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Abstract: We propose a hyperscanning research design, where electroencephalographic (EEG) data
were collected on an instructor and teams of learners. We compared neurophysiological measures
within the frequency domain (delta, theta, alpha, and beta EEG bands) in the two conditions: face-to-
face and remote settings. Data collection was carried out using wearable EEG systems. Conversational
analysis was previously applied to detect comparable EEG time blocks and semantic topics. The
digitalization of training can be considered a challenge but also a chance for organizations. However,
if not carefully addressed, it might constitute a criticality. Limited research explored how remote, as
opposed to face-to-face, training affects cognitive, (such as memory and attention), affective, and social
processes in workgroups. Data showed an alpha desynchronization and, conversely, a theta and beta
synchronization for the face-to-face condition. Moreover, trainees showed different patterns for beta
power depending on the setting condition, with significantly increased power spectral density (PSD)
in the face-to-face condition. These results highlight the relevance of neurophysiological measures
in testing the e-learning process, in relation to the emotional engagement, memory encoding, and
attentional processing.

Keywords: face-to-face learning; e-learning; hyperscanning; EEG; cognitive and affective process

1. Introduction

The massive digitalization of the learning process happening in professional envi-
ronments represents an innovation [1]. It is known that some assets remain unrecorded
on an organization’s balance sheet even though they still present significant economic
value [2]. In the long term, these resources guarantee the company’s competitiveness in
complex environments. Hence, the aim of Learning and Development (L&D) is to sustain
the company’s evolution by allowing the employees’ professional growth. Workgroups
more and more learn in remote conditions [3] and are now often geographically apart [4].

Thus, both academics and executives naturally came up with a comparison between
online and face-to-face learning [5,6].

Given the relevance of the research topic, in the current study, we decided to explore
this distinction. How does the conversion of a training experience, from face-to-face
to remote, affect the learning experience? Does the digitalization of social interaction
have positive vs. negative consequences at individual and interpersonal levels? Current
literature presents several plausible theoretical arguments that are now reported and
discussed. Unfortunately, they tend to appear ambiguous, if not contradictory at times [7].
Thus, we consider available evidence not conclusive.

Overall, three major distinctions between face-to-face and remote conditions were
highlighted: the discrepancy in the role of technology, a difference in the needed required
tasks for the participant, and a divergence in the engagement levels. Regarding the first
two factors, we might consider them technical-oriented. Remote learning is inherently
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rooted in the employment of software that permits the development of a shared space
(if not a place) for learning. Further, individuals in online environments have to handle
technical specifics (audio-video settings, personal space, and surroundings) and more
stimuli from devices compared to face-to-face settings (e.g., notifications). Moreover, a
motivational difference for the learner was highlighted based on the setting condition.
Distance training seems to prompt lower satisfaction and work engagement, together with
a tendency to be non-responsive, with decreased empathy [8]. Regarding the miscellaneous
communication difficulties that inhibit the learner–instructor interaction, the nonverbal
components (such as facial expression, body appearance, and movements) tend to be
limited in remote condition and even minor signal delays force an individual’s brain to
restore the desired synchrony [9]. Additionally, augmented use of cognitive resources for
registering and perceiving the communication of others was found [10]. This phenomenon
could be associated with the quantity of close-up gaze, the increased cognitive load and
self-evaluation from looking at oneself in the video, and mobility constraints [11]. Lastly, it
was found that four out of five American students attending online classes experienced
isolation, depression, and anxiety, and found it harder to focus and stay in the moment [12].
It should be noted that these data were gathered during COVID-19, and this could be a
possible explanation, as noted by the authors.

Unfortunately, other available data also depicted a different scenario, this time in favor
of e-learning. For instance, a previous work on telecommunication displayed that remote
condition is related to decreased cognitive demand [13] and that some individuals might
find social face-to-face interactions more stressful because of personal traits [14].

As we showed, this comparison appears controversial. Distance learning can be por-
trayed as a double-edged sword [15]. An in-depth investigation might represent an opportu-
nity to assess it. In this regard, we advocate for the attention of three methodological cues.

Firstly, learning is an interindividual process. Acknowledging it means embracing its
complexity as social interaction and its investigation should simultaneously consider all
involved agents [16]. Secondly, the limited use of multidisciplinary approaches to study
learning is a well-known weakness in the literature [17]. A delicate balance between the use
of quantitative metrics without undermining ecological validity is a priority. Thirdly, self-
report and qualitative measures alone might result feeble in investigating covert processes,
such as attentional and affective ones. Additionally, via these methods, biases could incur
(e.g., a-priori or ideological viewpoint on technology). For the issues here discussed,
we advocate for the consideration of cognitive neuroscience which represents a valuable
perspective to assess education and learning at a neurophysiological level [18].

