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Abstract: Status epilepticus (SE) is a life-threatening condition and medical emergency which can
have lifelong consequences, including neuronal death and alteration of neuronal networks, resulting
in long-term neurologic and cognitive deficits in children. When standard pharmacological treatment
for SE is not successful in controlling seizures, the condition evolves to refractory SE (rSE) and
finally to super-refractory SE (srSE) if it exceeds 24 h despite using anaesthetics. In this systematic
review, we present literature data on the potential uses of clinical neuromodulation techniques for the
management of srSE in children, including electroconvulsive therapy, vagus nerve stimulation, and
deep brain stimulation. The evaluation of these techniques is limited by the small number of published
paediatric cases (n = 25, one with two techniques) in peer-reviewed articles (n = 18). Although
neuromodulation strategies have not been tested through randomised, prospective controlled clinical
trials, this review presents the existing data and the potential benefits of neuromodulation therapy,
suggesting that these techniques, when available, could be considered at earlier stages within the
course of srSE intending to prevent long-term neurologic complications. Clinical trials aiming to
establish whether early intervention can prevent long-term sequelae are necessary in order to establish
the potential clinical value of neuromodulation techniques for the treatment of srSE in children.

Keywords: super-refractory status epilepticus; neuromodulation; electroconvulsive therapy; deep
brain stimulation; vagus nerve stimulation; children epilepsy

1. Introduction

Status epilepticus (SE) has been defined as “a condition characterized by an epileptic
seizure that is sufficiently prolonged or repeated at sufficiently brief intervals to produce
an unvarying and enduring epileptic condition” [1]. SE is a life-threatening condition
and medical emergency, which has an incidence of 14.3–28.4 per 100,000 people per year,
affecting all ages, particularly children and the elderly [2]. It is also a condition that,
depending on the type and duration of seizures, can have lifelong consequences, including
neuronal death and alteration of neuronal networks resulting in long-term neurological
and cognitive deficits [1]. A duration longer than 5 min, beyond which, a long seizure or
cluster of seizures (without returning to baseline) occurs, is considered as SE. It has been
reported in animal models that durations longer than 30 min induce neuronal damage [3],
and these timeframes may be variable depending on the type of SE.

Two different types of status epilepticus (SE) have been described: convulsive and
nonconvulsive. Convulsive SE shows tonic–clonic, tonic, clonic, or myoclonic manifes-
tations. [4–7]. Nonconvulsive SE (NCSE) is further classified as generalised, focal, and
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unknown, depending on the EEG findings. In cases of NCSE with coma and persisting
behavioural or awareness changes, the EEG is the most accurate method for appropriate
diagnosis [1,8,9].

SE is an emergency condition and guidelines for its management are well elaborated
for the choice of first, second-, and third-line drugs of treatment. Benzodiazepines are
suggested as the first line of treatment for SE [10]. NICE guidelines suggest intravenous
lorazepam, but rectal diazepam or buccal midazolam can also be considered [10,11]. If the
SE is not resolved, phenytoin, fosphenytoin, levetiracetam, lacosamide, or phenobarbital
can be considered for sustained control. General anaesthesia with propofol, midazolam,
or thiopental sodium can be tried in refractory cases of SE (rSE), and super-refractory SE
(srSE) is established when it outlasts 24 h of anaesthesia [12,13]. srSE has high mortality
and morbidity rates [12,14]. To date, there are no class I data to support recommendations
for most antiepileptic drugs for established, refractory, and super-refractory SE.

Timings of SE treatment have been suggested by Shorvon and Ferlisi [12] and Trinka
et al. [13], but without clear time recommendations for other types of treatments for rSE.
Alternative non-pharmacological techniques have been suggested for rSE in children,
including plasmapheresis, ketogenic diet, hypothermia, immunomodulation, and neuro-
modulation [15,16]. Plasmapheresis is a technique that has been found useful in generalised
rSE, largely in adult populations [17]. In paediatric cohorts, only 7 out of 37 children ap-
peared to achieve seizure control [18]. A ketogenic diet has been reported in small case
series and larger reports (n = 8–17), showing electrographic seizure resolution within 7 days
in 20–90% of patients [15]. A recent clinical trial with hypothermia in an adult population
did not find efficacy in srSE compared with placebo [19].

