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Abstract: Flumazenil is an allosteric modulator of the γ-aminobutyric acid-A receptor (GABAAR)
benzodiazepine binding site that could normalize neuronal signaling and improve motor impair-
ments in Parkinson’s disease (PD). Little is known about how regional GABAAR availability affects
motor symptoms. We investigated the relationship between regional availability of GABAAR ben-
zodiazepine binding sites and motor impairments in PD. Methods: A total of 11 Patients with PD
(males; mean age 69.0 ± 4.6 years; Hoehn and Yahr stages 2–3) underwent [11C]flumazenil GABAAR
benzodiazepine binding site and [11C]dihydrotetrabenazine vesicular monoamine transporter type-2
(VMAT2) PET imaging and clinical assessment. Stepwise regression analysis was used to predict
regional cerebral correlates of the four cardinal UPDRS motor scores using cortical, striatal, thala-
mic, and cerebellar flumazenil binding estimates. Thalamic GABAAR availability was selectively
associated with axial motor scores (R2 = 0.55, F = 11.0, β = −6.4, p = 0.0009). Multi-ligand analy-
sis demonstrated significant axial motor predictor effects by both thalamic GABAAR availability
(R2 = 0.47, β = −5.2, F = 7.2, p = 0.028) and striatal VMAT2 binding (R2 = 0.30, β = −3.9, F = 9.1,
p = 0.019; total model: R2 = 0.77, F = 11.9, p = 0.0056). Post hoc analysis demonstrated that thalamic
[11C]methyl-4-piperidinyl propionate cholinesterase PET and K1 flow delivery findings were not
significant confounders. Findings suggest that reduced thalamic GABAAR availability correlates
with worsened axial motor impairments in PD, independent of nigrostriatal degeneration. These
findings may augur novel non-dopaminergic approaches to treating axial motor impairments in PD.

Keywords: axial motor impairment; benzodiazepine binding site; dopamine; GABAA receptor;
Parkinson’s disease; PET

1. Introduction

Axial motor impairments represent a significant cause of disability in Parkinson’s
disease (PD). Dopaminergic medications are often not efficacious in treating these symp-
toms [1]. Cholinergic system dysfunction has been implicated in some components of
postural instability and gait difficulties in PD, in particular falls and sensory processing
during postural control, but not with overall severity of axial motor impairments when
accounting for nigrostriatal nerve terminal losses [2–4]. Postural control and gait functions
are mediated by widespread neural networks that cannot be captured by a simplistic model
of single neurotransmitter system changes. There is increasing interest in the dysfunc-
tion of co-localized neurotransmitter functions to better understand the complexity of the
multisystem nature of the neurodegeneration in PD.
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γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central
nervous system. GABA binds to and mediates its effects via post-synaptic ionotropic
GABAA receptors (GABAAR) and pre- and post-synaptic metabotropic GABAB recep-
tors [5]. The role of GABA neurotransmission has been little studied in PD, despite the fact
that the two major outflows of the basal ganglia, principal neurons of the globus pallidus
internus, and of the substantia nigra pars reticulata largely employ inhibitory GABA to
connect to areas outside the basal ganglia and that increased GABA activity from these
nuclei has been demonstrated previously by both electrophysiologic and mRNA analyses
in parkinsonian animal models [6–8]. Regional imbalance of the major inhibitory central
nervous system transmitter activity may have propagating effects on the neuronal network
activity underlying motor impairments in PD [9,10].

Benzodiazepine binding sites are present in a significant subset of cerebral GABAA
receptors [11]. Flumazenil is a short-acting intravenously administered silent allosteric
modulator of the GABAAR benzodiazepine binding site, which rapidly improves motor
impairments in PD, including postural instability and gait difficulties [12,13]. Based on
current basal ganglia functional models of PD, flumazenil could affect neuronal signaling
at several brain regions; there is, however, a knowledge gap about the relationship between
availability of regional cerebral GABAAR benzodiazepine binding sites and specific motor
impairments in human PD. There are relatively few in vivo imaging reports regarding
the impairment of GABAAR benzodiazepine binding sites in the brain in PD. An in vivo
imaging report by Japanese researchers found a correlation between reduced cerebral
GABAAR benzodiazepine binding sites in the cortex as determined by [123I]iomazenil
single-photon computed emission tomography and greater motor disability in PD but
did not report on regions other than the cortex or striatal dopaminergic loss [14,15]. To
address in more detail the role of GABAAR benzodiazepine binding sites, we investigated
the relationship between in vivo regional cerebral availability of GABAAR benzodiazepine
binding sites with [11C]flumazenil PET and motor impairments while accounting for
nigrostriatal nerve terminal losses and cholinergic activity in subjects with PD.