Historically, neuroscience considered heterogeneous factors affecting the learning
process, such as diet, physical exercise, rest, and level of relaxation [19]. Since, in this work,
we consider learning as an interindividual process, social neuroscience should be naturally
called into question. In particular, we found hyperscanning as an innovative method-
ological approach that could come in handy for the assessment of remote learning. The
hyperscanning paradigm allows the contemporaneous data recording of more individuals
involved in a shared task, activity, or simulation of a real condition [20]. The synchro-
nization of the electrophysiological activity within a couple or a group represents highly
valuable data because it allows the consideration of an individual in a social environment
or a dynamic.

The analysis of the neurophysiological correlates of social interactions in classrooms
was conducted before [21]. Generally, two measures are derived from an EEG hyperscan-
ning design, intra-brain, and inter-brain connectivity. Intra-brain connectivity refers to
the neural synchronization between different cortexes within a participant and can be
considered as a marker for a subject’s functional specialization [22]. The other indicator is
inter-brain connectivity [23], which refers to the functional connectivity between individu-
als’ brain regions responsible for interpersonal coupling during social interactions [24,25].
Interestingly, these metrics are both good predictors of collective performance [26]. In elec-
trophysiological studies, EEG spectral boundaries are considered (i.e, delta, theta, alpha,
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and beta bands) and interpreted according to their functional meaning that is related to
specific cognitive and emotional functions or processes [27]. Such patterns are shown to be
correlated to cognitive and affective processes and are commonly employed in neuroscien-
tific research designs. Low-frequency bands (delta and theta) were shown being associated
with emotional and memory-related processes [28,29], during social feedback [30], and
emotional face comprehension [31]. Furthermore, alpha desynchronization and beta syn-
chronization are frequently linked to cognitive engagement and processes of selective
attention toward target stimuli (see [32]).

For the reasons previously described, we intended to develop a research design,
gathering data for the investigation of the learning experience of trainees and trainers,
eliciting possible discrepancies between the remote and face-to-face conditions. EEG allows
the consideration of quantitative metrics that refer to cognitive load, cognitive arousal
and mental stimulation, and affective states. The present neurocognitive paradigm aims
at furnishing a comparison of face-to-face and remote settings for learners and a trainer
during two equal training sessions. Preserving ecological validity was a primary condition
and, to ensure it, we chose to employ EEG wearable devices. A possible methodological
issue we encountered was the homogeneity between the two conditions (i.e., face-to-
face vs. remote) with a sufficient degree of reliability. To extract comparable phases to
match the neurophysiological data, previous studies qualitatively detected recurring verbal
patterns in inter-agent conversational interactions [33]. In this sense, blending EEG and
conversational data might represent a valuable methodological approach for the assessment
of training sessions.

To achieve the objectives, EEG data were collected in three groups of trainees and a
trainer, employing a hyperscanning paradigm in two continuous sessions, one provided
remotely and the other in person. Moreover, to map the discourse and reoccurring topics
in the two sessions, a qualitative content analysis was adopted. We then compared the
neurophysiological data from the two sessions, taking into account the frequency powers
of the delta, theta, beta, and alpha waves, from participants’ specific brain areas.

Given the research’s aims and the employed methods, we proposed the following
hypotheses:

First, regarding theta and delta band power, it was hypothesized that the face-to-
face condition exhibits higher power activation; that is, the higher presence of these EEG
frequency bands previously associated to emotional engagement, compared to the remote
one. In the first situation, when nonverbal language is also used by the participants
to communicate, we expect stronger emotional involvement, as evidenced by a theta
synchronization [28].

Instead, considering beta and alpha bands as markers of attention or cognition, we
expect stronger synchronization in all training groups under those situations that require
a higher attentional cost related to the specific phase of the learning process. It might be
possible that, when trainees were attending the remote session they could be less responsive
or less cognitively engaged and more susceptible to being distracted by their surroundings.

2. Materials and Methods
2.1. Sample

After giving their written informed consent, a total of eight participants [mean (M)
age = 42.6, standard deviation (SD) age = 6.12] took part in the study. Professional trainers
and trainees (n = 7 individuals) were included in the sample as two separate groups. The
following inclusion criteria were taken into account for the trainer and trainees, respectively:
being a senior trainer (with more than five years of expertise managing training and
educational settings) and, for trainees, having experience of more than 5 years in human
resources (HR) management.