Invasive and non-invasive neuromodulation techniques have been suggested as po-
tential treatments capable of complementing standard pharmacological treatment [20] for
srSE. A small number of case reports using neuromodulation techniques have shown some
promising results controlling srSE when conventional treatment has failed in children and
adults [21].

1.1. Non-Invasive Neuromodulation Techniques

Electroconvulsive therapy (ECT) with transcutaneous electrical stimulation of the
brain cortex under EEG monitoring is considered a potential treatment for severe major
depression and other mental disorders [22] and has also been suggested as a potential
treatment for rSE [23]. The technique consists of several sessions of ECT with stimulation
intensity and duration parameters, either based on the patient’s seizure threshold or a
standard protocol [22,24]. Electrodes can be placed in several positions of the head, either
bitemporal, right unilateral (left in left-handed), or bifrontal, depending on the clinical
aims [25] (Figure 1A). A serious side effect of ECT is amnesia, retrograde, anterograde, or
both, usually improving within 2 weeks [24,26], but a close monitoring of cognitive function
is needed to prevent adverse cognitive effects [22]. Details on the technique, the parameters,
and the possible side effects have been described in several previous publications [19–23].

Repetitive TMS (rTMS) has recently been considered a diagnostic and potential treat-
ment tool for neurological and psychiatric disorders, including depression, epilepsy, and
pain [27–29]. rTMS relies on the application of trains of magnetic pulses over the patient’s
head, depolarising neurons in the target area [30], and can initially reduce seizures in
patients with drug-resistant epilepsy. Transcranial direct current stimulation (tDCS) is a
painless, non-invasive stimulation technique that uses polarity-specific electric current to
modulate brain excitability and has been used in several conditions [31], including patients
with mesial temporal lobe epilepsy [32]. rTMS and tDCS have been reported only for the
treatment of srSE in adults and thus, details are not included in the present review.
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Figure 1. Invasive and non-invasive neuromodulation techniques tried in children with srSE. (A) 
Electrodes and typical positions for non-invasive electroconvulsive therapy (ECT); (B) X-ray show-
ing vagus nerve stimulation (VNS) in a 14 y/o child. The white arrow indicates the position of the 
stimulating contacts in the vagus nerve; (C) X-ray showing deep brain stimulation (DBS) in a 12 y/o 
child. The white arrow indicates the DBS position in the centromedian thalamic nucleus in the brain. 
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equipment consists of a VNS pulse generator surgically implanted on the left subclavicu-
lar area, including a battery and a 43 cm lead wire with two platinum/iridium helical elec-
trodes (Figure 1B). An external programming system is used to modify stimulation pa-
rameters [33,34]. A recent meta-analysis indicates that VNS interrupts srSE in 74% of pa-
tients, though the article raises concerns about reporting bias [35]. Reported VNS side ef-
fects include dyspnoea, dysphagia, and hoarseness due to vagus nerve damage; brady-
cardia/asystole during the implantation procedure; postsurgical infections; obstructive 
sleep apnoea; and tonsillar pain [34,36]. 

Deep brain stimulation (DBS) includes the implantation of multi-electrode bundles 
in the brain which are connected to a pulse generator to deliver electrical pulses to mod-
ulate the implanted region and functionally connected areas (Figure 1C). Deep brain stim-
ulation is now a technique used worldwide, particularly for the treatment of movement 
disorders’, but also used in obsessive–compulsive disorder, depression, Tourette syn-
drome, headache, chronic pain, eating disorders, and epilepsy [37–39]. In patients with 
refractory epilepsy, DBS has been tried for different brain regions, particularly the anterior 
and the centromedian nucleus of the thalamus [40,41]. The SANTE trial studied the effects 

Figure 1. Invasive and non-invasive neuromodulation techniques tried in children with srSE. (A) Elec-
trodes and typical positions for non-invasive electroconvulsive therapy (ECT); (B) X-ray showing
vagus nerve stimulation (VNS) in a 14 y/o child. The white arrow indicates the position of the
stimulating contacts in the vagus nerve; (C) X-ray showing deep brain stimulation (DBS) in a 12 y/o
child. The white arrow indicates the DBS position in the centromedian thalamic nucleus in the brain.

