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Abstract: (1) Background: Alzheimer’s disease (AD) is a neurodegenerative disease with a high
prevalence. Despite the cognitive tests to diagnose AD, there are pitfalls in early diagnosis. Brain
deposition of pathological markers of AD can affect the direction and intensity of the signaling. The
study of effective connectivity allows the evaluation of intensity flow and signaling pathways in
functional regions, even in the early stage, known as amnestic mild cognitive impairment (aMCI).
(2) Methods: 16 aMCI, 13 AD, and 14 normal subjects were scanned using resting-state fMRI and
T1-weighted protocols. After data pre-processing, the signal of the predefined nodes was extracted,
and spectral dynamic causal modeling analysis (spDCM) was constructed. Afterward, the mean
and standard deviation of the Jacobin matrix of each subject describing effective connectivity was
calculated and compared. (3) Results: The maps of effective connectivity in the brain networks
of the three groups were different, and the direction and strength of the causal effect with the
progression of the disease showed substantial changes. (4) Conclusions: Impaired information flow
in the resting-state networks of the aMCI and AD groups was found versus normal groups. Effective
connectivity can serve as a potential marker of Alzheimer’s pathophysiology, even in the early stages
of the disease.

Keywords: Alzheimer’s Disease; amnestic mild cognitive impairment; resting-state functional MRI;
effective connectivity; spectral dynamic causal modeling

1. Introduction

Alzheimer’s disease (AD), one of the most common types of dementia, imposes a
high socioeconomic burden and stress on caregivers [1,2]. This neurodegenerative disease
can affect a person’s orientation, immediate memory, attention, calculation, language,
perception, visual abilities, and executive functions [3]. The global burden disease (GBD)
2019 estimates that the number of dementia patients will increase from 57.4 million in
2019 to 152.8 million in 2050 [4]. Because the disease process begins years before the
clinical diagnosis [5], it is essential to understand the mechanism of AD in the early
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stages, known as amnestic mild cognitive impairment (aMCI) [6]. Early diagnosis and anti-
dementia treatment strategies can prevent widespread neuronal death and delay disease
progression [5].

The most important pathological markers in AD are extracellular β-amyloid deposi-
tion and intracellular accumulation of neurofibrillary tangles [7]. Structural and functional
studies have identified the central nodes of the brain as the earliest sites of disease oc-
currence [8]. There are several known features to identify AD: global atrophy and local
atrophy (prominent atrophy of the medial temporal lobe) [9]; β-amyloid deposition in
dysfunctional hub centers [10]; hypometabolism in the temporal, parietal, and posterior
cingula [9]. Several studies have shown a decrement in volumetric markers [11,12], the
presence of amyloid markers [12,13], and a decrease in the functional connectivity (FC) in
brain nodes of AD and aMCI patients [2,14–16].

The diagnosis of brain dysfunction widely benefits from functional magnetic reso-
nance imaging (fMRI) as it is a non-invasive imaging technique that provides high spatial
resolution maps with high reproducibility. fMRI detects human cortical neural activity
based on blood oxygen level-dependent (BOLD) contrast signals [17]. Statistical correlation
of low-frequency oscillations of the BOLD signal time series at resting-state defines as
FC [18,19]. Most fMRI studies have focused on abnormal FC in AD and aMCI [16,20–22].
Nevertheless, there is a limitation on how resting-state networks with FC disruption op-
erate and how information processing and the neural-signaling flow change. FC only
reflects the interactions between different brain areas [23], while interactions between
brain areas are directional and, therefore, not entirely defined by functional (directionless)
connectivity [24].

