orientations of PDF [26,28]. However, the cross-
term between diffusion and image gradients causes the inaccuracy of hemispherical data
for ODF reconstruction [29]. Therefore, it is necessary to correct the cross-term in the
post-processing of hemispherical sampling data.

Table 1. A summary of main progresses in DSI methodology.

First Author (Ref. #) Type Subject Main Findings

Lin et al., 2003 [26];
Tefera et al., 2013 [28] Methodology Improvement in

scanning scheme

Hemispherical or subsampled DSI data decreased the
DSI acquisition time while preserving the patterns and
orientations of the probability density function (PDF).

Kuo et al., 2008 [30] Methodology Improvement in
scanning scheme

Optimizing the bmax-value not only effectively
decreased the scanning time but also yielded
comparable angular precision and accuracy with high
sampling schemes.

Reese et al., 2009 [31] Methodology Improvement in
scanning scheme

The modulated sequence, which modified the usual
EPI acquisition using two windowed sinc(t) excitation
RF pulses with different frequency offsets, reduced the
total scan time by nearly one-half.

Yeh et al., 2008 [32];
Kuo et al., 2013 [33] Methodology Improvement in

scanning scheme

Two sampling schemes of reduced-encoding DSI and
the body-centered-cubic both decreased the scanning
time of DSI while maintaining the precision and
accuracy of the orientation distribution function
(ODF).

Paquette et al., 2015 [34];
Tobisch et al., 2018,
2019 [35,36]; Jones et al.,
2021 [37]; Radhakrishnan et al.,
2023 [38]

Methodology Improvement in
scanning scheme

Compressed sensing (CS) accelerated DSI data
acquisition while preserving essential information on
diffusion properties.

Tournier et al., 2004, 2007,
2008 [39–41]; Alimi et al.,
2018 [42]; Tsai et al., 2022 [43]

Methodology
Optimization of
postprocessing
method

They assumed that all fiber bundles in the brain white
matter share identical diffusion characteristics and
found the fiber ODF might reflect more real fiber
orientations than the diffusion ODF.

Canales-Rodríguez et al.,
2010 [44] Methodology

Optimization of
postprocessing
method

This study argued that the PDF obtained from the
experiments was the convolution between the true
PDF and a point spread function (PSF). The angular
resolution of the ODF was enhanced after
deconvolution.
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Table 1. Cont.

First Author (Ref. #) Type Subject Main Findings

Yeh et al., 2013, 2018 [3,45] Methodology
Optimization of
postprocessing
method

The authors proposed a mixed diffusion model and a
diffusion decomposition method to obtain a precise
solution of fiber ODF. These methods provided a
better resolution power for crossing fibers.

2.1.2. Technical Advancements

By optimizing the bmax-value, Kuo et al. found that the sampling scheme with the
optimum bmax-value (6500 for DSI-515 and 4000 for DSI-203 on the 3T scanner) not only
effectively decreased the scanning time but also yielded comparable angular precision
and accuracy to high sampling schemes [30]. From the sequence perspective, Reese et al.
proposed a highly efficient multiplexing method called simultaneous image refocusing
(SIR), which modified the usual EPI acquisition using two windowed sinc(t) excitation
RF pulses with different frequency offsets, and the results suggested that the modulated
sequence reduced the total scan time by nearly one-half [31]. Moreover, two high-efficacy
sampling schemes, respectively, using the reduced-encoding DSI (RE-DSI), based on the
assumption of the bi-Gaussian diffusion signal curve [32], and the body-centered-cubic
(BCC), based on sampling the signal in the center of each unit cell [33], were proposed and
were demonstrated to decrease the scanning time of DSI while maintaining the precision
and accuracy of ODF. In compressed sensing (CS) applications to accelerate DSI data acqui-
sition, Paquette et al. manifested that when the acceleration factor R = 4, the undersampling
data of DSI-128 and DSI-515 could reduce the scanning time to 6 min and 26 min, respec-
tively [34]. Meanwhile, essential information on diffusion properties, such as the ODF,
diffusion coefficient, and kurtosis, was preserved. A recent study demonstrated that CS-DSI
performed comparably to 3-shell HARDI in the estimation of diffusion and microstructural
parameters, and it was a well-suited imaging protocol for dMRI within the scope of a
scan-time-limited, high-throughput, and long-term population study [35]. Another recent
CS-DSI study presented a comparison of basic functions and q-space sampling schemes for
robust CS reconstruction accelerating DSI. They found that Fourier-based CS-DSI showed
better reconstruction quality of the diffusion signal and propagator-derived parameters
than SHORE-based CS-DSI, but the reconstruction of the orientational information was
comparable for the two CS-DSI approaches [36]. Recently, validations in post-mortem [37]
and living [38] human brains demonstrated that the accuracy and reliability of the CS-DSI
in subsampled images were nearly the same as those generated by the full DSI scheme and
further illustrated the utility of the CS-DSI for reliably delineating in vivo brain architecture
in an acceptable scan time for clinical applications. Therefore, CS-DSI may be the most
optimized scheme to resolve the overlong scanning time at present.