1.2. Invasive Neuromodulation Techniques

Vagal nerve stimulation (VNS) is a NICE-approved procedure for children and adults
suffering from drug-resistant epilepsy as an add-on to antiepileptic medication [11]. VNS
equipment consists of a VNS pulse generator surgically implanted on the left subclavic-
ular area, including a battery and a 43 cm lead wire with two platinum/iridium helical
electrodes (Figure 1B). An external programming system is used to modify stimulation
parameters [33,34]. A recent meta-analysis indicates that VNS interrupts srSE in 74% of
patients, though the article raises concerns about reporting bias [35]. Reported VNS side
effects include dyspnoea, dysphagia, and hoarseness due to vagus nerve damage; brady-
cardia/asystole during the implantation procedure; postsurgical infections; obstructive
sleep apnoea; and tonsillar pain [34,36].

Deep brain stimulation (DBS) includes the implantation of multi-electrode bundles in
the brain which are connected to a pulse generator to deliver electrical pulses to modulate
the implanted region and functionally connected areas (Figure 1C). Deep brain stimulation
is now a technique used worldwide, particularly for the treatment of movement disorders’,
but also used in obsessive–compulsive disorder, depression, Tourette syndrome, headache,
chronic pain, eating disorders, and epilepsy [37–39]. In patients with refractory epilepsy,
DBS has been tried for different brain regions, particularly the anterior and the centro-
median nucleus of the thalamus [40,41]. The SANTE trial studied the effects of anterior
nucleus DBS in patients with focal seizures [41] while centromedian DBS has been mainly
tried in patients with generalised epilepsy [42]. Potential DBS side effects include infection,
skin erosion, lead migration or fracture, and malfunction of the DBS pulse generator [43].
DBS stimulation-related side effects depend on the area stimulated, the most common
being paraesthesia related to DBS intensity [41,44,45].
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During the last 4 years, another invasive neurostimulation/neuromodulation has also
been described in srSE. This is the responsive neurostimulation (RNS) and consists of depth
or subdural electrodes placed in or over one or two predetermined seizure foci. These
are connected to a programmable device which is cranially implanted and can provide
electrical stimulation in response to detected ictal electrocorticographic activity [46]. About
10 cases have been described and the results are positive [47–50], and likely more cases will
be described soon, but the published peer-reviewed cases regard adults and thus further
details were considered out of scope of this review for the paediatric population.

Although neuromodulation has potential in the management of epilepsy and srSE,
there have been only a few studies in children showing the potential benefits of these tech-
niques after conventional medical treatment for srSE has failed. This systematic review aims
at evaluating the potential benefits of neuromodulation for srSE in the paediatric population.

2. Materials and Methods

This systematic review was performed in line with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) Guidelines [51]. A comprehensive
literature review was performed using PubMed and MEDLINE to find relevant articles
published from 1946 to August 2022. The selection criteria included all relevant subject
headings and freeform texts relating to neuromodulation techniques and paediatric status
epilepticus. The following search strategy for PubMed was performed on 15 September
2021: (VNS OR vagal nerve stimulation OR vagus nerve stimulation) OR (transcranial
magnetic stimulation OR TMS) OR (electroconvulsive therapy OR ECT) OR (deep brain
stimulation OR DBS)) AND ((status epilepticus OR epilepsia partialis continua OR re-
fractory status epilepticus OR rSE OR super-refractory status epilepticus OR srSE) OR
(“Febrile infection-related epilepsy syndrome” OR “FIRES”) OR (“New-onset refractory
status epilepticus” OR “NORSE”)). A similar search strategy was used for MEDLINE
using subject headings and freeform text on the same day. All articles were imported
for screening to Covidence (© Cochrane). Duplicates were automatically removed before
initial screening by the software. Title and abstract screening and full-text assessment were
performed independently by two reviewers (H.L.P. and A.V.). Articles in English referring
to neuromodulation (VNS, TMS, ECT, or DBS) and status epilepticus lasting more than 24
h with anaesthesia in patients <18 years were included. Original articles, case studies, case
reports, and letters to the editor were included while conference articles, literature reviews,
and systematic reviews were excluded. Conflicts in screening and full-text assessment were
resolved by three reviewers (H.L.P., A.V., and I.S.).