The study of effective connectivity (EC) or directional effects allows the evaluation
of intensity flow and signaling pathways in functional regions, which aids in diagnosing
and predicting therapeutic responses in neurological and mental disorders [24]. This can
provide a good understanding of the patterns of interaction between different areas of the
brain [23]. Deposition of pathologic markers of Alzheimer’s disease in the brain region can
affect the direction of the signal path [25,26]. Different methods of signal pathway investi-
gation in fMRI, such as Granger Causality Analysis (GCA) and dynamic causal modeling
)DCM(, have shown altered EC in resting-state networks of AD patients compared to the
normal participants [23,27,28]. DCM, one of the most widely used modeling frameworks
for EC inference from fMRI data, is a generative model of latent neural states [29]. Vari-
ous DCM methods were developed to infer directional effects in brain regions. Among
them, spectral DCM (or spDCM) [24] is an efficient biological model that explains and
predicts BOLD signals caused by endogenous neural oscillations [30]. spDCM is used
to model the intrinsic dynamics of a resting-state network and to infer the interaction
between resting-state latent neural states [31]. This DCM estimates the directional connec-
tivity in coupled populations of neurons [31] and offers a way to understand interregional
interactions between predefined brain areas in resting-state networks. Liu Z et al. 2012
performed GCA to evaluate the EC among the resting-state networks. They found altered
causal interactions in the resting-state network of AD patients (weaker interactions in
the default mode network (DMN) and more robust causal connectivity in the memory
network and executive control network), and they inferred that these findings may help in
determining the neurophysiological mechanisms [32]. Chand et. al 2017, in a resting-state
DCM study, reported aberrancies in the triple network’s (salience network (SN), executive
control network, and DMN) interaction in MCI compared to the normal group, and they
attributed these disorders to cognitive impairment [33]. The SN, involved in autonomic and
homeostatic processing, has shown increased connectivity in AD patients [32,34]. In these
patients, decreased connectivity within the DMN were associated with higher connectivity
strength in the SN, possibly due to compensatory mechanisms [35,36]. A study by Scherr
M et al. 2021 showed EC disruption in the DMN of AD patients, and considering the effect
of the neuropathologic marker on the signaling pathway, they suggested testing molec-
ular theories about the downstream and upstream spread of neuropathology in AD [25].
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Heterogeneous and reduction-dominated alterations in EC are consistent with widespread
reduction and bidirectional changes in FC in MCI and AD [29,37–39]. Despite the studies
that have been conducted on EC in the resting state networks, the number of these studies
is few, and most of them have focused on the DMN [23,25,40,41]. Therefore, changes in EC
patterns and signaling hierarchy in the resting state networks in aMCI and AD patients are
unknown to a large extent.

In this exploratory study, we hypothesize that examining the pattern of EC in different
brain regions is effective for differentiating normal, aMCI, and late-onset AD. Therefore,
we evaluated the signal pathways of resting-state brain networks to examine how the brain
areas in the resting-state networks interact with each other in these three groups and how
Alzheimer affects these patterns of interaction and alteration in the neural brain network
signaling map.

2. Materials and Methods
2.1. Demographic and Clinical Characteristics

The Tehran University of Medical Sciences ethics committee approved this study
(IR.TUMS.MEDICINE.REC.1398.617). Detailed information about the imaging procedure
was given to the participants and their authorized caregivers. The subjects signed an
informed consent form approved by the Research Ethics Working Group. Through clinical
evaluations and neuropsychological tests, three groups, including 14 normal (6 male -8
female), 16 aMCI (6 male -10 female), and 13 late-onset AD subjects (5 male -8 female),
were selected by Yadman Institute for Brain, Cognition and Memory Studies (Tehran,
Iran). Patient selection was based on the Mini-Mental State Examination score (MMSE),
Montreal Cognitive Assessment score (MoCA), and Functional Assessment Staging score
(FAST) (Table 1).

Table 1. Demographic and cognitive information.

Late-Onset AD aMCI Normal p Value Post Hoc Pairwise
Comparisons

Observed
Power(n = 13) (n = 16) (n = 14)

Age (years) 77.77 ± 7.95 72.44 ± 7.11 71.57 ± 7.14 0.062 - 0.696
Gender

(female–male) 5–8 6–10 6–8 0.95 - 0.88

FAST 4–5 3 1 <0.001
Normal vs. aMCI: < 0.001

0.73Normal vs. AD: < 0.001
aMCI vs. AD: < 0.001

MMSE 18.62 ± 1.39 25.06 ± 2.24 28.07 ± 0.83 <0.001
Normal vs. aMCI: 0.031

0.99Normal vs. AD: < 0.008
aMCI vs. AD: < 0.001

MoCA 16.15 ± 3.53 22.19 ± 3.94 27.29 ± 1.14 <0.001
Normal vs. aMCI: 0.003

0.98Normal vs. AD: < 0.001
aMCI vs. AD: < 0.001

p-level < 0.05. There was no significant difference in age among the three groups. Alzheimer’s disease after the
age of 60 (Late-onset AD). Amnestic mild cognitive impairment (aMCI). Functional Assessment Staging (FAST).
Mini-Mental State Examination (MMSE). Montreal Cognitive Assessment test (MoCA).