2. Materials and Methods
2.1. Subjects and Clinical Test Battery

This cross-sectional study involved the analysis of 11 PD subjects (males, mean age
69.0 ± 4.6 years (SD; range 63–76); mean Mini-Mental State Examination score of 28.4 ± 2.4
(range 22–30); and mean duration of motor disease of 10.5 ± 4.1 years (range 5–15)). Subjects
met the United Kingdom Parkinson’s Disease Society Brain Bank clinical diagnostic crite-
ria [16]. Abnormal striatal [11C]dihydrotetrabenazine PET findings were consistent with
the diagnosis of PD in all subjects. No subjects had a history of a large artery stroke or other
significant intracranial disease. Mean modified Hoehn and Yahr stage was 2.6 ± 0.3 (range
2–3) with 1 subject in stage 2, 5 in stage 2.5 and 5 in stage 3 [17]. No subjects were taking
benzodiazepine, (anti)cholinergic or neuroleptic drugs. Nine subjects were taking a com-
bination of dopamine agonist and carbidopa–levodopa medications and two were using
carbidopa–levodopa alone. All subjects completed the Unified Parkinson’s Disease Rating
Scale (UPDRS) [18]. Subjects were examined and underwent [11C]dihydrotetrabenazine
PET imaging in the morning after withholding dopaminergic drugs overnight. Mean motor
UPDRS score was 28.3 ± 11.6 (range 10–48). UPDRS motor scores were divided into cardi-
nal motor sub-scores for tremor (items 20 and 21), rigidity (item 22), distal appendicular
bradykinesia (items 23–26 and 31), and axial symptoms (items 27–30).

This study was approved by the Institutional Review Boards of Ann Arbor Department
of Veterans Affairs Medical Center and the University of Michigan. Written informed
consent was obtained from all subjects prior to any research procedures.

2.2. Imaging Techniques

All subjects underwent brain MRI, GABAAR benzodiazepine binding site imaging us-
ing [11C]flumazenil PET, and [11C]dihydrotetrabenazine vesicular monoamine transporter
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type-2 (VMAT2) PET imaging. Acetylcholinesterase PET imaging using the [11C]methyl-4-
piperidinyl propionate (PMP) ligand was available in 10 subjects for additional analysis.
[11C]flumazenil, [11C]dihydrotetrabenazine and [11C]PMP were prepared as described
previously [19–21]. A bolus/infusion protocol was used for [11C]flumazenil dynamic PET
imaging with intravenous bolus injection containing 40% of the total administered 10 mCi
[11C]flumazenil dosage over 15 s, followed by continuous infusion of the remaining tracer at
a constant rate for 62 min [19]. A bolus infusion was also used for [11C]dihydrotetrabenazine
vesicular monoamine transporter type 2 (VMAT2) dynamic PET imaging with bolus injec-
tion of 55% of a 15 mCi dose, while the remaining 45% of the dose was continuously infused
over the next 60 min [22]. Dynamic acetylcholinesterase PET scanning was performed for
70 min following an intravenous bolus of 15 mCi [11C]PMP. VMAT2 (used to quantify the
degree of nigrostriatal striatal dopaminergic denervation) and acetylcholinesterase PET
(used to quantify cholinergic thalamic binding) denervation were used for our post-analysis.
The three PET scans were performed as part of a single study with two PET scans on the
same day and the third one within days.

MRI was performed on a 3 Tesla Philips Achieva system (Philips, Best, The Nether-
lands) and PET imaging was performed in 3D imaging mode with an ECAT EXACT
HR+ tomograph (Siemens Molecular Imaging, Inc., Knoxville, TN, USA) as previously
reported [2].