Studies should give an estimation of the number of days between SE onset and initi-
ation of neuromodulation therapy, an estimation of the number of days from neuromod-
ulation to any changes in patient condition, and the final results of the neuromodulation
therapy. Neuromodulation therapy was regarded as successful when it led to cessation of
both clinical and electrographic SE, and when the patient was stable enough to be trans-
ferred out of ICU. This data was then converted into graphs to illustrate the timeline for all
relevant patients. Apart from the timeline details, data included demographics (patient’s
age and gender), type of neuromodulation, and epilepsy before the onset of SE.

3. Results

The Prisma flowchart is presented in Figure 2. After excluding duplications and
papers not fulfilling the inclusion criteria, 18 references were included for further analysis
in the present review. The neuromodulation techniques reviewed were VNS (n = 15), DBS
(n = 6), and ECT (n = 5). The mean age of the patients was 7.4 years, ranging from 0.5 to
17 years. Twelve out of twenty-five patients were female.
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Figure 2. PRISMA 2020 flow diagram for new systematic reviews. * 6 studies reported epilepsia par-
tialis continua, 1 study reported asleep electrographic status epilepticus, 1 study reported Rasmussen’s
encephalitis, and 3 studies where neuromodulation did not directly treat the status epilepticus.

Basic demographics of patients are illustrated in Tables 1 and 2. Different neuromodu-
lation protocols for srSE in children have been described, with heterogeneous approaches
for results description.

Table 1. Basic demographic including age, gender, and type of neuromodulation. * One patient [52]
was reported in both VNS and DBS as the patient underwent both neuromodulation techniques. VNS
did not offer benefits, and DBS caused resolution of super-refractory status epilepticus.

Number of Patients Male Female Stimulation Age (Years) De Novo Post Febrile

ECT 5 2 3 6.8 (3−–−16) 3 2

VNS 15 * 8 7 5.73 (0.5–16) 3 3

DBS 6 * 3 3 12.5 (5–17) 4 3

All 25 13 12 7.4 (0.5–17) 9 7
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Table 2. Outcomes following neuromodulation. Stim = stimulation; SE = status epilepticus. * One
patient [53] was removed from calculation of “Duration of stimulation before SE resolution” as it was
not adequately reported. ** Four patients ([54]; [pt 4] [55]; [pt 3 and pt 4] [56]) were removed from
calculation of “Duration of SE before stimulation” as it was not adequately reported. *** 3 patients
died of unrelated causes after SE resolved ([57]; [pt 1 and pt 2] [58]).

SE Duration before
Stim (Days)

Stim Duration before
SE Resolution (Days)

Recovered from
SE

Severe Sequelae
Post-SE Died during SE

ECT 53.63 (14–120)
N = 5

4.75 (0–12) *
N = 4 5 3 0

VNS 23.9 (5–66)
N = 11 **

6.2 (0–20)
N = 12 12 0 2 ***

DBS 49 (27–86)
N = 6

7.7 (0–29)
N = 6 6 1 0

All 37.5 (5–120)
N = 21

6.3 (0–29) *
N = 22 23 4 2

3.1. Electroconvulsive Technique (ECT)

ECT was used in five patients reported in five publications (Figure 3) [53,59–62]. srSE
was focal in all patients, showing secondary generalisation in two. In three patients, srSE
occurred de novo and in two was due to FIRES. MRI was not reported in one patient,
showed bilateral polymicrogyria in one, and was initially normal in three (and later in the
course of the srSE showed atrophy in one patient). ECT was applied between bitemporal
electrodes in two patients and between frontotemporal electrodes in two patients, and
electrode positions were not specified in one patient. The number and frequency of ECT
sessions varied as seizure control was attempted. The number of days that each patient
had been on srSE before ECT was started was 14, 24, 50, 60, and 120 days. Three patients
had ECT initially on a number of consecutive days (7 or 12), one had five ECT sessions
within 9 days whereas the fifth patient had ECT in two pairs of two consecutive days
each, separated by 5 days. The number of days of ECT before srSE remission was 2, 5 (in
two cases), 7, and 12 days. srSE stopped on the last day of ECT in three patients, while
in two patients srSE stopped 4 days before the end of ECT was completed (after 29 and
125 days of SE). Therefore, ECT was considered to have contributed to stopping srSE in
all five reported cases. Two patients remained out of the srSE without sequelae (one had
learning difficulties beforehand), one had right temporal lobe surgery for focal cortical
dysplasia, one developed severe epileptic encephalopathy, and one remained seizure-free
but with severe motor dysfunction and cognitive decline.