2.1.1. Inclusion Criteria

Patients were screened through a questionnaire, a clinical examination, and their
history, and inclusion and exclusion criteria were defined. Inclusion criteria for normal
aging (control group): Not suffering from neurological and psychological disorders such as
depression or epilepsy. No visual or hearing impairments. No history of stroke or focal
lesion in brain structural MRI imaging. No memory loss. Normal score in MMSE, MoCA,
and FAST tests. Inclusion criteria in the aMCI group: Memory impairment confirmed by the
patient’s family. There should be no disturbance in the daily activities and independence of
the person. No dementia. Hippocampal atrophy confirmed by structural MRI. Medium
score in MMSE, MoCA, and FAST tests. Inclusion criteria for the AD group: They were
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diagnosed based on clinical and neuropsychiatric evaluation and FAST, MMSE, and MoCA
test scores.

In all three groups, people who did not smoke and did not drink alcohol were included
in the study.

2.1.2. Exclusion Criteria

For all groups, exclusion criteria were the following: mental and neurological dis-
eases; high blood pressure; diabetes; alcohol dependence; substance abuse; history of
head trauma; high signal lesions with a diameter > 5 mm or more than four lesions with
a diameter < 5 mm using T2-FLAIR; other types of dementia such as vascular or mixed
dementia, dementia with Lewy bodies, and frontotemporal dementia (FTD); diseases that
may cause memory loss such as Parkinson’s disease, anemia, cancer, and other severe phys-
ical illnesses. Moreover, claustrophobia or lack of cooperation of the subject in immobility
during and after imaging led to subject exclusion.

2.2. MRI Acquisition

T1-weighted MPRAGE and rs-fMRI data were acquired using a 3.0 T MAGNETOM
Prisma MRI scanner (Siemens Healthcare, Germany) at the National Brain Mapping Lab-
oratory (Tehran, Iran). The scanning parameters of MPRAGE imaging were as follows:
TR: 1840 ms; TE: 3.55 ms; TI: 800 ms; distance factor: 50%; the number of slices: 176; voxel
size: 0.9 × 0.9 × 0.9 mm; flip angle: 7◦; measurements: 1; multi-slice mode: sequential;
series: ascending.

To acquire T2*-weighted (rs-fMRI) data, a single-shot echo-planar sequence was used
with the following protocols: TR: 3000 ms; TE: 30 ms; distance factor: 0%; the number of
slices: 45 per volume; voxel size: 2.8 × 2.8 × 3 mm; flip angle: 90◦; measurements: 100,
echo spacing: 0.5 ms; EPI factor: 80; multi-slice mode: interleaved; series: interleaved.

2.3. Pre-Processing

MNI normalization, tissue segmentation to gray matter, white matter, and CSF; re-
alignment; co-registration; slice timing correction; segmentation; MNI normalization; and
functional smoothing (Gaussian kernel of 4 mm) were performed using Statistic Parametric
Mapping software (SPM) version 12 [31].