2.3. Imaging Analysis

All image frames were spatially coregistered within subjects with a rigid-body transfor-
mation to reduce the effects of subject motion during the imaging session [23]. Interactive
Data Language (IDL version 8.7) image analysis software (Research systems, Inc., Boulder,
CO, USA) was used to manually trace volumes of interest on the MRI scan. Traced volumes
of interest included the bilateral striatum (putamen and caudate nucleus), thalamus, pons,
cerebellum, and neocortex. Neocortical volume of interest definition used semi-automated
threshold delineation of the neocortical grey matter signal on the MRI images [24].

[11C]flumazenil distribution volume ratios were estimated using the Logan plot graph-
ical analysis method [25]. The input kinetics for the reference tissue were derived from
the pons, where the [11C]flumazenil binding is predominantly accounted for by free and
nonspecifically bound radiotracer [26,27]. [11C]dihydrotetrabenazine distribution volume
ratios were estimated also using the Logan plot graphical analysis method [25] with the
striatal time activity curves as the input function and the total neocortex as reference tissue,
a reference region overall low in VMAT2 binding sites, with the assumption that the non-
displaceable distribution is uniform across the brain at equilibrium to allow accurate and
stable assessment of VMAT2 binding when using the distribution volume ratio [22]. Acetyl-
cholinesterase [11C]PMP hydrolysis rates (k3) were estimated using the striatal volume as
the input tissue region [28].

2.4. Statistical Analysis

Stepwise regression analyses were used to predict cortical, striatal, thalamic and
cerebellar flumazenil binding estimates from the four cardinal motor UPDRS scores as
defined in Section 2.1. Analyses were performed using SAS version 9.3, (SAS institute,
Cary, NC, USA). We also performed post hoc confounder analysis for the dopaminergic
and cholinergic PET ligands. Post hoc confounder analysis was also performed using
the K1 proxy flow images extracted from the flumazenil PET kinetic model. A model
was considered significant if its p-value fell below our Bonferroni-adjusted α of 0.0125
(0.05/4 models).
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3. Results
3.1. Availability of Regional Cerebral GABAAR Benzodiazepine Binding Sites and UPDRS
Motor Scores

Significant findings were present for the thalamic region with axial motor scores as the
only significant variable in the model (R2 = 0.55, F = 11.0, β = −6.4, p = 0.0009, significant
after correction for multiple testing). Tremor was the only variable that entered the model
for the cortex (R2 = 0.42, F = 6.6, β = −4.9, p = 0.03), which was no longer significant after
correction for the effects of multiple testing. No cardinal UPDRS motor scores entered the
regression models for the striatum or cerebellum.

3.2. Post Hoc Analysis of Thalamic GABAAR Benzodiazepine Binding Site Availability,
Acetylcholinesterase Hydrolysis Rate, and VMAT2 and Axial UPDRS Motor Scores

A subgroup of 10 subjects completed all three PET ligand studies. Stepwise regression
analysis was used to best predict axial UPDRS motor scores from thalamic GABAAR
benzodiazepine binding site availability, thalamic acetylcholinesterase hydrolysis rate,
striatal VMAT2 activity, age, and duration of motor disease. The overall model was
significant (R2 = 0.77, F = 11.9, p = 0.0056) with significant contributions from both the
thalamic GABAAR benzodiazepine binding site availability (R2 = 0.47, β = −5.2, F = 7.2,
p = 0.028), and striatal VMAT2 binding (R2 = 0.30, β = −3.9, F = 9.1, p = 0.019). Thalamic
acetylcholinesterase hydrolysis rates, age, and duration of disease did not meet the entry
criteria for the model.

