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Abstract: This systematic review was conducted to provide an overview of the effects of chronic ankle
instability (CAI) on the biomechanical organization of gait initiation. Gait initiation is a classical model
used in the literature to investigate postural control in healthy and pathological individuals. PubMed,
ScienceDirect, Scopus, Web of Science, and Google Scholar were searched for relevant articles. Eligible
studies were screened and data extracted by two independent reviewers. An evaluation of the quality
of the studies was performed using the Downs and Black checklist. A total of 878 articles were found
in the initial search, but only six studies met the inclusion criteria. The findings from the literature
suggest that CAI affects the characteristics of gait initiation. Specifically, individuals with CAI
exhibit notable differences in reaction time, the spatiotemporal parameters of anticipatory postural
adjustments (APAs) and step execution, ankle–foot kinematics, and muscle activation compared
to healthy controls. In particular, the observed differences in APA patterns associated with gait
initiation suggest the presence of supraspinal motor control alterations in individuals with CAI.
These findings may provide valuable information for the rehabilitation of these patients. However,
the limited evidence available calls for caution in interpreting the results and underscores the need
for further research.

Keywords: ankle injury; anticipatory postural adjustments; muscle activity; center of pressure;
gait; locomotion

1. Introduction

Lateral ankle sprains (LASs) are one of the most common musculoskeletal injuries in
athletes and the general population [1,2]. Although the majority of people recover from
their first LAS (often referred to as “copers” [3–6]), it has been reported that up to 40%
of injured individuals develop chronic ankle instability (CAI) [7,8]. CAI is characterized
by recurrent ankle sprains and a subjective feeling of the ankle “giving way” and also
by residual symptoms (pain, weakness, and an altered range of motion in the ankle) that
persist for at least one year following the initial injury [8,9]. CAI leads to numerous negative
health consequences, including a decrease in the quality of life, reduced physical activity
levels, and an increased risk of developing posttraumatic ankle osteoarthritis [9,10]. The
prevalence and associated consequences make CAI a major public health issue.

Several pieces of evidence suggest that CAI originates from mechanical and sensori-
motor impairments [8,9]. Mechanical impairments include pathologic joint laxity due to
the loss of the ligamentous complex function and also arthrokinematic and osteokinematic
restrictions [11,12]. Sensorimotor alterations (also called functional alterations) are charac-
terized by diminished somatosensation, the presence of pain, altered reflexes, and muscle
weakness [8]. Although both the mechanical and sensorimotor alterations may be linked, it
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is important to note that they can exist independently of each other [13]. Furthermore, it
has been shown these CAI-related impairments lead to altered balance control and altered
movement patterns in a high number of functional tasks, including walking, landing, and
cutting [14–18]. As a result, CAI affects the ability to perform daily activities, and can also
lead to an increased risk of falls [19]. Investigating the alterations elicited by CAI in the
performance of these daily activities can be helpful in designing interventions aimed at
restoring normal movement patterns and reducing the risk of further injuries.

Gait initiation, which represents the transition from a quiet stance to steady-state walking,
is a functional task of daily living [20–22]. It is also a classical model used in the literature
to investigate postural control in healthy and pathological individuals [23]. This task can be
divided into two distinct phases: a postural phase preceding the heel-off of the swing leg,
corresponding to the so-called anticipatory postural adjustments (APAs), followed by a step
execution phase ending at the time of swing foot contact [24–26]. The APAs are centrally
initiated dynamic phenomena occurring before the onset of the intentional movement [20,25].
During gait initiation, these APAs are manifested as a shift of the center of pressure (COP)
backward and laterally toward the swing foot, acting to propel the center of mass (COM)
forward and toward the stance-leg side [25–27]. It is generally admitted that the goals
of these anticipatory dynamic phenomena are twofold: (i) generate the initial propulsive
forces necessary to reach the intended velocity progression (or “motor performance”) and
(ii) promote postural balance during the subsequent step execution [23,28–31]. Postural
balance is indeed particularly challenged during step execution due to the natural tendency of
the COM to fall laterally toward the swing leg side under gravity’s effect. A modeling study
recently showed that APA acts to attenuate this lateral fall by shifting the COM nearly above
the stance foot at the time of step execution [32].

