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Abstract: It is well known that exercise promotes health and wellness, both mentally and physio-
logically. It has been shown to play a protective role in many diseases, including cardiovascular,
neurological, and psychiatric diseases. The present study examined the effects of aerobic exercise on
brain glucose metabolic activity in response to chronic cocaine exposure in female Lewis rats. Rats
were divided into exercise and sedentary groups. Exercised rats underwent treadmill running for six
weeks and were compared to the sedentary rats. Using positron emission tomography (PET) and
[18F]-Fluorodeoxyglucose (FDG), metabolic changes in distinct brain regions were observed when
comparing cocaine-exposed exercised rats to cocaine-exposed sedentary rats. This included activation
of the secondary visual cortex and inhibition in the cerebellum, stria terminalis, thalamus, caudate
putamen, and primary somatosensory cortex. The functional network of this brain circuit is involved
in sensory processing, fear and stress responses, reward/addiction, and movement. These results
show that chronic exercise can alter the brain metabolic response to cocaine treatment in regions
associated with emotion, behavior, and the brain reward cascade. This supports previous findings of
the potential for aerobic exercise to alter the brain’s response to drugs of abuse, providing targets
for future investigation. These results can provide insights into the fields of exercise neuroscience,
psychiatry, and addiction research.

Keywords: rat; 18F-FDG fluorodeoxyglucose; positron emission tomography; aerobic exercise;
glucose metabolism; statistical parametric mapping; cocaine

1. Introduction

Cocaine is regularly used by over 2 million people in the United States [1]. This
poses many health risks, including a greater propensity for stroke, cardiovascular disease,
and psychiatric/behavioral problems, such as violence, paranoia, and psychosis [2–5].
Cocaine is a highly addictive substance, and barriers to effective treatments include a high
dropout rate among standard treatment programs [1]. Additionally, substance use during
adolescence, including cocaine, increases the risk of developing substance use disorders in
adulthood [6]. Cocaine use in humans can also induce brain changes. Adolescent substance
use is also associated with negative brain changes, both structurally and functionally [6].
These structural and functional changes are present in adult substance abuse models
as well [7–9]. Preclinical models have observed anatomical brain changes after chronic
cocaine exposure. Magnetic resonance imaging found changes in the gray matter volume
in male rhesus monkeys, with lower densities in the thalamus, the amygdala–hippocampal–
entorhinal cortex, the parietal cortex, the insular cortex, and the orbitofrontal cortex [10]. In
rodents, chronic cocaine gradually decreased metabolism in mesolimbic regions [11,12].
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Cravings among cocaine users were associated with metabolic activity in the amygdala,
striatum, and insula [10]. Multiple studies confirm decreased frontal metabolism in cocaine
users [7,8,11]. Decreased frontal metabolism in cocaine users was found to correlate with
decreased dopamine D2 receptor availability, which is known to increase cravings [7,13].
Cocaine dependence is also associated with dopamine depletion [11,14,15] and acts on the
striatum via dopamine more than any other part of the brain [16,17].

Scientists are currently investigating new approaches to addiction rehabilitation utiliz-
ing both pharmacological and non-pharmacological methods [1,18–20]. Physical exercise
is currently being observed as a potential therapeutic for drug addiction [20,21]. Exer-
cise is a known promoter of health and wellness, improving cardiovascular health and
psychiatric health, and can be used to combat obesity [22]. Exercise has been shown to
modulate the brain reward system through a number of different mechanisms, including
dopamine BDNF, endocannabinoids, and hormones [23]. Exercise has been shown to
decrease cocaine-seeking behavior in rats as it is believed to act on similar dopaminergic
circuits in the midbrain [19,21,24,25]. Additionally, exercise can have an attenuating effect
on ethanol withdrawal in both sexes of rats [26]. A study by Robison et al. found that
aerobic exercise can modulate dopaminergic receptor levels in the striatum. The results of
this study found significant decreases in DRD1 receptors in the olfactory tubercle and nu-
cleus accumbens shell while finding significant increases in DRD2 receptors in the caudate
putamen [24]. DRD2 receptor availability [27–29] and sensitivity [30] are associated with
reward-seeking behavior [31]. Mice that were selectively bred for wheel running showed
higher basal dopamine levels and increased levels of dopamine in the nucleus accumbens
after wheel running [32]. Multiple studies have confirmed the ability of physical exercise
to increase levels of dopamine in the brain’s reward system [24,32–35]. Additionally, lower
levels of dopamine in the reward system are associated with depressive symptoms and
anhedonia [36–38]. In addition to direct dopamine modulation, both forced and volun-
tary physical exercise can increase tyrosine hydroxylase throughout the brain’s reward
neuropathways [32–35,38].