3.3. Post Hoc Analysis of Thalamic [11C]Flumazenil K1 Flow Effects and Axial UPDRS
Motor Scores

Although the above findings show that other neurotransmitters, such as dopamine
or acetylcholine were not confounders for our GABAAR findings, we used the K1 proxy
flow images from the flumazenil PET kinetic model as an additional step to confirm that
neural processes other than the two non-GABAergic neurotransmitters (dopamine and
acetylcholine) may not play a significant role. This is because reduced gray matter flow is a
marker of the global neurodegenerative process (or global neural integrity) and may be
associated with glutamatergic activity (the most common neurotransmitter in the brain).
For this purpose, we computed thalamic K1 flow derived from the [11C]flumazenil kinetic
model. Results showed no significant effect of thalamic K1 flow measures in the prediction
of axial motor UPDRS scores (F = 2.92, β = −2.6, p = 0.13). Furthermore, entering the
thalamic K1 flow measure together with the thalamic [11C]flumazenil receptor binding
measure not only failed to show a significant effect for the thalamic K1 flow measure but
actually further strengthened the effect of the [11C]flumazenil receptor binding measure
in the prediction of axial motor scores (F = 20.3, β = −6.7, p = 0.0028; total model F = 8.9,
p = 0.009, Figure 1).
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Figure 1. Line of best fit through a scatterplot of axial motor impairment scores over availability of
thalamic benzodiazepine binding sites as assessed by [11C]flumazenil PET distribution volume ratios.

4. Discussion

The thalamus is a key structure involved in motor control. The thalamus receives
inhibitory inputs from the basal ganglia and excitatory signals from the cerebellum and
cortex. Additional modulation in the form of monoaminergic and cholinergic signaling
acts on the thalamus. Together, inputs to the thalamus act to modulate information re-
ceived from the cortical regions resulting in motor control [29]. Our findings indicate
that decreased availability of thalamic GABAAR benzodiazepine binding sites, reflecting
increased GABAergic activity, is correlated with increased axial motor impairments in PD,
independent of the degree of nigrostriatal degeneration. This may be compatible with
the postulated basal ganglia model that the dopamine-denervated striatal nuclei provide
inhibitory control over the globus pallidus internus and the substantia nigra pars reticu-
lata [30], effectively “releasing” the tonic GABAergic inhibition mediated by the output
structures of the basal ganglia [31]. As such, any dopaminergic hypoactivity within the
striatum would therefore lead to a relative increase in inhibitory outflow from the basal
ganglia [32]. Consequently, the subthalamic nucleus sends strong excitatory efferent signals
to the globus pallidus internus and the substantia nigra pars reticulata, meaning that any
increase in the firing rate of subthalamic nucleus neurons leads directly to an increased
firing rate within globus pallidus internus and the substantia nigra pars reticulata neurons,
in turn inhibiting the thalamic and brainstem structures resulting in mobility disturbances
in PD [33]. In short, the dopaminergic hypoactivity in the striatum results in a comparative
abundance of GABAergic inhibitory outputs from the basal ganglia to the thalamic region
that ultimately leads to increased axial impairment in PD.

Indeed, recent research supports this model; one study demonstrated a correlation
between increased GABA in the basal ganglia and axial motor impairment in PD [34],
and another study demonstrated that GABAAR antagonism restored dopaminergic firing
in the striatum and improved motor symptoms in mouse models [35]. There is also
evidence that direct thalamic pathology may contribute to the pathophysiology of motor
impairments in PD. For example, a post-mortem study demonstrated a 30–50% loss of
cells in the center-median/parafascicular complex, which normally provides important
glutaminergic feedback from the thalamus to the putamen [29]. [11C]flumazenil binding
site densities may serve as an indicator of synaptic neuropil integrity or may be an indicator
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of a disease-specific disturbance at the GABAA receptor level. The former rationale is
derived from the fact that GABA receptors are expressed on virtually all cortical and
subcortical synaptic terminals. We performed a post hoc analysis to test the possibility that
thalamic [11C]flumazenil GABAAR benzodiazepine binding site availability findings may
be confounded by loss of neuronal integrity. For this purpose, we computed thalamic K1
flow measures derived from the [11C]flumazenil kinetic model but did not find a significant
effect. Similar findings have been reported for the [123I]iomazenil single-photon computed
emission tomography studies in PD where the authors also found an association between
reduced cerebral GABAAR benzodiazepine binding site availability and increased motor
disability in PD, which could not be explained by flow or perfusion data, suggesting a
specific alteration of GABAA receptors rather than of generalized synaptic or neuronal
integrity [15].