3.2. Vagus Nerve Stimulation (VNS)

Fifteen patients had VNS implantations for srSE in nine articles (Figure 4) [52,54–58,63–65].
In three patients, srSE occurred de novo due to FIRES. srSE was focal or secondarily
generalised in 10 patients, myoclonic in one, spasms in two, primarily generalised (tonic,
T-C, myoclonic, absence seizures) in one, and GTCS without further explanation in one [65].
Identified aetiologies among the focal srSE included malignant partial epilepsy of infancy
in four patients (in one patient due to mother’s heroin abuse in pregnancy), neonatal
venous thrombosis in one patient, FIRES in three, hemimegalencephaly in one, and one
patient had bilateral frontal simplification of cortical gyri together with progressive diffuse
cerebral atrophy. Spasms were due to non-ketotic hyperglycinemia in one patient and
to microdeletion of 1q43q44 in another patient. Head MRI was normal in seven patients
and showed cerebral atrophy/microcephaly in four patients, hemimegalencephaly in one,
thalamic lesion/stroke in one, and there was no information about imaging in two patients.
There was significant heterogeneity among the VNS parameters. The amplitude varied
from 0.25 mA to 3 mA, usually with progressive increments during the course of the
treatment until srSE improvement was achieved. The “on” time was 7 s in one case, 14 s
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in another case, and 30 s in the remaining patients. The “off” period was between 1.8 and
5 min.

Brain Sci. 2023, 13, x FOR PEER REVIEW 7 of 15 
 

 

Figure 3. Timeline of srSE patients treated with ECT. (? = the time period is estimated but not clearly 
stated). 

3.2. Vagus Nerve Stimulation (VNS) 
Fifteen patients had VNS implantations for srSE in nine articles (Figure 4) [52,54–

58,63–65]. In three patients, srSE occurred de novo due to FIRES. srSE was focal or sec-
ondarily generalised in 10 patients, myoclonic in one, spasms in two, primarily general-
ised (tonic, T-C, myoclonic, absence seizures) in one, and GTCS without further explana-
tion in one [65]. Identified aetiologies among the focal srSE included malignant partial 
epilepsy of infancy in four patients (in one patient due to mother’s heroin abuse in preg-
nancy), neonatal venous thrombosis in one patient, FIRES in three, hemimegalencephaly 
in one, and one patient had bilateral frontal simplification of cortical gyri together with 
progressive diffuse cerebral atrophy. Spasms were due to non-ketotic hyperglycinemia in 
one patient and to microdeletion of 1q43q44 in another patient. Head MRI was normal in 
seven patients and showed cerebral atrophy/microcephaly in four patients, hemimegalen-
cephaly in one, thalamic lesion/stroke in one, and there was no information about imaging 
in two patients. There was significant heterogeneity among the VNS parameters. The am-
plitude varied from 0.25 mA to 3 mA, usually with progressive increments during the 
course of the treatment until srSE improvement was achieved. The “on” time was 7 s in 
one case, 14 s in another case, and 30 s in the remaining patients. The “off” period was 
between 1.8 and 5 min. 

Figure 3. Timeline of srSE patients treated with ECT. (? = the time period is estimated but not clearly
stated) [53,59–62].

Among the fifteen patients with VNS, the srSE was resolved in twelve. Two patients re-
covered without seizures, seven recovered from srSE remaining with seizures and learning
difficulties due to underlying conditions, and three patients recovered but died of unre-
lated causes (dilated cardiomyopathy 5 months late, paediatric acute respiratory distress
syndrome 2.5 years later, and tracheostomy-related late bleeding). Three patients continued
with srSE after VNS implantation (two died and one was implanted with CMN DBS).



Brain Sci. 2023, 13, 1527 8 of 15Brain Sci. 2023, 13, x FOR PEER REVIEW 8 of 15 
 

 
Figure 4. Timeline of srSE patients treated with VNS (* about 30 days but not clearly stated; ? = the 
time period is estimated but not clearly stated). 