Exercise has been observed influencing relapse in rats when comparing relapse results
to exercise occurring in both early and late phases of abstinence [39]. It was observed that
physical exercise that occurred in the early days of abstinence greatly decreased cocaine
seeking, while exercise during late abstinence was ineffective at attenuating cocaine-seeking
behavior [39]

The benefit of using exercise as a means of treating substance addiction is that it
is a very cost-effective option. Additionally, studies have shown that exercise can be a
preventative means of combating addiction, indicating that pre-exposure to exercise might
decrease addiction risk [40–42]. In a study observing the relationship between participation
in sports and health habits among high school students, the results showed that males
who participated in sports were less likely to report cigarette smoking and illicit drug
use (including cocaine) when compared to controls [43]. This effect on drug use was not
observed in females who participated in sports [43]

Exercise has been used to aid addiction treatment in humans. In a study involving
45 subjects undergoing a 4-week inpatient rehabilitation program for substance addiction,
subjects underwent a physical exercise program that included aerobics, bodybuilding,
and circuit training [44]. The bodybuilding program resulted in significant decreases in
reported symptoms of depression [44]. Additionally, Quigong, a form of movement-based
meditation, decreased cocaine cravings and depressive symptoms in 101 cocaine-dependent
subjects [45]. Lastly, in 24 individuals being treated for concurrent cocaine and tobacco
addiction, researchers observed the effects of running and walking on subject physiology
and abstinence [46]. Subjects either walked or ran for 30 min, three times a week for four
weeks. Exercise significantly reduced resting heart rate after four weeks. There was an
observed improvement from cocaine abstinence, yet the researchers reported that this
improvement was not statistically significant [46]. Exercise itself is an effective psychiatric
treatment when prescribed for depression and anxiety [47]. While exercise’s efficacy is
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equal to other interventions, it is highly dependent on patient adherence to the regimen.
Unfortunately, patients are more adherent, for example, to antidepressants than running,
limiting the latter’s efficacy [48]. Making exercise more reinforcing [49] may be a solution
while we wait to capture the essence of exercise in a pharmaceutical or neuromodulatory
intervention.

18F-FDG is the most commonly used radiotracer in PET studies [50]. This tracer can
be utilized to trace regional brain changes in metabolism, which can, in turn, be related to
behavioral, neuropsychological, and psychological data [50]. In a study looking at brain
amygdala metabolic activity in obese women, chronic physical exercise was found to reduce
stress-related amygdala activity [51]. Additionally, an FDG PET study found that exercise
can inhibit the limbic system in humans by decreasing BGluM in the cingulate gyrus and
the substantia nigra [52,53].

Previously, FDG PET showed how exercise can metabolically activate the caudate
putamen, hippocampal subregions, and sensory cortical areas in rats [54]. In a subsequent
experiment, acute cocaine was found to activate the substantia nigra and inhibit the ventral
endopiriform nucleus in exercised rats [55]. This is in agreement with many previous
findings that state that exercise acts similarly on dopaminergic areas of the midbrain and
mesolimbic areas [33] and that activation occurs in the somatosensory cortical areas after
treadmill exercise [56]. A study looking at BGluM in runners revealed increased metabolic
uptake in the temporoparietal association cortex, premotor cortex, cerebellar vermis, and
occipital cortex, with metabolic increases in the leg motor, thorax, and arm areas of the
primary somatosensory cortex [57]. This is generally in agreement with our previous
findings on exercise and FDG PET [55].