The APAs are sub-served by a motor synergy characterized by a complex sequence of
muscle activation/deactivation in the lower limbs. Ankle muscles play a major role in this
motor synergy. Consequently, any alteration of muscle activity in these joints may have
negative consequences on motor performance and/or postural balance. In healthy subjects,
the anticipatory backward COP shift has been ascribed to the bilateral deactivation of the
soleus, followed by the strong activation of both tibialis anteriors [33]. The anticipatory
lateral COP shift has been classically attributed to the loading of the swing leg associated
with the activation of swing hip adductors [23]. Recent studies reported that the slight
flexion of the stance knee and hip during APA also contributes to this action. The flexion
of the stance knee is favored by bilateral soleus silencing and greater ipsilateral tibialis
anterior activity with respect to contralateral activity, while stance hip flexion is associated
with activation of the stance rectus femoris [31].

Quantitative analysis of APAs and muscular activity during gait initiation can provide
important insights into the supraspinal motor control mechanisms [22]. Previous research
has identified altered neuromuscular strategies in individuals with CAI, including changes
in muscle activation patterns during walking, landing, and cutting tasks [34–36]. Specifi-
cally, some studies have observed decreased muscle activity in the tibialis anterior, medial
gastrocnemius, and fibularis longus [36], while others have reported increased muscle
activation in these muscles [35]. Although some reviews have examined the influence of
CAI on the biomechanics of walking [37,38] or other functional tasks [39], to the best of our
knowledge, no study has systematically reviewed the effects of CAI on the biomechanical
organization of gait initiation.

The aim of this article was thus to provide an up-to-date literature review of studies
focusing on this research question. Understanding how CAI affects gait initiation may
contribute to a better understanding of the central mechanisms underlying the development
of CAI and may provide clinicians valuable information for the development of targeted
rehabilitation therapies [40,41].
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2. Materials and Methods

This review was conducted following the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) recommendations [42]. The study protocol was
registered on the Open Science Framework on 22 October 2023 (https://doi.org/10.17605
/OSF.IO/7PTKY).

2.1. Search Strategy

An electronic database search was performed by the primary investigator (S.Z.) be-
tween 1 June and 18 July 2022 without publication status or publication date restrictions.
Five scientific databases were searched: PubMed, ScienceDirect, Scopus, Web of Science,
and Google Scholar. Only articles written in English were reviewed. The search terms
included: (“chronic ankle instability” OR “ankle instability”) AND (“initiation of gait”
OR “gait initiation”). Articles identified from the search were stored and managed using
EndNote X8 throughout the review process.

2.2. Eligibility Criteria
2.2.1. Inclusion Criteria

Only peer-reviewed articles meeting the following criteria were included: (1) studies
including a group of participants who were diagnosed with CAI (functional or mechanical
instability); (2) studies comparing participants with CAI with healthy controls, i.e., without
a history of ankle sprain; and (3) studies including either muscle activity, kinematics, or
kinetics during gait initiation as main outcome measures.

2.2.2. Exclusion Criteria

Articles were excluded if: (1) participants had any disorder or pathology other than
CAI; (2) studies involved a treatment protocol without preintervention comparison between
the CAI and the control groups; (3) studies did not investigate gait initiation; or (4) studies
were case studies, case reports, conference papers, or book chapters.

2.3. Selection Process

After duplicates were manually removed from the EndNote library, all articles were
independently screened by two independent reviewers (M.Y. and S.Z.) according to the
eligibility criteria. The selection was conducted first considering the titles and abstracts
of the articles. Then, the full texts were checked to examine whether the articles met the
inclusion criteria. Reference lists were manually checked to identify additional relevant
articles. Any disagreement during the selection process was resolved by a consensus or, if
necessary, an additional examiner.

2.4. Data Collection Process and Data Extraction

Two reviewers (M.Y. and S.Z.) independently extracted the data. The data extracted
included study design, population (sample size and demographic information of partici-
pants like gender and age), experimental protocol, outcome measures, and key findings.
The extracted data from each study are reported in Table 1.

https://doi.org/10.17605/OSF.IO/7PTKY
https://doi.org/10.17605/OSF.IO/7PTKY
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Table 1. Characteristics of the included studies.