2.4. Resting-State Analysis
2.4.1. Independent Component Analyses (Group-ICA)

Group-ICA analysis was performed using Calhoun’s group-level ICA approach with
CONN toolbox (www.nitrc.org/projects/conn, accessed on 24 December 2022, RRID:
SCR_009550) [19] to extract resting-state networks. The fast-ICA algorithm was used for
group-level independent component definition, and GICA3 back-projection was used for
subject-level spatial map estimation. The “summary” option was selected in the ICA
second-level results to explore the estimated ICA networks. At the tab of ICA tools, by
choosing the “spatial match to template” option, the correlations between each group-level
spatial map and CONN’s default network file were computed to identify networks of
interest. The regions reported with high connectivity values on group ICA comparison
were selected as sources: 32 ROI with coordinates from CONN atlas files (Table S1)—
MPFC: medial prefrontal cortex, LP(L): left lateral parietal, LP(R) right lateral parietal,
PCC: posterior cingulate cortex, SML(L): left lateral sensorimotor, SML(R): right lateral
sensorimotor, SMS: superior sensorimotor, VM: medial visual, VO: visual occipital, VL(L):
left lateral visual, VL(R): right lateral visual, ACC: anterior cingulate cortex, Alnsula(L):
left anterior insula, Alnsula(R): right anterior insula, RPFC(L): left rostral prefrontal cortex,
RPFC(R): right rostral prefrontal cortex, SMG(L): left supramarginal gyrus, SMG(R): right
supramarginal gyrus, FEF(L): left frontal eye field, FEF(R): right frontal eye field, IPS(L): left
intraparietal sulcus, IPS(R): right intraparietal sulcus, LPFC(L): left lateral prefrontal cortex,
PPC(L): left posterior parietal cortex, LPFC(R): right lateral prefrontal cortex, PPC(R): right

www.nitrc.org/projects/conn
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posterior parietal cortex, IFG(L): left inferior frontal gyrus, IFG(R): right inferior frontal
gyrus, pSTG(L): left posterior superior temporal gyrus, pSTG(R): right posterior superior
temporal gyrus, CA: anterior cerebellar, CP: posterior cerebellar), represented eight resting-
state networks: DMN, sensorimotor network (SMN), visual network (VN), SN, dorsal
attention network (DAN), frontoparietal network (FPN), language network (LN), and
cerebellar network (CN) [2,42].

2.4.2. Spectral Dynamic Causal Modeling Analysis

EC analysis of resting-state networks was performed using SPM 12 and DCM 12.5.
We used Spectral DCM analysis which estimates the time-invariant parameters of cross
spectra. The original time series were replaced by their second-order statistics, i.e., cross
spectra, and instead of assessing time-varying hidden states, we estimated their covariance,
which does not change with time [31]. Linear regression was used to remove the main
noise components of each voxel and each subject; a general linear model (GLM) containing
movement parameter and confound time series from CSF and white matter (WM) was
constructed and inverted. In addition, a GLM containing band pass frequency ranging from
0.01 to 0.1 Hertz (Hz) was modeled to focus on low-frequency fluctuations of the resting-
state BOLD signal, removing any slow frequency drifts (< 0.01 Hz) and removing confounds
with high frequency such as physiological noise: regressor for CSF signal, with spherical
ROI with a radius of 6 mm and [0 −40 −5] coordinates on the center of the ROI and a
regressor for the white matter signal, with a spherical ROI with a radius of 6 mm, and [0−24
−33] coordinates on the center were defined and masked. The names and coordinates of
the center of the 32 ROIs from 8 resting-state networks were defined and masked. Regional
time series were extracted as the eigenvariate of all selected ROIs within an 8 mm radius
around the targeted area, and DCM was constructed. Since, based on previous studies,
the full model of spDCM is the best model at the group level [43–45], this model was
selected in this study, and EC parameters were estimated, including bilateral and unilateral
endogenous connectivity. Cross-spectral DCM (Full model with no exogenous inputs and
non-stochastic effect) was constructed and inverted for each subject (Figures 1 and 2: an
example figure for one of the resting state networks, DMN). In estimated spDCM, the mean
and standard deviation of the Jacobian matrix, which describes each resting-state network’s
behavior—i.e., the EC—were calculated, and the findings in 3 groups were compared.
Connections with strength below the 0.05 Hz threshold were excluded.

2.5. Statistical Analysis

THE IBM SPSS Statistics platform (version 26) was used to compare demographic and
cognitive data variables. Normality of continuous variables checked with Kolmogorov–
Smirnov test. Due to the non-normality of continuous variables, non-parametric tests were
used to check the assumption of groups’ median equality and percentages. Kruskal–Wallis
and Chi-square tests were employed for continuous and categorical variables, respectively.
A pairwise comparison was performed using the Wilcoxon test. The predefined power was
0.8, and the level of statistical significance was considered ≤ 0.05.