2.2. Optimization of the Postprocessing Method
2.2.1. Challenges

Over the past twenty years, an increasing number of advanced post-processing ap-
proaches for DSI have emerged to enhance the angular resolution of ODFs and further
uncover more complex fiber orientations (see the details in Table 1). It is generally as-
sumed that the peaks in the diffusion ODF (dODF) correspond to the direction of the fiber
population, but they cannot provide the actual fiber orientations [12].

2.2.2. Technical Advancements

Some studies assume that all fiber bundles in the brain’s white matter share identical
diffusion characteristics, thus implicitly assigning any differences in diffusion anisotropy to
partial volume effects [39,40]. Then, the DW signal attenuation is expressed as the convolu-
tion over the sphere of a response function (the diffusion-weighted attenuation profile for
a typical fiber bundle) with a fiber ODF (fODF) [41]. Therefore, the fODF may reflect the
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real fiber orientations, which can be obtained using spherical deconvolution, and is used to
depict the orientation distribution of fiber volume fractions [42,43]. Simulation experiments
and human brain studies demonstrated that both the angular resolution of the fODF and
the accuracy of fiber tracking based on fODF were better than those of dODF [42,43]. More-
over, other deconvolution methods based on constraint optimization or regularization have
also been reported, aiming to handle the negative condition or the background corruption
problem [43]. Canales-Rodríguez et al. argued that the FT used to compute the PDF in DSI
was based on discrete signals with finite support rather than the whole measurement space.
Thus, the PDF obtained from the experiments was the convolution between the true PDF
and a point spread function (PSF) [44]. This study demonstrated that after deconvolution,
the angular resolution of the ODF was enhanced, and the artifactual peaks and the uncer-
tainty of the local diffusion orientation distribution were reduced. To provide a common
deconvolution method for q-space imaging, Yeh et al. proposed a mixed diffusion model in
which the fODF was defined as the orientation distribution of the fiber spin density, and the
experiments found that the fODF derived from deconvolving the dODF showed consistent
fiber orientations regardless of the reconstruction methods and sampling schemes [45].
Yeh et al. further extended the L1 regularization paradigm to dODFs and proposed a
diffusion decomposition method to obtain a sparse solution of fODFs and provide a better
resolution power for crossing fibers [3]. The subsequent phantom experiment and in vivo
study indicated that the angular error of the diffusion decomposition was significantly
lower than those of the constrained spherical deconvolution and the ball-and-sticks model,
and the fiber orientations resolved by diffusion decomposition were not affected by the
different sampling schemes and reconstruction methods [3]. In the DSI implementations,
the presence of aliasing due to fast diffusion components like those from pathological
tissues can lead to artifactual fiber reconstructions. Lacerda et al. proposed a novel ap-
proach including biophysical constraints to compute the ODF, which removes most of these
artifacts and offers improved angular resolution [46]. Additionally, a recent study proposed
a generalized DSI (GDSI) framework to compute the ensemble average propagator by
multiplying the sampling non-uniformity corrected q-space samples with a discrete FT
matrix, indicating the GDSI matrix formalism could be used to elucidate the contribution
and combination of q-space signals to the dODF [47].