Study Study Design Participants Protocol Outcome Measures Key Findings

Ebrahimabadi et al.,
2017 [22]

Cross-sectional study 22 CAI (F:22, 22.4 ± 1.5 yrs)
22 healthy

(F:22, 22.7 ± 1.8 yrs)

Triggered GI at maximum
speed with both the injured

and non-injured limb.

Displacement and velocity of
the COP during APA and

execution phases.

Peak ML COP displacement
toward the swing leg in the

APA phase of GI was reduced
in CAI. Forward COP

velocity was increased in CAI
in the execution phase of GI.

Ebrahimabadi et al.,
2018 [26]

Pilot cross-sectional study 20 CAI (21.4 ± 1.3 yrs)
20 healthy (21.7 ± 1.5 yrs)

Triggered GI at maximum
speed in 3 directions

(forward, 30◦ medial, and 30◦

lateral) with both the injured
and non-injured limb.

COP and COM kinematics. AP COM velocity at the end
of APA did not differ

between CAI and controls.
Peak ML COP shift and

vertical COM velocity during
APA were decreased in CAI.

Ebrahimabadi et al.,
2022 [29]

Cross-sectional study 25 CAI (F:20/M:5,
22.01 ± 1.08 yrs)

25 healthy (F:21/M:4,
22.90 ± 1.61 yrs)

Triggered and self-generated
GI at maximum speed in 3

directions (forward, 30◦

medial, and 30◦ lateral) with
the non-injured limb.

Reaction time and APA phase
durations, COP displacement,
and COM velocity during the

APA phase.

Longer reaction time and
shorter APA duration (7%) in

CAI. No difference in COP
displacement and COM
velocity between CAI

and controls.
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Table 1. Cont.

Study Study Design Participants Protocol Outcome Measures Key Findings

Fraser et al.,
2019 [21]

Cross-sectional study 22 Control (F:13/M:9,
19.6 ± 0.9 yrs)

17 LAS (F:9/M:8,
21.0 ± 2.3 yrs)

21 Coper (F:13/M:8,
20.8 ± 2.9 yrs)

20 CAI (F:15/M:5,
19.8 ± 1.3 yrs)

GI at a self-selected speed
with the injured limb.

Three-dimensional
kinematics of the hallux,

forefoot, midfoot,
and rearfoot.

Rearfoot inversion during the
end of step execution phase

increased by 5.3◦ in CAI.

Hass et al., 2010
[30]

Cross-sectional study 20 CAI (F:15/M:5,
20.5 ± 61.0 yrs)

20 Control (F:16, M:4,
20.85 ± 61.6 yrs)

Triggered GI at a self-selected
speed with both the injured

and non-injured limb.

Displacement and velocity of
the COP during the APA and

execution phases.

Resultant COP displacement
in the APA phase and ML
COP displacement in the

execution phase were
reduced in CAI when gait

was initiated with the
non-injured limb.

Yousefi et al.,
2020 [41]

Cross-sectional study 17 CAI (M:17,
24.31 ± 0.81 yrs)
17 Control (M:17,
23.40 ± 1.70 yrs)

Triggered gait initiation at a
self-selected speed with the

injured limb.

Reaction time and APA
duration, COP excursion,

muscle activation.

Longer reaction time phase
and shorter APA duration in
CAI. No difference in AP and

ML normalized peak COP
excursions in the APA phase.
Earlier soleus activation in

the injured limb in CAI.

LAS = lateral ankle sprain; GI = gait initiation; APA = anticipatory postural adjustments; ML = mediolateral; AP = anteroposterior; COP = center of pressure; COM = center of mass.
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2.5. Risk of Bias and Methodological Quality Assessment

The risk of bias and methodological quality of the included studies were independently
assessed by two reviewers (M.Y. and S.Z.) using the Downs and Black Checklist. The Downs
and Black Checklist was developed to evaluate the risk of bias for non-randomized and
randomized control trials. This checklist consists of 27 items, including reporting, external
validity, bias, confounding, and power. Most questions were rated either as “yes” (=1)
or “unable to determine/no” (=0), except for item five, which was rated on a 3-point
scale (yes = 2, partial = 1, and no = 0). The percentage score was calculated as the ratio
between the achieved score and the maximum possible score, multiplied by 100%. Based
on the percentage of items met, each study was classified by quality: low (<60%), moderate
(60–74%), or high (≥75%).