Among the fifteen patients with VNS, the srSE was resolved in twelve. Two patients 
recovered without seizures, seven recovered from srSE remaining with seizures and learn-
ing difficulties due to underlying conditions, and three patients recovered but died of un-
related causes (dilated cardiomyopathy 5 months late, paediatric acute respiratory dis-
tress syndrome 2.5 years later, and tracheostomy-related late bleeding). Three patients 
continued with srSE after VNS implantation (two died and one was implanted with CMN 
DBS). 

3.3. Deep Brain Stimulation (DBS) 
DBS was performed on six patients reported in five articles (Figure 5) [52,66–69]. In 

four patients, srSE occurred de novo, due to FIRES in three cases. The centromedian 

Figure 4. Timeline of srSE patients treated with VNS (* about 30 days but not clearly stated; ? = the
time period is estimated but not clearly stated) [52,54–58,63–65].

3.3. Deep Brain Stimulation (DBS)

DBS was performed on six patients reported in five articles (Figure 5) [52,66–69]. In
four patients, srSE occurred de novo, due to FIRES in three cases. The centromedian
nucleus was stimulated in five patients and the anterior nucleus in one. srSE was focal in
five patients, requiring intubation and induced coma in one, and generalised tonic–clonic
in one. Head MRI was reported in five patients and was normal in three, showed severe
cytotoxic oedema in one, and another patient showed signal abnormalities in basal ganglia,
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external capsule, and cortex. Four patients had new onset SE without a previous history
of seizures or epilepsy (de novo), including three patients where srSE followed febrile
illness, suggesting FIRES. Four patients underwent trials of cessation of the stimulation
after an initial improvement (stimulation period A) in order to demonstrate the stimulation
effect. As SE returned, stimulation was then re-started (stimulation period B). The duration
of stimulation period A was 15, 18, 22, and 67 days. After stimulation period B, patients
were discharged with the stimulator on. The stimulation frequencies were 6 Hz (in three
patients), 145 Hz, and 180 Hz. DBS had immediate effects on srSE in two patients. In the
remaining four children, improvement occurred after 2, 4, 6, and 30 days of stimulation.
SrSE resolved in all patients; one patient came back to her previous number of seizures,
four children remained with seizures, and one child remained in a vegetative state.
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In summary, 23 out of the 25 children treated with neuromodulation techniques
recovered from srSE (Table 2). Among these children, twelve recovered without new
medical conditions, four recovered with severe sequelae (epileptic encephalopathy or
cognitive/motor decline), four developed new seizures after the srSE, and three died for
unrelated reasons.

4. Discussion

Status epilepticus (SE) is a medical emergency with high mortality and morbidity
rates [70–72]. The treatment protocols for the early management of SE are well standard-
ised [12]. However, refractory and super-refractory SE (rSE and srSE) are often associated
with significant and irreversible brain damage whose severity is related to SE duration and
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aetiology. A well-defined, effective, and fast-acting therapeutic protocol would be highly
desirable to prevent potential longstanding neurologic complications. In this review, we
present data showing that neuromodulation could be a potentially efficacious treatment
option for shortening rSE and srSE duration in children when the routinely used 1st, 2nd,
and 3rd line treatments have failed.

The features of status epilepticus in children can be slightly different from those in
adults. As shown in the presented data, srSE in children is often caused by genetic/metabolic
conditions, brain malformations, birth injuries, and febrile infection-related epilepsy syn-
drome (FIRES). The latter is a rare, life-threatening condition that presents with a non-
specific febrile illness followed by refractory status epilepticus within 24 h to 2 weeks of the
onset of the febrile illness in previously healthy children, with a mortality of up to 30% [73].
Its pathogenesis is unclear, but autoimmune mechanisms have been proposed [74], and
a recent international consensus recommendation suggests that first-line immunological
treatment should be started during the first 72 h [75].

There are no clinical trials performed to assess the efficacy of any of the neuromod-
ulation techniques on srSE. The literature shows that three different neuromodulation
techniques, one non-invasive (ECT) and two implantable devices (VNS and DBS), have
been sporadically tried and could be beneficial in cases of rSE and srSE in children. How-
ever, the number of reported cases remains small, there is significant diversity regarding
the cause of the srSE, and the mechanisms by which neuromodulation affects SE are not
elucidated. DBS and ECT appear to have provided benefit in cases with the FIRES condition,
while only one out of the three cases published with FIRES and VNS showed resolution of
the srSE. All three techniques share unclear mechanisms of action. Animal studies suggest
that ECT alters biological processes such as neuroplasticity and neurotransmitter function
and might cause internalisation of NMDA receptors or other epigenetic effects [76,77].