3. Application
3.1. DSI Tractography for White-Matter Fibers

Several tissue structures include a number of myofibers aligned along multiple spatial
axes at the microscopic scale. However, the DTI cannot uncover such structural character-
istics due to its failure to detect multidirectional fibers. Therefore, one of the important
applications of DSI tractography is primarily focused on revealing the complex microstruc-
ture of the tissue. For instance, for an anterior slice of the lingual core in bovine tongue,
DTI depicted it solely as a region with low anisotropy, whereas DSI revealed two different
fiber populations with an explicit orthogonal relationship to each other [48]. Dai et al.
found that DSI tractography revealed that the cingulum bundle was less mature when
cat myelination was incomplete, whereas DTI tractography tended to terminate in such
areas, possibly due to the existence of crossing fibers [49]. By using DSI, Schmahmann
et al. identified the major features of 10 long association fiber bundles that matched the
observations in the isotope material using autoradiographic histological tract tracing in
the monkey brain, whereas the DTI did not observe such precise structural characteristics
due to its inability to visualize the crossing fibers and details of the origins, course, and
terminations of the white-matter pathways [50]. In human brain studies, Wedeen et al. used
DSI to clarify the relationships of adjacency and crossing between cerebral fiber pathways
in four nonhuman primate species and humans [51]. They first found that the cerebral fiber
pathways formed a rectilinear three-dimensional grid continuous with the three principal
axes of development, and cortico-cortical pathways formed parallel sheets of interwoven
paths in the longitudinal and medial–lateral axes, in which major pathways were local
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condensations. Because of the limitation in DTI, the subcomponents and connectivity
of the inferior fronto-occipital fasciculus (IFOF) and the superior longitudinal fasciculus
(SLF) in human brain are still controversial. The DSI shows high-quality fiber tractography
and fewer partial volume effects and false continuation artifacts, and thereby it has been
used to reveal more complete connectivity patterns and anatomical details of the IFOF I-V
subcomponents [52] and of the SLF I-III subcomponents [53], which are connected to differ-
ent cortical regions. Similar DSI tractography applications have been reported in recent
studies in the tractography of other white-matter pathways, such as the thalamic–prefrontal
peduncle [54], pyramidal tracts [55], anterior commissure [56], and corpus callosum [57].
Collectively, these findings suggest a powerful potential of DSI in enhancing tractography
for the complexed white-matter fibers.

3.2. Cortical Parcellation and Connectivity Reconstruction

The DTI has limited angular resolution and cannot adequately assess the cortical
regions. Another application of the DSI in resolving the tissue microstructure is cortical
parcellation and connectivity reconstruction. Recent studies used the DSI to segment the
ventral [58] and dorsal premotor areas [59] (VPM/DPM); they found that the VPM consists
of four subregions, 6v, 4, 3b, and 3a, and the DPM is divided into three areas, 6a, 6d,
and 6v. These brain regions showed consistent inter-hemispheric connection but different
intra-hemispheric connection patterns. Based on DSI tractography, two recent studies
characterized the connections of the middle frontal gyrus (MFG) and inferior temporal
gyrus (ITG) to other cortical areas, respectively. The MFG included two major connections
of the superior longitudinal fasciculus (which connected the MFG to parts of the inferior
parietal lobule, posterior temporal lobe, and lateral occipital cortex) and the inferior fronto-
occipital fasciculus (which connected the MFG to the lingual gyrus and cuneus) [60]. The
ITG is connected to five major fibers: the U-fiber, the inferior longitudinal fasciculus,
the vertical occipital fasciculus, the arcuate fasciculus, and the uncinate fasciculus [61].
Furthermore, a recent study used DSI tractography to organize “pyramid-shaped crossings”
of converged U-fibers, which are key anatomical structures to construct the neural network
for intricate communications throughout the entire cerebrum [62]. Using the same method,
another study delineated the decussating dentato-rubro-thalamic tract, in which the afferent
regions were found mainly in the posterior cerebellum, and the efferent fibers were mainly
projected to the contralateral frontal cortex, suggesting segregated and parallel cerebellar
outputs to cerebral regions [63] (see Table 2).