3. Results
3.1. Study Selection and Characteristics

A total of 878 articles were found in the initial search and 717 remained after excluding
duplicates. Following title and abstract screening, 21 articles were submitted to a full-text
assessment. Two additional studies were added based on reference lists, and after that,
18 studies remained. These studies were checked based on the exclusion criteria, and
ultimately, six studies met the inclusion criteria. Figure 1 shows a flow diagram of the
study selection process.

A total of 124 patients with unilateral CAI (72 women, 32 men, 20 unspecified, aged
18.5 to 23.5), 126 healthy participants (72 women, 34 men, 20 unspecified, aged 19 to 24),
17 people with a history of a LAS (nine women, eight men, aged 19 to 23), and 21 coper
patients (13 women, 8 men, aged 18 to 22) were included. In this systematic review,
only comparative data between CAI and healthy participants were considered and are
summarized in Table 1.

3.2. Quality Assessment

Kappa coefficients were calculated to determine the inter-rater reliability of the two
investigators. The overall agreement between the raters was excellent (κ = 0.924). Each
study’s score on the modified Downs and Black checklist is presented in Table 2. The
quality of the studies based on the average Checklist was 11, with a range of 9–13. No
study was rated as having excellent methodological quality. Most studies required a history
of ankle sprain at least one year prior to testing and a score of <90% in activities of daily
living and of <80% in sports activities from the foot and ankle ability measure (FAAM)
questionnaire as inclusion criteria for the CAI group. The absence of a history of lower
limb extremity or neurological disorders was an inclusion criterion for the healthy group,
although this was not specified in one study [26].

3.3. Results of Studies

Among the selected studies, three focused on gait initiation triggered in response to
an auditory signal [26,30,41], two studies examined both self-generated and externally trig-
gered gait initiation [22,29], and one provided no information on the mode of gait initiation
(i.e., self-generated or triggered by an external stimulus) [21]. All studies examined gait
initiation in the forward direction, and two of them also examined gait initiation in two
additional directions (30◦ in the medial direction and 30◦ in the lateral direction) [26,29].
Gait was initiated at a self-selected speed in three studies [21,30,41] and at maximum
speed in the other three studies [22,26,29]. Gait was initiated with the injured limb in two
studies [21,41], with the non-injured limb in one study [29], and with both limbs in three
studies [22,26,30].
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Reaction time. Two of the included studies investigated the reaction time, i.e., the delay
between the trigger signal and the onset of APA, during forward gait initiation with the
injured leg at a spontaneous speed [41] and during multi-directional gait initiation with
the non-injured limb at a maximal speed [29]. These two studies revealed that participants
with CAI had a longer reaction time than healthy controls.

APA temporospatial features. Among the selected studies, two examined the temporal
aspects of APA [29,41]. These studies reported that individuals with CAI exhibited a shorter
APA duration compared to those without CAI during externally triggered forward gait
initiation with the injured leg at a spontaneous speed [41] and during gait initiation with the
non-injured limb at a maximal speed in various directions and triggering conditions [29].
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Table 2. Modified Downs and Black quality index results and total score.

Quality
items

Ebrahimabadi
et al., 2022 [29]

Yousefi et al.,
2020 [41]

Fraser et al.,
2019 [21]

Ebrahimabadi
et al., 2018

[26]

Ebrahimabadi
et al., 2017

[22]

Hass et al.,
2010 [30]