Causal interactions were investigated using spDCM in eight resting-state networks
through Group-ICA analysis, and 32 ROIs were identified as sources for EC analysis to
differentiate late-onset AD, aMCI, and normal. EC patterns of brain networks in the resting
state were shown as directed graphs. The direction of the arrow indicates the direction of
the causal effects, and its thickness indicates the strength of the connection. All spDCM
assumptions were checked and approved. Confounding variables such as motion correction
and realignment were considered in the computation process at the First Level analysis.
The total observed power of all spDCM processes was 0.79 [46,47].
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Figure 2. Spectral dynamic causal modeling analysis in the default mode network (DMN). (A) The
coordinates’ nodes (MPFC: medial prefrontal cortex, LP(L): left lateral parietal, LP(R) right lateral
parietal, PCC: posterior cingulate cortex) within the DMN. (B) Extracting Time series of DMN ‘s
nodes. (C) Choosing model parameters (DCM with a fully connected model with no exogenous
inputs and non-stochastic effect). (D) The plot of predicted (solid lines) and observed (dotted lines)
cross-spectral densities after convergence show both self and cross spectra for four nodes. The
lower panel describes self-cross spectra for four nodes. (E) The result of effective (fixed) connectivity
between DMN ‘s nodes. The first and second panels show the estimated fixed A matrix, and the third
panel shows the posterior probabilities of these endogenous connectivity parameters. The dashed
line with red color indicates the 95% threshold.
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3. Results
3.1. Result of Demographic and Clinical Characteristics

In this study, the cohorts were not gender-equal (females more than men), but there
were no significant differences between the groups. MMSE, MoCA, and FAST scores were
significantly different between the three groups, and there was no significant difference in
age between the three groups. The observed power of each main test is reported. Most of
the observed powers were more than the predefined power (Table 1).

3.2. Results of spDCM Analysis
3.2.1. Default Mode Network

In the normal group, there is bilateral solid causal interaction between LP(L)�LP(R)
(0.1357 Hz for LP(L)→LP(R) and 0.1519 Hz for LP(R)→LP(L) connection). Furthermore, in
the normal group, connections with the origin and destination of LP(L) and LP(R) nodes are
more robust than other connections. In aMCI and AD groups, there is almost no connection
in LP(L)→LP(R), and there is a deficiency in the interaction from LP(R) to LP(L) connection.
The MPFC→LP(L) connection with the frequency of 0.173 Hz in the normal group is almost
disconnected in the aMCI and AD groups. Compared to the normal group, MPFC→PCC,
LP(R)→MPFC, and PCC→LP(R) connections have become stronger in the aMCI group.
The normal signaling from LP(R) to PCC (0.278 Hz) is almost interrupted in the aMCI
group (Figure 3 and Table S2). (Arrows indicate one-way and two-way causal interactions
between nodes in resting-state networks.)

3.2.2. Cerebellar Network

In the AD group, CA→CP connection and not vice versa has become stronger versus
in the normal and aMCI groups (Figure 3 and Table S3).

3.2.3. Dorsal Attention Network

The normal strong bilateral causal interaction between FEFL�FEFR and normal
signaling from IPS(R)→IPS(L) and IPS(R)→FEFR become weak in the aMCI group. There
is almost no connection in IPS(R)→IPS(L) and IPS(R)→FEFR pathways in the AD group.
In aMCI, new signaling has been formed with FEFR origin, IPS(R) and IPS(L) destination,
and new signaling from IPS(L) to IPS(R) (Figure 3 and Table S4).

3.2.4. Sensorimotor Network

In the normal group, there is bi-directional causal interaction between SML(L) and
SML(R). The SML(L)→SML(R) signaling is lost in the aMCI group and returns in the AD
group (Figure 3 and Table S5).

3.2.5. Visual Network

The normal signal pathways from VM→VO (0.4184 HZ), VM→VL(L) (0.1847 HZ),
VM→VL(R) (0.0966 HZ) become weak, and normal flows from VL(L) to VL(R) (0.1251 HZ)
and from VL(L) to VO (0.091 HZ) become almost cut off in the AD group. In the aMCI and
AD groups, a new signaling pathway from the visual lateral(R) to the visual lateral(L) is
formed (Figure 3 and Table S6).