However, there have also been studies that contradict our previous findings. In rats,
forced swimming was found to metabolically inactivate many regions, including the hip-
pocampus, insula, and inferior colliculus [58], but this was not in response to chronic swim-
ming. There have been human studies that show that aerobic exercise can inhibit metabolic
uptake in the substantia nigra in older adults with mild cognitive impairment [52].

FDG PET brain imaging has also been utilized to examine the effects of cocaine
in humans and animals. One study by Henry et al. looked at the effects of cocaine
self-administration in rhesus monkeys after an acute dose in a cocaine-naïve state, after
60 sessions of intravenous cocaine self-administration, and after a 4-week withdrawal
period [59]. A single dose of cocaine in the naïve state only induced metabolic increases
in the medial prefrontal cortex, and this pattern extended through the early stages of the
self-administration paradigm. As self-administration continued, BGluM activation was
observed in the orbitofrontal and medial cortices, the anterior cingulate cortex, and small
portions of the striatum, including the nucleus accumbens [59]. The withdrawal phase
suppressed these metabolic changes, and only frontal metabolic activation remained [59].
A rodent study observed similar findings, with BGluM increases in the Cpu and prefrontal
cortex after cocaine exposure [60].

In humans, 49 polysubstance users in residential treatment underwent FDG PET
scans [61]. These individuals were assessed for cocaine, heroin, alcohol, MDMA, and
cannabis use frequency. This study observed noteworthy inverse associations between
the intensity of drug consumption for heroin, alcohol, MDMA, and cannabis and cerebral
metabolism in the dorsolateral prefrontal cortex and temporal cortex. Furthermore, alcohol
consumption exhibited a connection with reduced metabolic activity in the frontal premotor
cortex and putamen, while stimulant usage was linked to metabolic alterations in the
parietal cortex [61].

In a study by Volkow et al., 21 neurologically intact cocaine abusers underwent FDG
PET scans after 1–6 weeks of cocaine abstinence [8]. Compared to controls, global rates of
BGluM uptake did not differ. However, this study unveiled a trend of decreased frontal
metabolism that persisted after 3–4 months of detoxification.

For the present experiment, female rats were studied, as previous work has shown
that aerobic exercise was found to attenuate cocaine self-administration [62]. Differences in
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conditioned place preference tests were observed in a sex-specific manner [20,63–67]. This
vulnerability might be mediated by estradiol [68]. Estradiol has been found to enhance
the rewarding effects of stimulants [69–71]. Exercise has been found to decrease levels of
estradiol in women [72,73], which suggests its protective properties against the reinforcing
effects of addictive substances. Previous experiments from our lab observed the effects of
physical exercise and acute cocaine exposure on BGluM in female rats [54,55]. The current
experiment utilized the same exercise regimen and brain imaging protocol to assess the
effects of chronic cocaine exposure between exercised and sedentary female rats.

2. Materials and Methods

Animals: Young adult (8 weeks) female Lewis rats (n = 16) were received from Taconic
(Hudson, NY, USA). As per the standard housing protocol, rats were individually housed
at ~22 ◦C on a 12-h reverse light/dark cycle. The dark cycle was from 6 am to 6 pm.
Unlimited access to food and water was provided in the rats’ home cages. Daily handling
occurred, and environmental habituation occurred for one week. This study complied
with the National Academy of Sciences Guide for the Care and Use of Laboratory Animals
(1996) and was approved by the University at Buffalo Institutional Animal Care and Use
Committee (PROTO202100079, 5/13/22).

Exercise Regimen: A customized treadmill divided into individual plexiglass running
lanes was used for forced running. The exercise regimen started at 10 min a day at
10 m/min, increasing by 10 min each day until the maximum time of 1 h was reached. The
animals were given a ten-minute break after 30 min of running. This exercise regimen was
maintained for 5 days per week for 6 weeks. At the conclusion of the exercise regimen,
the total distance run was ~16.5 km. Sedentary rats remained in their home cages for the
duration of the exercise regimen, performed as previously described [19,24,25,54].