These findings support our previous reports on in vivo imaging studies that demon-
strated correlations between cholinergic innervation changes and posture, falls, and sensory
processing during postural changes [3,24,36,37]. These findings agree with pharmacologi-
cal studies, showing a benefit of cholinesterase drug treatment and a reduction in falls in
subjects with PD with no significant changes in parkinsonian motor rating scores [38,39].

Our results also showed an independent effect for the integrity of nigrostriatal dopamin-
ergic nerve terminals and axial motor impairments in PD. Although axial motor impair-
ments are relatively refractory to dopaminergic treatments, a subset of these impairments
are or remain responsive to these drugs [40]. Furthermore, there is emerging evidence
for GABA and dopamine co-releasing neurotransmission from substantia nigra pars com-
pacta (SNpc) and ventral tegmental area dopaminergic neurons [41,42]. Animal models
of PD suggest that dopaminergic activity in the SNpc may be inhibited due to aberrant
tonic inhibition, thought to be the result of excessive astrocytic GABA, leading to further
imbalance between dopamine and GABA [43]. These observations illustrate the intricate
interplay between these two major neurotransmitter changes and how it may be derailed
by nigrostriatal denervation [8].

Our findings of an association between motor impairments and altered GABAAR
availability may not be limited to Lewy body parkinsonism but may potentially also apply
to other types of parkinsonian disorders. For example, a [11C]flumazenil GABAAR benzo-
diazepine binding site PET study in patients with vascular parkinsonism with and without
gait disturbances found that striatal [11C]flumazenil uptake was inversely correlated with
the motor UPDRS scores and [11C]flumazenil binding reductions were associated with
the presence of gait disturbance [44]. However, comparisons of these findings and our
present results are limited as—at least pure—vascular parkinsonism would not manifest
with nigrostriatal degeneration [45], which, inherent to its dysfunction, would lead to a
relative increase in inhibitory outflow from the basal ganglia [32].

As previously stated, axial symptoms of PD are often resistant to treatment with
dopaminergic replacement therapy [1]. Additionally, treatment with deep brain stimulation
(DBS), which commonly targets the subthalamic nucleus and globus pallidus internus, fails
to alleviate axial symptoms and may worsen axial disability. Subthalamic nucleus DBS,
specifically, has been correlated with greater axial impairment post-surgery [46]. This is
in line with our findings as increased firing of excitatory efferents from the subthalamic
nucleus may lead to increased inhibition of the thalamic and brainstem regions. Alternative
treatments to address the relative hyper GABAergic activity in these regions may lead to
breakthroughs in the treatment of axial impairment.

Our findings augur GABAAR benzodiazepine binding site allosteric modulator drug
treatment approaches to manage axial motor impairments in PD. Flumazenil is a fused imi-
dazobenzodiazepine, which serves therapeutically as a GABAAR benzodiazepine binding
site blocker [47]. Ondo and Hunter reported findings of single-dose (0.5 mg) intravenous
flumazenil administration in eight PD patients and found significant improvements in total
UPDRS motor scores, where the axial motor UPDRS sub-score tended to account for most
of this improvement [12]. These flumazenil treatment data are compatible with the more
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selective association of reduced GABAAR benzodiazepine binding site availability and
axial motor scores in our study.

Limitations of this study include the size and homogeneity of our sample. Because the
patients were recruited from a veteran’s hospital, all the participants were male. This, in
combination with the limited sample size, could influence the generalizability of the present
findings with specific axial motor impairments, such as falls or freezing of gait. In addition,
research into specific subtypes of axial impairments, such as patients with falls or freezing
of gait, may lead to symptom-specific findings of GABAAR benzodiazepine binding site
availability. Another limitation is the lack of a normal control or active disease control
group to allow for the investigation of differential effects from normal aging or disease-
specific effects of PD. Further studies based on a larger, more diverse study population,
preferably with longitudinal follow up, are needed to more thoroughly investigate the role
of GABAAR benzodiazepine binding site availability in the neural network underlying
motor impairments in PD.

We conclude that thalamic GABAAR benzodiazepine binding site availability is in-
versely correlated with axial motor impairments in PD, independent from the degree of
nigrostriatal degeneration. These findings may augur novel non-dopaminergic approaches
to treating axial motor impairments in PD.
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