Reporting

Q1 1 1 1 1 1 1

Q2 1 1 1 1 1 1

Q3 1 1 1 1 1 1

Q4 0 0 0 0 0 0

Q5 2 2 2 2 2 2

Q6 0 1 1 1 0 1

Q7 1 1 1 1 1 1

Q8 0 0 0 0 0 0

Q9 0 0 0 0 0 0

Q10 1 1 1 1 1 1

External
Validity

Q11 1 0 0 0 1 0

Q12 0 0 0 0 0 0

Q13 1 0 1 0 1 0

Internal
Validity–Bias

Q14 0 0 0 0 0 0

Q15 0 0 0 0 0 0

Q16 0 0 0 0 0 0

Q17 0 0 0 0 0 0

Q18 1 1 1 1 1 1

Q19 0 0 1 0 0 0

Q20 0 0 1 0 0 0

Internal
Validity–

Confounding

Q21 1 0 1 0 0 1

Q22 0 0 0 0 1 0

Q23 0 0 0 0 1 0

Q24 0 0 0 0 0 0

Q25 0 0 0 0 0 0

Q26 0 0 0 0 0 0

Power Q27 0 0 0 1 1 0

Total 11 9 13 10 13 10

Quality items = Q1: Hypothesis/Aim. Q2: Main Outcomes in Method/Introduction. Q3: Inclusion/Exclusion
Criteria. Q4: Description of Interventions. Q5: Description of principal confounders. Q6: Main Findings.
Q7: Random Variability. Q8: adverse events. Q9: Lost to Follow-Up. Q10: Actual Probability Values.
Q11: Representative of the Entire Population (subjects asked to participate in the study). Q12: Representa-
tive of the Entire Population (subjects who were prepared to participate) Q13: Representative of the treatment
(staff, places, and facilities). Q14: Blind Study Subjects. Q15: blind those measuring. Q16: data dredging Q17:
analyses adjust for different lengths of follow-up of patients. Q18: Statistical Tests Appropriated Q19: reliable
compliance with the intervention. Q20: Outcome Measures Used Accurate Q21: patients in different intervention
groups or from the same population? Q22: same period of time Q23: Random Allocation Q24: assignment
concealed Q25: adequate adjustment for confounding Q26: Losses of Patients to Follow-up. Q27: Estimate of
Statistical Power.

Five studies have investigated the kinematics of the COP in individuals with
CAI [22,26,29,30,41]. Among these studies, two found a significant decrease in the peak
lateral COP shift in these individuals as compared to healthy controls during gait initi-
ation at maximal speed, without any influence of the involved limb (injured and non-
injured) [22,26], mode of triggering (self-selected or externally triggered) [22], or the direc-
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tion of gait initiation (medial, forward, or lateral) [26]. This decrease in the lateral COP
displacement was more predominant when gait was initiated with the injured leg than
with the non-injured leg in CAI [22,26]. Another study also reported a decrease in the
posterolateral COP displacement in the APA phase in people with CAI during externally
triggered forward gait initiation at a spontaneous speed, but only when gait was initiated
with the non-injured leg and not the injured leg [30]. In contrast, of these five studies, two
found no significant difference in the lateral COP shift during externally triggered forward
gait initiation with the injured leg at spontaneous speed [41] and during gait initiation with
the non-injured limb at a maximal speed in various directions and triggering conditions [29].
In addition, all five of these studies reported no difference in the anteroposterior COP shift
during the APA phase between CAI and healthy participants. Of the included studies, two
examined the kinematics of the COM in the APA phase and found no significant difference
in the anteroposterior COM velocity at the end of APA between CAI patients and healthy
people during gait initiation at a maximum speed, regardless of the involved limb [26],
mode of triggering [29], or the direction of gait initiation [26,29]. One study reported a
smaller vertical COM velocity during APA in CAI patients compared to healthy controls
during externally triggered gait initiation at maximum speed in the forward and medial
directions, regardless of the involved limb [26].

Muscle activation. Only one study investigated the effect of CAI on muscle activity
during gait initiation [41]. This study found an earlier activation of the soleus muscle of the
injured limb after the APA onset in CAI participants as compared to healthy participants
during externally triggered forward gait initiation with the injured limb at a self-selected
speed, suggesting a decreased inhibition duration of this muscle in people with CAI [41].

Spatiotemporal parameters of step execution. Two studies have investigated the character-
istics of the execution phase of gait initiation in individuals with CAI [22,30]. One study
found a decrease in the mediolateral COP displacement toward the stance foot during
the swing-foot lift phase (from heel-off to toe-off) when gait was initiated forward at a
self-selected speed with the non-injured leg (i.e., when the injured leg served as the stance
leg) [30]. Moreover, the same study found that the mediolateral displacement and velocity
of COP during the unipedal phase of the step execution were greater when gait was initiated
with the non-injured leg than with the injured leg in individuals with CAI [30]. Another
study reported that the maximal forward COP velocity during the execution phase was
greater in CAI patients than in healthy controls when gait was initiated at maximal speed
with the non-injured leg in both self-generated and externally triggered gait conditions [22].