Cocaine Treatment: Cocaine was obtained from Sigma Aldrich in St. Louis, MO,
USA. The cocaine was dissolved in 0.9% saline and injected via the intraperitoneal route at
25 mg/kg. Cocaine administration occurred for 8 days (alternated with saline).

PET imaging: PET scans occurred ~2 weeks after chronic cocaine exposure. Food was
restricted for 8 h to normalize blood glucose levels. Rats were then given 500 ± 115 µCi of
18F-FDG injected through the intraperitoneal route. A 30-min uptake period followed the
injections, and the animals were anesthetized immediately after. Rats were anesthetized
at 3% isoflurane, maintained at 1% throughout the scan. Activity was recorded using a
PET R4 tomograph (Concorde CTI Siemens, transaxial resolution: 2.0 mm full width at half
maximum, transaxial field view: 11.5 cm). Anesthetized rats were secured on the scanner
bed for 30 min as per standard imaging protocol.

Statistical analysis: PET image analysis was conducted as previously described [55,74,75].
Briefly, scans were reconstructed using the MAP algorithm (15 iterations, 0.01 smoothing,
256 × 256 × 256 resolution) [76]. Reconstructed scans were manually coregistered onto
the Schweihardt MRI template (63 slices, Paxinos and Watson stereotaxic coordinates) in
the bioinformatics imaging software pMOD (Version 2.85, PMOD technologies, Fallanden,
Switzerland).

Automatic coregistration and spatial normalization were performed in MATLAB
software (MATLAB, Version R2018b). A statistical parametric mapping ANOVA (Voxel
Threshold, K > 50) was then used to find significant differences in cluster size between
the exercise and sedentary groups. Significant clusters were again fitted onto the rat brain
MRI template using PMOD software (Version 4.006. These clusters were then mapped and
labeled using “The Rat Brain in Stereotaxic Coordinates” atlas [77].

A timeline of this experiment can be seen in Figure 1, illustrating the chronic treatment
of cocaine and the timing of PET imaging.
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Figure 1. Experimental timeline: (A) Exercised animals ran for 6 weeks, while sedentary animals
received no exercise. All animals received chronic cocaine exposure and microPET scans after the
6 weeks. (B) Timeline of PET scans: Rats were given [18F]-Fluorodeoxyglucose (FDG). Then, a 30 min
uptake period followed. Animals were then anesthetized with isoflurane (3%) maintained throughout
the duration of the 30 min PET scan (1%).

3. Results

A one-way ANOVA (p < 0.001, df = 14, K > 50) revealed the significant effects of chronic
cocaine exposure in exercised rats compared to sedentary rats. Exercise and chronic cocaine
only activated (BGluM increases) the secondary visual cortex, lateral area (V2L). Complete
details about cluster size and statistical significance can be seen in Table 1. The cluster
image of significant BGluM activation is shown in Figure 2. Exercise and chronic cocaine
treatment also resulted in significant inhibition (BGluM decreases) in the paraflocculus
(PFL), the eighth cerebellar lobule (8cb), the paramedian lobule (PM), the copula of the
pyramis (COP), the stria terminalis (st), the stria medullaris of the thalamus, the medial and
posteromedial parts of the bed nucleus of the stria terminalis (stmpm), the ventrolateral
thalamic nucleus, (VL), and the primary somatosensory cortex, hindlimb region (S1HL).
Complete details about cluster size and statistical significance can be seen in Table 2. The
image in Figures 2 and 3 shows significant clusters.
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Table 1. Brain regions displaying significant increases (p < 0.001, K > 50) in BGluM after chronic
exercise and chronic cocaine exposure. Cluster location is indicated (medial–lateral, anterior–posterior,
and dorsal–ventral). KE represents the cluster size or number of voxels in the cluster. Each box under
“Brain Region(s)” indicates a separate cluster.