3.2.6. Salience Network

In aMCI and AD groups, the bilateral connections between Alnsula(L) and Alnsula(R),
SMG(R)→SMG(L), and SMG(R)→Alnsula(R) connections become weak compared to the
normal group, and RPFC(L)→RPFC(R) signaling is lost. Instead, new signal directions
are formed, and these additional connections in the AD group become more; this network
becomes complex in these two groups (Figure 3 and Table S7).
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Figure 3. Effective connectivity patterns of AD, aMCI, and normal group in resting-state networks
extracted from the spectral DCM analysis. The arrow’s direction shows the direction of causal
influences, and its thickness shows the strength of the connection. The circle refers to the nodes of
each resting-state network. Only connection strengths greater than 0.05 Hz are displayed (see Tables
S2–S9): (A) default mode network: medial prefrontal cortex (MPFC), left lateral parietal (LP(L)),
right lateral parietal (LP(R)), and posterior cingulate cortex (PCC); (B) cerebellar network: anterior
cerebellar (CA), posterior cerebellar (CP); (C) dorsal attention network: left frontal eye field (FEFL),
right frontal eye field (FEFR), left intraparietal sulcus (IPS(L)), right intraparietal sulcus (IPS(R));
(D) sensorimotor network: Left lateral sensorimotor (SML(L)), right lateral sensorimotor (SML(R)),
superior sensorimotor (SMS); (E) visual network: visual medial (VM), visual occipital (VO), left
lateral visual (VLL), and right lateral visual (VLR); (F) salience network: anterior cingulate cortex
(ACC), left anterior insula (AlL), right anterior insula (AIR), left rostral prefrontal cortex (RPFCL),
right rostral prefrontal cortex (RPFCR), left supramarginal gyrus (SMGL), right supramarginal gyrus
(SMGR); (G) language network: left inferior frontal gyrus (IFGL), right inferior frontal gyrus (IFGR),
left posterior superior temporal gyrus (pSTGL), right posterior superior temporal gyrus (pSTGR)
(H) frontoparietal network: Left lateral prefrontal cortex (LPFCL), left posterior parietal cortex (PPCL),
right lateral prefrontal cortex (LPFCR), right posterior parietal cortex (PPCR).

3.2.7. Language Network

In the normal group, there is a robust bilateral connection between PPC(L)�PPC(R)
that becomes one-sided (PPC(R)→PPC(L)) in aMCI and AD groups. The PPC(R)→PPC(L)
connection is weakened from normal to aMCI and AD. In AD and aMCI groups,
LPFC(L)→PPC(L) connection is lost (Figure 3 and Table S9).



Brain Sci. 2023, 13, 265 10 of 15

3.2.8. Frontoparietal Network

In the normal group, there is a robust bilateral connection between PPC(L) and PPC(R)
that becomes one-sided in aMCI and AD groups, and the PPC(L)→PPC(R) connection is lost.
In AD and aMCI groups, the LPFC(L)→PPC(L) connection is lost. The PPC)R(→PPC)L(
connection is weakened from normal to aMCI and AD. See Figure 3 and Table S9.

4. Discussion

We performed an EC-based analysis with the spDCM approach to investigate causal
interactions in the resting-state network’s nodes of the normal, aMCI, and late-onset AD
groups. Disruption of EC in the resting-state network of AD and aMCI can be due to
hypometabolism and brain atrophy, β-amyloid deposition, and FC alteration. As our study
showed, several studies also reported a decrease in EC in strength and quantity in AD
compared to the normal group [25,27,32,33].