Ankle–foot kinematics. One article examined the multisegmented ankle–foot kinematics
during forward gait initiation at a self-selected speed in CAI, LAS, and control partici-
pants [21]. The results showed the CAI group had increased rearfoot inversion from 34% to
91% of the stance phase, i.e., from the heel strike to the foot-off of the injured leg (taking
the first step), compared to healthy controls.

4. Discussion

The aim of this article was to provide an up-to-date literature review of studies
focusing on the effects of CAI on the biomechanical organization of gait initiation. Overall,
this review suggests that CAI affects characteristics of gait initiation, including reaction
time, the spatio-temporal parameters of APA and step execution, ankle–foot kinematics,
and muscle activation.

The study of APA has been proposed as a means of gaining valuable insights into the
supraspinal motor control mechanisms [22,26,41], as these anticipatory postural phenomena
appear to be mediated centrally by supraspinal centers [43,44]. The present systematic
review suggests that the spatiotemporal features of APA are affected by CAI. Specifically, the
findings from the literature reveal a decrease in the APA duration in CAI patients compared
to healthy individuals [29,41]. Regarding the APA amplitude, the majority of the studies
reported a reduction in the magnitude of COP displacement during APA, in particular
in the mediolateral direction, in CAI patients as compared to healthy controls [22,26,30].
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This decrease in both the duration and mediolateral amplitude of APA in CAI people
has been reported across multiple gait initiation directions and in self-generated and
externally triggered conditions [26,29,41]. Furthermore, these CAI-related changes in the
APA are independent of the limb initiating gait (injured or uninjured limb), although
the effects appear to be predominant when gait is initiated with the injured leg (i.e., the
injured leg taking the first step) [22,26]. These results evidence bilateral alterations in the
APA in people with unilateral CAI and support the hypothesis of impaired supraspinal
motor control mechanisms in these patients. Despite the changes observed in the APA
amplitude along the mediolateral direction, the literature unanimously reported that CAI,
on the other hand, caused no change in the anteroposterior COP displacement during
APA [22,26,29,30,41]. It is well known that APAs in this direction generate an initial
COM velocity that predetermines the forward progression velocity at the end of the first
step [45,46]. Consistent with the absence of change in the anteroposterior APA with CAI,
studies found no difference in the forward COM velocity at the end of APA between CAI
and healthy individuals [26,29]. Interestingly, it is presumed that the APAs along the
anteroposterior direction are implemented by ankle synergy, characterized by a bilateral
inhibition of the soleus followed by a strong bilateral activation of the tibialis anterior [33].
In the literature, only one study examined the effects of CAI on muscle activation during
gait initiation [41]. This study showed that CAI patients had an earlier activation of the
soleus muscle of the injured limb (taking the first step) during the APA phase as compared
to healthy participants, indicating a decrease in the soleus inhibition duration in these
patients. This observation could be related to the reduced APA duration in patients with
CAI. Nevertheless, despite this shorter APA duration, suggesting a shorter duration to
propel the COM forward, CAI patients seem to be able to produce a forward COM velocity
at the end of APA similar to that of healthy participants [26,29]. Although no study has
quantified the forward progression velocity at the end of the first step (often referred to as
motor performance), these findings suggest that CAI does not affect the ability of APA to
generate convenient conditions for forward progression during gait initiation.