Brain
Region

Cluster Location
(General)

Medial–
Lateral
(mm)

Dorsal–
Ventral
(mm)

Anterior–
Posterior

(mm)
t-Value z-Score KE

V2L Somatosensory Cortex −5.2 1.2 −6.8 4.21 3.52 229
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Figure 2. Significant activation clusters: coronal brain images with significant (p < 0.001, df = 14, and
K > 50) metabolic increases from exercised rats compared to sedentary rats. T-values represent peak
activation (t = 4.21). Red clusters indicate BGluM activation in the V2L.

Table 2. Brain regions displaying significant decreases (p < 0.001, K > 50) in BGluM after chronic
exercise and chronic cocaine exposure. Cluster location is indicated (medial–lateral, anterior–posterior,
and dorsal–ventral). KE represents the cluster size or number of voxels in the cluster. Each box under
“Brain Region(s)” indicates a separate cluster.

Brain Region General Cluster Location
Medial–
Lateral
(mm)

Dorsal–
Ventral
(mm)

Anterior–
Posterior

(mm)
t-Value z-Score KE

Crus1, PFL Cerebellum −5.0 6.0 −11.4 5.92 4.45 2496

PFI, Crus1 Cerebellum 4.0 5.2 −11.0 6.18 4.57 2175

8cb, PM, Cop Cerebellum −0.8 4.4 −12.4 5.00 3.98 2103

St, sm, stmpm Stria terminalis, thalamus −1.8 5.8 −0.8 4.92 3.94 238

CPu midbrain −4.4 4.6 −2.4 4.68 3.80 193

VL Thalamus 1.8 5.6 −2.4 4.44 3.66 174

S1HL Somatosensory cortex −2.2 1.8 −0.4 4.06 3.42 58
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(E) Cpu; (F) VL.

4. Discussion

Exercised rats only showed V2L activation after cocaine treatment. Although there
is some evidence that cocaine can modulate visual processing [78], we assume this to
be a result of metabolic transience attributable mostly to exercise [50]. A few previous
publications have documented an increase in BGluM in sensory cortical areas after physical
exercise [50,54,55,57]. This sensory cortical modulation has been observed by our group in
the presence of exercise alone and after a single dose of cocaine [54,55]. Treadmill running
is a task that requires visual and spatial attention. Therefore, the activation of the V2L
is unsurprising.

Chronic cocaine and chronic exercise inhibited activity in various parts of the cerebel-
lum related to eye movement and visuomotor coordination [79–82]. There are few studies
that have confirmed a response to cocaine in these areas, save for a study that showed an
expression of cocaine- and amphetamine-regulated transcript peptides in the PFL [83]. This
inhibition can most likely be attributed to exercise. The PM is an important part of the limb
motor circuit known to respond to exercise metabolically with synaptic activity and blood
vessel formation [84].
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The primary somatosensory cortex (S1HL) integrates information from mechanore-
ceptors, chemoreceptors, thermoreceptors, and nociceptors from the peripheral nervous
system to map the surrounding environment [85]. Biocytin injection studies have identi-
fied pathways from the S1 to the granular and dysgranular parietal insular cortices and
in the amygdaloid nuclei [86]. It receives thalamic input [87] and is involved in tactile
representations, sensations, and touch (including through whiskers in mice) [88]. A study
by Holshneider et al. found that treadmill walking increased blood flow to the S1HL, COP,
and other associated areas [89].

Importantly, we see that exercise and cocaine inhibited parts of the brain reward
cascade [13], including portions of the CPu, st, and the thalamus. The st serves as an output
for the pathway from the amygdala to regions such as the hypothalamus, fornix, and
thalamus [90]. St activity can be associated with an anxious temperament and increased
cortisol (the stress hormone) in humans and in non-human primates [91]. The st also shares
connections with the ventral tegmental area [92]. In a study by Sartor and Aston-Jones, the
ventral bed nucleus of the stria terminalus (vBNST) was disconnected from the VTA via
baclofen plus muscimol. The blocking of this pathway significantly reduced the preference
for cocaine [92]. Considering this and previous research establishing physical exercise as
a means of decreasing drug seeking [23], this inhibition may be a sign of the protective
factors provided by exercise.