In DMN, the presence of bilateral causal interactions between LP(L)�LP(R) can be an
indicator to differentiate the normal group from the AD group. Based on several studies,
there is a higher inter-regional causal interaction between LIPC/RIPC and other nodes of
DMN, so these nodes have a driving role in the DMN of the normal group [43,48,49]. The
MPFC→LP(L) connection may be a good indicator for distinguishing the normal group
from the other two groups. In both AD and aMCI groups, LP(R)→MPFC connection may
provide the compensatory signaling to prevent network degradation. We found that the
LP(R) node could be considered a hub in DMN due to the robust + and – causal interactions
between this node and other nodes. Studies have shown that the stage of MCI can lead
to abnormal connectivity within the DMN and other brain regions [32,50]. Compared to
the normal group, higher frequencies in MPFC→PCC, LP(R)→MPFC, and PCC→LP(L)
connections were found in the aMCI group, probably due to a compensatory mechanism,
which could be an indicator for distinguishing these two groups. This new connection with
the origin and destination of PCC and MPFC in the aMCI group is in line with a previous
study, which reported that MPFC and PCC are two main nodes of the DMN [43]. Moreover,
we can conclude that PCC is a powerful hub, defined as a structural and functional core
across the whole brain [43,51]. Brain deposition of β-amyloid [52,53], cortical thinning
and FC dysfunction [54–56], and a pattern of hypo-metabolism in FDG-PET studies [53] in
DMN structures in AD patients from preclinical stages could explain the disruption of EC
and new signaling pathways in the aMCI and AD groups.

In 2019, Ye et al. studied 30 AD, 14 MCI, and 18 normal aging subjects and performed
GCA analysis on nodes of DMN, SN, and ENC networks with DPARSF and SPM8 software.
In comparing AD and normal, they found decreased input to PCC, increased output from
PCC (we also found the same path in our study of DMN comparing AD and normal), and
decreased output from dorsal ACC (we found increased output from ACC). Furthermore,
comparing MCI and normal, there was increased output from ACC (our study on the SN
network of the MCI group compared to the normal group confirmed the increase of the
ACC output) and inhibitory connection from PCC to hippocampal formation and from the
thalamus to PCC [3].

Zhong et al. 2014 performed ICA and GCA to investigate DMN components and
EC patterns; they found a decrease in the intensity and quantity of connections in AD
compared to the normal group. In the normal group, the PCC was the center of convergence
and received interactions from other regions. The interaction between MPFC and bilateral
IPC in the normal group was weaker than in patients with AD. In our study, we also saw
a decrease in the strength and intensity of connections in the AD group compared to the
normal group, but the selected nodes were somewhat different, and our analysis method
was spDCM [27].

In the CN of AD versus aMCI and normal group, inter-regional causal interactions
increased from cerebellar anterior to cerebellar posterior, not vice versa. This situation prob-
ably reflects the network’s efforts to prevent segregation following a connection disruption.
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In DAN, the FEFR→FEFL signaling pathway in all three groups was preserved. This
pathway probably plays a vital role in maintaining network integrity, and FEFR and FEFL
may have a driving role in the DAN. Signal cut-off in IPS(R)→FEFR and IPS(R)→IPS(L)
connections and a new signaling path from IPS(L)→FEFL can distinguish the AD group
from the normal group. Our findings show that FEFR could be considered a hub in
normal and aMCI groups due to the + and – causal interactions with the origin and
destination of this node. In another study, it was found that in the MCI group, the FEFR
was involved during the encoding memory task instead of the FPN in the normal group,
indicating a loss of top–down control and impaired memory and learning in this group [57].
Studies have suggested that DAN, which is responsible for the preparation and selection of
responses, shows decreased intrinsic activity during rest in AD compared to the normal
group [32,58]. In line with our findings, several studies show that in DAN, the severity
of disconnection increases with progressing disease [14]. Neuroimaging and behavioral
studies show significant impairment in the function and structures of the dorsal attention
systems [14]. Moreover, several studies have shown a decrease in FC in the DAN of AD
patients [14,15], which could explain the disruption of the EC and the signaling pathway of
this network in the AD group.

SMN survey shows a bi-directional causal interaction in the normal group in
SML(L)�SML(R), which has become one-sided in aMCI and AD groups from SML(R)
to SML(L). Furthermore, a new connection has been established in aMCI from SML(R)
to SMS. Through these connections, it is possible to differentiate between aMCI and the
normal group via SMN surveys. Some task-related fMRI studies have shown decreased
premotor cortex activation in the SMN of AD patients [28,54,59]. Analysis of rs-fMRI data
also showed significant functional abnormalities in the SMN of patients with AD. It is
probably for this reason that patients with AD exhibit subtle motor impairment [54,60] and
have a signal disruption in this network.