The reason why CAI affects only the mediolateral component of APA and not the
anteroposterior dimension remains unclear. Previously, it has been shown that the lateral
COP shift during the APA phase of gait initiation is mainly ascribed to the activation
of the hip adductors/abductors and the knee flexion of the initial stance leg [31,47,48].
Nevertheless, it cannot be ruled out that the invertor/evertor muscles of the ankle also
contribute to the lateral COP motion during APAs, as has already been observed during
walking and standing [49,50]. Interestingly, it has been shown that CAI is associated with
weakness and activation abnormalities of these muscles [39,51], which play an important
role in ankle stability. Thus, it may be hypothesized that the alterations observed in people
with CAI in mediolateral APAs could be associated with strength and recruitment deficits
in these ankle invertor/evertor muscles. Furthermore, as some authors speculate [30], it
is likely that these APA alterations are also linked to a compensatory strategy adopted
by CAI patients to minimize anticipatory postural forces. These adaptations could then
be seen as a safety strategy implemented by these patients to reduce the risk of ankle
sprains [52]. Although the underlying mechanisms of APA alterations in CAI patients
remain to be elucidated, it should be borne in mind that alterations in the mediolateral APA
may potentially affect postural stability during step execution.

The step execution phase of gait initiation is often assimilated to a ballistic phase,
during which the body falls forward and toward the swing leg under the action of gravity,
pivoting around the ankle joint [31,32,40,46]. It is generally admitted that the lateral
COP shift during APA acts to propel the COM near the stance foot before the foot-off
of the swing leg, thus reducing the lateral fall of the body, i.e., lateral instability, during
the subsequent step execution. In the absence of this anticipatory postural dynamic,
lateral instability would be greater, which could potentially increase the risk of falling
during gait initiation [32,53,54]. In the literature, we found no study quantifying the
mediolateral stability during step execution in CAI patients. However, several studies
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compared the COP motion during this phase between CAI and healthy participants [22,30].
A decrease in the lateral COP displacement toward the stance foot during the unloading
phase of the execution phase (often referred as to the foot-lift phase [27,55]) has been
reported in CAI patients compared to healthy people [30]. This result can probably be
explained in part by the fact that, as the lateral COP displacement toward the swing foot
during APA is less important in CAI patients, the lateral distance that the COP must
then travel to position itself under or close to the stance foot before the swing foot-off
is also less important. Nevertheless, it has been revealed that CAI patients had a faster
forward COP velocity during the unipedal phase than healthy individuals when gait was
initiated with the non-injured leg, i.e., when the injured leg served as the stance leg [22].
In addition, other authors showed that the lateral COP velocity during this phase was
faster when gait was initiated with the non-injured leg than with the injured leg [30].
Although none of these studies quantified the duration of the step execution phase, it can
be hypothesized that these adaptations in CAI patients may serve to reduce the duration of
step execution and thus reduce postural demands during this phase [22,30]. The presence
of supraspinal adaptations in individuals with CAI suggests that it should be treated as
a global condition (rather than solely as a local musculoskeletal condition) affecting all
levels of the neuromuscular control system [30,41]. Rehabilitation programs that improve
neuromuscular control and restore normal muscle activation patterns may reduce the risk
of ankle sprains and other injuries in individuals with CAI [30]. Interestingly, recent studies
have reported that APA-focused training is effective in enhancing APA [56,57]. This type of
training could be used to address supraspinal aspects of motor control in the management
of CAI. In particular, it could be an attractive approach to improving balance and movement
control in patients with CAI. However, this remains to be verified.

Our study has certain limitations that must be acknowledged. The number of studies
included in this review is relatively small (n = 6), these studies were of moderate quality, and
the conditions tested in these articles are quite different from one another (e.g., self-selected
and triggered conditions, speed conditions, etc.). However, in general, the majority of the
studies found that characteristics of gait initiation were affected by CAI. It is important that
future studies consider quantifying postural stability using classical biomechanical variables
(e.g., margin of stability [27], braking index [55], etc.) and controlling for gait initiation speed
and the mode of triggering, as these factors can be confounding [27–58]. Furthermore, it
should be borne in mind that all studies included in this review were retrospective in nature,
making it difficult to determine whether the changes in the characteristics of gait initiation
found in patients with CAI existed prior to the initial ankle sprain or if they were the result of
the injury.

5. Conclusions

The present systematic review suggests that CAI affects the characteristics of gait
initiation, including reaction time, the spatiotemporal parameters of APAs and step execu-
tion, ankle–foot kinematics, and muscle activation. These findings may provide valuable
information for the rehabilitation of these patients. However, the limited evidence available
calls for caution in interpreting the results and underscores the need for further research.
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