Lesioning of the BNST has many behavioral implications. First, it has been shown as
modulating coping behavior in the presence of stress [93]. Rats with lesions in the BNST
showed significantly decreased escape behavior in the forced swim test [93]. Lesions in this
area are also known to attenuate the conditioned stress response in rats [94].

A subregion of the st is the stpm, which is known to be involved in stress-triggered
drug relapse [95]. Inhibition of the bed nucleus of the stria terminalis via serotonin signaling
was found to decrease the anxiogenic effects of cocaine [96]. A pathway between the
amygdala and the st containing corticotropin-releasing factor was also found to play a
mediating role in stress-induced cocaine-seeking behavior [97]. The CPu, a region in
the basal ganglia/striatum, is involved in movement and goal-directed/habitual reward-
seeking behaviors [98].

The VL is involved in the spinocerebellar motor pathway, and it shares connections
with both the mesolimbic and motor systems [99]. An increase in cerebral blood flow
was found in this area after exercise [89]. The sm of the thalamus sends projections
from the forebrain to the habenula, a part of the limbic system that is highly responsive
to cocaine [100]. Lastly, thalamic nuclei have been identified as moderators for striatal
glutamate levels [101]. Specifically, the ventromedial motor nucleus of the thalamus (though
not presently inhibited) was found to decrease cocaine-induced striatal glutamate levels
when damaged [101], establishing the thalamic nuclei as key moderators of the effects of
cocaine and their interaction with exercise.

We hypothesize that the exercise-induced inhibition of the st after chronic cocaine
use is of high significance to addiction research. Previously, our group identified BGluM
changes in brain regions associated with reward in the basal ganglia and striatum [55].
Although important, the dopaminergic pathways in these regions share functionality
with motor/movement initiation and inhibition [102]. Inhibition of the st is perhaps
the only region detected by statistical parametric mapping that can be considered an
exclusive member of the mesolimbic/mesocorticolimbic reward pathway, in which the
amygdala shares connections with the ventral tegmental area, the nucleus accumbens,
and the hippocampus [103]. This circuit is important for encoding emotional value to a
rewarding stimulus and shares dense connections with striatal and basal ganglia motor
circuits, influencing the dopamine neuron populations of this region [49,104–107]. A
paper by Torrisi reported a circuitry of the BNST that included many of our regions of
interest from previous [14,15] and present experiments, including the substantia nigra,
thalamus, hippocampus, and striatum [108]. This circuitry, centered around the BNST, can
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be reviewed in Figure 4 [108]. A proposed circuitry based on these results can be viewed in
Figure 4.
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Exercise has been found to decrease whole-brain BGluM uptake in humans. After
25 min of exercise, PET scanning results showed a global decrease in all measured cortical
regions in 14 men subjected to bicycle exercise. The rate of metabolic uptake was negatively
correlated with exercise intensity, which meant that the highest intensity exercise resulted
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A proposed circuitry of our significant result clusters, based on previous findings on
neuropathways and anatomical connections, can be seen in Figure 5. Functional connec-
tivity and FDG PET imaging have been previously reported for formulating a hypothe-
sis [55,75].
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5. Conclusions

This paper offers insight into the brain structures and circuits involved in exercise’s
effects on functional connectivity and how this connectivity is impacted in response to
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chronic cocaine in rats. BGluM inhibition of regions involved in the brain reward cas-
cade [110], including regions of the thalamus, CPu, and St, were observed. Additionally,
many areas that displayed changes in BGluM share dense dopaminergic connections with
brain regions known to be involved in reward and addiction, such as the lateral habenula
and the ventral tegmental area. This research provides targets for further mechanistic
brain investigation to see if artificial inhibition of these areas results in a decrease in drug
preference. Future studies can further investigate these changes to confirm if induced
inhibition in these areas can help with addictive psychiatric conditions. Future studies will
also observe varying intensities and types of exercise.
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