Several studies suggest that VNS can modify norepinephrine and serotonin levels at
the locus coeruleus and dorsal raphe nuclei [78]. It has also been suggested that VNS can
cause changes in limbic structures’ functions modifying GABA and glutamate concentra-
tions at nucleus tractus solitaries [79]. Similar mechanisms may be effective against srSE.

The main advantage of DBS is that the electrical stimulation can be applied locally to
specific brain areas using implanted intracranial electrodes and that different stimulation
parameters can be applied at the implanted region. In some published cases, electrode im-
plantation probably induced a microlesion effect which was associated with major seizure
improvement [39,80]. It has also been proposed that upon high-frequency stimulation
(>60 Hz), inhibition of the stimulated area might be mediated by activation of GABAer-
gic afferents or inactivation of voltage-gated currents [39,81]. Moreover, low-frequency
stimulation (6 Hz) of the centromedian thalamic nucleus has recently been reported to
be useful in reducing the severity and frequency of focal seizures in children and adults
with srSE [66,67,82], probably via neuromodulation of cortical structures through the
thalamocortical pathway [83].

At present, there is no consensus protocol for the use of ECT, VNS, and DBS in the
management of rSE/srSE, and existing evidence is based on a limited number of reported
patients. Not all neuromodulation techniques are clinically available in most centres, and
they are only considered at late stages of rSE/srSE when standard treatment has failed. As
brain damage caused by SE can start as early as 30 min from SE onset [3], the appropriate
time for the application of neuromodulation for the treatment of srSE in children is a
question of major importance.

Even though published paediatric cases show that neuromodulation was applied as a
last-resort treatment, the results appear encouraging. Neuromodulation techniques were
applied between 5 [56] and 120 days [59] after SE onset, and substantial brain damage may
have already been present in most cases by that time. Regarding the use of non-invasive
neuromodulation techniques, the use of ECT in children has given limited but promising
results, suggesting that the non-invasive safer techniques could be considered earlier in
the course of srSE. Despite the side effects and the invasive nature of VNS and DBS, such
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damage is unlikely to be induced by neuromodulation, as similar techniques are safe
when used for the chronic treatment of epilepsy or other brain conditions [22,39,84,85].
Unfortunately, differences in the timing to apply neuromodulation techniques in different
centres/cases do not allow reliable conclusions on the optimal timing for starting this
treatment modality.

Regarding invasive procedures, the present series suggests that the effects of DBS
and VNS can occur within the first week of treatment. Nonetheless, DBS was used in
fewer children, and VNS appears to have been used in a higher number of patients with
severe epilepsy (migrating epilepsy, severe cortical malformations, birth injury). DBS
implantation led to improvement of srSE, with worsening in seizures when the DBS was
turned off [66,67,69,82,86].

Even though the presented data look encouraging, clinical guidance cannot be based
on published case reports due to the risk of significant bias [87]. For instance, it is common
to find successful neuromodulation cases for srSE published as single case reports, but
unsuccessful cases are usually published as part of a case series [56,88] or are not submitted
for publication.

As suggested by Rossetti and Lowenstein [20], neuromodulation could be complemen-
tary to pharmacological treatment for the management of rSE. Non-invasive techniques
such as ECT, tDCS, or rTMS could be considered as add-on treatments after the failure of
standard treatment. If no improvement is noted, invasive techniques (DBS and VNS), when
available, could be discussed and planned in a timely manner.

5. Conclusions

The evaluation of neuromodulation techniques for the treatment of srSE in children is
limited by the small number of published cases and the variability of neuromodulation
protocols used for the treatment of srSE. Although neuromodulation strategies have not
been tested through randomised, prospective controlled clinical trials, this review presents
the existing data and the potential benefits of neuromodulation therapy, suggesting that
these techniques could be considered at earlier stages within the course of srSE intending
to prevent long-term neurologic complications. Clinical trials aiming to establish whether
early intervention can prevent long-term sequelae are necessary to establish the potential
clinical value of neuromodulation techniques for the treatment of srSE in children.
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