In the VN of the aMCI group, there is a bilateral connection between VLR and VL.
In the normal group, this direction is only from VLL to VLR, and in the AD group from
VLL to VLR. Therefore, this bidirectional connection in the aMCI group is an indicator to
distinguish aMCI from the other two groups. The VM→VO causal interaction is maintained
in three groups with good strength. It seems that this connection with its driving role
is an essential pathway in the integrity of the network. Although the causal interaction
of VM→VO has been preserved in the three groups, this connection is weaker in the
aMCI group than the normal group and attenuated in AD compared to aMCI. This finding
is consistent with previous studies; a reduction in the inhibitory effects of top–down
connections was found in early AD, which was associated with functional deactivation in
primary visual areas [52,61]. With the progression of the disease, EC is weakened more
on the left side than on the right, which is consistent with a survey that showed that all
intrinsic connections, especially in the left hemisphere, were significantly weaker [52].

A Survey of the LN showed that compared to the normal group, a general impairment
is observed in causal influence in the form of an increase and decrease in EC strength
and a reversal of IFGR
IFGL signal direction in the aMCI group. The signaling map
of this network became more complex in the AD group. FC dysfunction in AD patients’
networks [54] could explain the EF dysfunction in our findings. Hence, FC alteration
in AD’s LN, which is associated with white matter fiber damage [62], could explain the
complexity of the LN of AD patients.

In SN of the aMCI group, we see overall attenuated causal interaction in connections,
inversion of SMGR
AAL and RPFCR
RPFCL connections, and disruption of information
flow in these paths. Our findings showed the complexity of the SN with more EC strength
in the AD group. Neuroimaging and behavioral findings show significant damage in
AD patients’ ventral attention system functional structures [14], which corresponds to
the dysfunction and complexity of signaling in this network. The role of the SN has
been characterized as a functional sub-network in top–down control of attention [10], and
increased connectivity and network complexity can disrupt this function. SN has a role in
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dynamic switching between the rest and task state to preserve a co-activation framework
named the triple network. In AD, the underlying signal in the triple network could be
inferred as an improper shift of attention between external and internal events.

In FPN, from the normal group to AD, the causal influence was altered. We also
found that PPC(L) could be considered a hub in the normal group due to the robust +
and – causal interactions with the origin and destination of this node. Several PET studies
have shown increased deposition of Aβ in AD patients’ temporal, frontal, and parietal
cortexes [63]. The decrease in FC and disconnection process in both the frontal and parietal
areas might be structurally related to disconnection followed by Aβ deposition [52,63].
These neurodegenerative processes can cause the observed disorder in causal interactions
of this network. FPN is the well-established functional subnetwork in top–down attention
control [10]. In line with our finding, in another study, a reduction in frontal–parietal
pathways (from frontal to parietal cortex) was found, which was interpreted due to gray
matter volume loss in that region (resulting in impaired top–down attentional control in
early AD) [63].

The present study has limitations in the characteristics of the cohort and methodology.
The number of men and women was unequal, and the sample size was not large. The
significance of the cerebral map of the three groups requires further study with a larger
sample size. We performed a spDCM analysis that was restricted to the selected ROIs. In
future work, imaging-based biomarkers could probably be achieved through a comprehen-
sive study with a large sample size, artificial intelligence or machine learning method, and
simultaneous utilization of the Granger causal modeling and spDCM analysis to investigate
causality within–between networks.

5. Conclusions

Identification of directional brain interactions (extracted from the rs-fMRI method)
can help to understand events related to Alzheimer’s disease. Cognitive and neuropsychic
changes in AD and aMCI patients are associated with the underlying pathological spread
and its effect on the signal pathway. We found impaired information flow, and disrupted
causal interaction in the resting-state networks of aMCI and AD were found versus normal
groups. Therefore, abnormal EC may be an indicator of cognitive decline in patients with
aMCI and late-onset AD. The findings highlight the importance of EC changes in the
pathophysiology of aMCI and late-onset AD. Simultaneous study of causal interactions
and investigation of accumulation of neuropathology with large sample sizes in the brain’s
resting state networks could help us understand the direction and strength of a signal
related to the deposition of AD pathological markers.
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