3.3. Clinical Applications

With the improvement in DSI data acquisition, more attention has recently been
paid to its application in clinical diseases, including attention-deficit/hyperactivity disor-
der (ADHD) [2,64,65], schizophrenia [66–68], stroke [69–72], Parkinson’s disease [73,74],
hypertension [75], autism [76], epilepsy [77], and gliomas [78] (see Table 2).

3.3.1. Disease Diagnosis

The quantitative diffusion scalars of the DSI, especially the track density imaging
(TDI) of the crura of fornix (FORX) and the parahippocampal radiation of the cingulum
(PHCR), are sensitive enough to define the ipsilateral side for epilepsy patients, with a
sensitivity of 89.5% and specificity of 100.0% for PHCR_TDI (AUC = 0.93), and a sensitivity
of 95.0% and specificity of 100% for FORX_TDI (AUC = 0.95) [77]. The DSI-based quan-
titative anisotropy (QA) values of corticospinal tracts (CSTs) in patients with idiopathic
normal pressure hydrocephalus (iNPH) were significantly lower than those in healthy
controls (HCs), but no significant differences were found between iNPH patients and
HCs in the DTI-based FA values, suggesting the DSI may provide more information that
can improve the present understanding of the disease mechanism [79]. Another study
found that the QA value was correlated with the neuronal diameter/density in the cortical
layer IIIc, and its asymmetry showed an overall favorable accuracy (sensitivity = 90.9%,
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specificity = 89.5%, AUC = 0.96) in the diagnostic testing of hippocampal sclerosis pa-
tients [80]. The DSI parameters also showed a good performance, with an accuracy of 83%,
sensitivity of 78%, and specificity of 86% in discriminating patients with mild and severe
visual defects [81].

3.3.2. Progression Prediction

A prior study demonstrated that the DSI could be helpful for the preoperative pre-
diction of human epidermal growth factor receptor 2 (HER2) in patients with breast
cancer, with the finding that the AUC values of the DSI quantitative parameters (range
from 0.67 to 0.72) were higher than that of the DTI metric apparent diffusion coefficient
(AUC = 0.57) [82]. Another study found that the anatomic integrity of the pyramidal
tract (PT) with DSI tractography effectively predicted the postoperative motor function
after hemispherectomy; they reported that the AUC of the DSI tractography was 0.84,
and the cutoff value of the PT asymmetric ratio was 11.5%, with 100% sensitivity and
75% specificity [83]. The DSI-derived GFA in the ipsilateral medial geniculate body was
related to prognosis (sensitivity = 64.7%; specificity = 85.7%; and AUC = 0.80) in patients
with unilateral idiopathic sudden sensorineural hearing loss, indicating the GFA value of
the ipsilateral medial geniculate body may help to predict recovery outcomes [84]. Another
study reconstructed a local connectome matrix from DSI data in patients with aphasia after
stroke, and their findings challenged dual-stream accounts that denied a role for the arcuate
fasciculus in semantic processing and ventral-stream pathways in language production and
illuminated limbic contributions to both semantic and phonological processing for word
production [69]. A recent DSI study demonstrated for the first time that distinct aspects
of the cortical structural reserve enable basal and complex motor control after stroke. In
particular, the recovery of basal motor control may be supported via an alternative route
through contralesional M1 and non-crossing fibers of the contralesional CST [72]. Taken
together, these findings suggest the DSI is a very potential and powerful technology in
studying the mechanism, diagnosis, and progressive prediction of clinical diseases.

Table 2. A summary of main progresses in DSI applications.

First Author (Ref. #) Type Subject Main Findings

Lacerda et al., 2016 [46] Methodology
Optimization of
postprocessing
method

This study proposed a new way of including
biophysical constraints to compute the ODF, which
removed most of the artifacts due to fast diffusion
components like those from pathological tissues and
offered improved angular resolution.

Tian et al., 2019 [47] Methodology
Optimization of
postprocessing
method

This study proposed a generalized DSI framework to
compute the ensemble average propagator, which
could be used to elucidate the contribution and
combination of q-space signals to the diffusion ODF.

Gilbert et al., 2006 [48] Application DSI tractography for
white-matter fibers

Diffusion tensor imaging (DTI) depicted the anterior
slice of the lingual core in bovine tongue solely as a
region with low anisotropy, whereas DSI revealed
two different fiber populations with an explicit
orthogonal relationship to each other.

Dai et al., 2016 [49] Application DSI tractography for
white-matter fibers

The cingulum bundle was less mature when cat
myelination was incomplete, whereas the DTI
tractography tended to terminate in such areas.

Schmahmann et al., 2007 [50] Application DSI tractography for
white-matter fibers

This study identified 10 major long association fiber
bundles that matched the observations in
autoradiographic histological tract tracing in the
monkey brain, and such precise structural
characteristics were not observed by DTI.

Wedeen et al., 2012 [51] Application DSI tractography for
white-matter fibers

This study first clarified the relationships of adjacency
and crossing between cerebral fiber pathways in
four nonhuman primate species and humans.
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Table 2. Cont.

First Author (Ref. #) Type Subject Main Findings

Wu et al., 2016 [52];
Wang et al., 2016 [53] Application DSI tractography for

white-matter fibers

The DSI revealed a more complete connectivity
pattern and anatomical details of the IFOF I-V
subcomponents and of the SLF I-III subcomponents.

Sun et al., 2018 [54];
Suo et al., 2021 [55];
Liu et al., 2022 [56];
Wei et al., 2017 [57]

Application DSI tractography for
white-matter fibers

The DSI identified detailed and completed
white-matter pathways, including the
thalamic–prefrontal peduncle, pyramidal tracts,
anterior commissure, and corpus callosum.

Sheets et al., 2020, 2021 [58,59] Application Cortical parcellation
The DSI segmented the ventral premotor area into
four subregions of 6v, 4, 3b, and 3a and the dorsal
premotor area into three areas of 6a, 6d, and 6v.

Briggs et al., 2021 [60];
Lin et al., 2020 [61] Application Cortical connectivity

reconstruction

The MFG included two major connections of the
superior longitudinal fasciculus and inferior
fronto-occipital fasciculus. The ITG connected to
five major fibers: the U-fiber, inferior longitudinal
fasciculus, vertical occipital fasciculus, arcuate
fasciculus, and uncinate fasciculus.

Chiang et al., 2020,
2023 [2,64];Tsai et al., 2021 [65] Application

Attention deficit and
hyperactivity
disorder (ADHD)

Participants with ADHD showed more rapid
development of generalized fractional anisotropy
(GFA) in the frontal tracts and showed higher axial
diffusivity values in the perpendicular fasciculus,
superior longitudinal fasciculus I, corticospinal tract,
and corpus callosum compared to the control group.

Wen et al., 2020 [73];
Papageorgiou et al., 2021 [74] Application Parkinson’s disease

(PD)

The PD patients showed impaired global efficiency
and characteristic path length in the DSI-based
connected network, which were associated with
executive function and episodic memory.

Wang et al., 2020, 2022 [77,80];
Zhang et al., 2023 [82] Application Epilepsy

The AUC of the asymmetric indices of the DSI-derived
QA value to the lateralization of epilepsy was 0.96,
with 0.91 sensitivity and 0.90 specificity; The AUC of
DSI tractography was 0.84, with 100% sensitivity and
75% specificity in discriminating patients with
epilepsy from healthy controls.

Ni et al., 2020 [76] Application Autism spectrum
disorder (ASD)

A higher GFA of the tracts was implicated in memory,
attention, sensorimotor processing, and perception
associated with less dysregulation in TDC but worse
dysregulation in ASD.

Zhang et al., 2021 [79] Application

Idiopathic
normal-pressure
hydrocephalus
(iNPH)

The DSI-based QA values of corticospinal tracts (CSTs)
in patients with Inph were lower than those in healthy
controls (HCs), but such differences in DTI-based FA
were observed between iNPH patients and HCs.

Liang et al., 2021 [81] Application Pituitary adenomas

The DSI parameters also showed a good performance,
with an accuracy of 0.83, sensitivity of 0.78, and
specificity of 0.86 in discriminating patients with mild
and severe visual defects

Mao et al., 2022 [82] Application Breast cancer

DSI could be helpful for the preoperative prediction of
human epidermal growth factor receptor 2 (HER2) in
patients with breast cancer, with the findings that the
AUC values of DSI quantitative parameters (0.67~0.72)
were higher than those of apparent diffusion
coefficient (0.57) from DTI.

Zhang et al., 2021 [84] Application
Idiopathic sudden
sensorineural
hearing loss

The DSI-derived GFA in the ipsilateral medial
geniculate body was related to the prognosis
(sensitivity = 64.7%; specificity = 85.7%; AUC = 0.796)
in patients with unilateral idiopathic sudden
sensorineural hearing loss.
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Table 2. Cont.

First Author (Ref. #) Type Subject Main Findings

Paul et al., 2023 [72] Application Stroke

This study used DSI to demonstrate for the first time
that recovery of basal motor control may be supported
via an alternative route through contralesional M1 and
non-crossing fibers of the contralesional CST.

Salisbury et al., 2023 [68] Application First-episode
psychosis

White-matter tracts showing associations between QA
from DSI and auditory hallucinations were associated
with frontal–parietal–temporal connectivity in the
cingulum bundle and in the prefrontal
interhemispheric connectivity.

4. Limitations and Future Outlooks

Although numerous DSI studies have optimized the data sampling scheme and post-
processing analysis and applied them to clinical diseases, several problems still remain
unsolved. Firstly, the overlong scanning time is still the dominant factor preventing DSI
from expanding to clinical applications; therefore, the sample size of studies involving
DSI is relatively small, which may affect the robustness of the results. Secondly, several
studies have demonstrated that DSI has the superb ability to detect changes in microstruc-
tural integrity [49–51]. However, it may be insufficient to comprehensively evaluate the
changes in tissue microstructural integrity by a single scalar metric, and the sensitivity
of different diseases may be distinct with regard to various metrics. Finally, although the
fODF obtained from diffusion deconvolution or decomposition produces a high angular
resolution, the most prominent problem in these methods is that the feature function is
not unified [85]. This may result in an unreliable precision for the fODF. For instance,
by comparing 19 common dMRI approaches, Daducci et al. found that the resolution of
DSI-based ODF is satisfactory in revealing crossing fibers with high angles (90◦ and 60◦),
but it fails to detect crossing fibers with low angles (45◦ and 30◦) [18].

Based on the abovementioned limitations, we propose the following research outlooks.
Firstly, in the Methodology section, we discussed several methods to shorten the DSI
scanning time. CS-DSI may be the most optimized scheme among them in the future,
which were used to undersample DSI data (i.e., hemispherical scheme) and reconstruct
diffusional signal to achieve the scanning-time reduction [86]. Apart from the gradient
direction and bmax value, other parameters possibly affect the scanning time, such as the
TR, FOV, and bandwidth, which could be optimized to improve the DSI scan scheme [87].
Secondly, with regard to clinical applications, future studies should combine more metrics,
such as ODF- and PDF-based measures and hybrid diffusion imaging [88], to examine
the underlying pathomechanism of the diseases. Finally, more advanced postprocessing
methods should be conducted to increase the angular resolution of the fODF to enhance
the success rate of the DSI in revealing fibers with low angles in the future.

5. Conclusions

In summary, although the data sampling scheme and post-processing method of DSI
are imperfect, fiber tracking by DSI shows significant advantages in detecting multidi-
rectional diffusion. Moreover, numerous studies have suggested that DSI is capable of
uncovering the neural mechanism underlying disorders, implying its powerful potential
value in clinical applications. Concerning the existing problems in the methodology and ap-
plications of DSI technology, we provide the following suggestions: (1) compressed sensing
in the DSI sampling scheme may be an efficient and promising method for scanning-time
reduction; (2) the PDF includes more information than the ODF in the DSI post-processing
and should be extended in application studies; and (3) DSI studies in clinical diseases need
more samples to confirm the reliability and reproducibility of findings. Collectively, the
current DSI application studies are emerging rapidly, but those related to methodology
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are relatively scarce. In the future, we need to pay more attention to the existing problems
of the DSI methodology and be more cautious about the findings concerning the clinical
application of DSI.
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