Criteria of exclusion encompassed: (i) having a history of neurological or psychiatric
conditions, (ii) utilizing psychoactive medications that affect the central nervous system
concurrently with therapy, (iii) displaying clinically significant discomfort, or having
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experienced burnout. The research activity was conducted following the principles of the
Helsinki Declaration (1964) and was approved by the local Ethical Committee Institution
of the Department of Psychology, Catholic University of the Sacred Heart, Milan, Italy.

2.2. Procedure

After agreeing to participate, each participant attended two training sessions offered by
a counseling agency, one given remotely using Zoom Video Communications and the other
in person. Both sessions were video-recorded and lasted 3 h: during these sessions, an HR
trainer presented ways for delivering learning content in corporate contexts. Participants
remotely attended the training session from their own laptops under the remote condition.
A researcher made sure that each participant could concentrate on the instruction in a
calm, low-light environment before the remote session began. Participants in the face-
to-face condition were introduced in a classroom where training sessions are commonly
conducted. Participants in both conditions were required to wear the EEG equipment so
that their training related brain activity could be collected concurrently. All participants
received wearable EEGs from the study team, which they paired with their cellphones using
Bluetooth. All participants received training before of the trial and could independently
wear the EEG system and record the session (start and stop options). A 120 s baseline
was recorded previous to each condition. After each single session, the recorded data
were saved and sent to the researcher. The output was then permanently deleted from the
participant’s smartphone. The introduction and conclusion stages, as well as any requests
about the usage of the device in both conditions, were overseen by a member of the research
team who was continually on hand. The same experimental procedure was adopted in a
previous study [34] and it is reported in Figure 1.
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extracted via conversational analysis. A 2 min baseline was recorded before each condition.

2.3. EEG Signal Acquisition

EEG data were acquired using multiple Muse™ Headbands version 2 (InteraXon
Inc., Toronto, ON, Canada). These wearable recording systems (Figure 2) are composed of
4 gold-plated cup bipolar dry electrodes to non-invasively detect EEG signals.

The electrodes are positioned according to the international EEG placement system:
three are used as a reference, and the other four are positioned in the frontal (AF7 and
AF8) and temporoparietal (TP9 and TP10) regions. The system is also equipped with
an accelerometer, a gyroscope, and pulse oximetry, and is connected to the participant’s
smartphone, using the mobile application Mind Monitor [35]. Data were sampled at a
constant of 256 Hz and a 50 Hz notch frequency filter is applied. The software automatically
processes raw data and applies fast Fourier transform to obtain brain waves computing the
logarithm of power spectral density (PSD) from each of the four channels (as processed
by Mind Monitor, all EEG PSD values tend to lie within the −1: +1 range). Considered
frequency bands were delta (1–4 Hz), theta (4–8 Hz), alpha (7.5–13 Hz), and beta (13–30 Hz).
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2.4. Data Analysis

Data analysis included three phases: conversational semantic mapping; EEG frequency
band analysis and statistical modeling, between participants (trainer and trainees) based
on their EEG activity during the different phases.

2.4.1. Conversational Semantic Mapping

The conversational semantic mapping of the stages of the process in which the partici-
pants were conversing was realized by exploiting the videotape data from the two sessions.
Two impartial judges, who had transcribed the audio of the videotape, carried out the
mapping. The transcripts were analyzed using a qualitative content analysis methodol-
ogy [36]. Transcripts of the verbatim were also examined. Independent researchers checked
the accuracy of dialogue transcription. In order to ensure that the transcripts accurately
reflected the discourse, researchers repeatedly evaluated the verbatim and compared their
findings with those of the other judge. The research tried to find similar themes in the
two conditions’ material. After reading interview transcripts several times, a thematic
analysis of their content was carried out, starting with a first coding process that involved
identifying the recurring topics.

This analysis permitted to highlight how the verbatim material pertained to particular
stages (n = 29) of the training procedure. The group 1, group 2, group 3, trainer, and
feedback clusters were identified. According to the training objectives, the first three
clusters (group 1 phase, group 2 phase, and group 3 phase) corresponded to the three-team
stages presenting their project proposals. The fourth cluster (trainer) concerned the trainer,
who was individually discussing and imparting methods and tools for a remote learning
strategy. The fifth cluster (feedback) contained all of the instances where participants
provided general comments on the training session.

The most important parts of the training process, present in both two training con-
ditions (face-to-face and remote) were used to create a time-block for the analysis on
the recorded EEG trace (see also [33]). The sample is constituted by the number of EEG
samplings made per subject in the different experimental conditions.

2.4.2. EEG Frequency Band Analysis

EEG recording was divided into time blocks according to the different salient phases
of the training process for each cluster of phases. We then extracted the data of the
corresponding electrophysiological activity per phase. Each of the five clusters contained
the EEG signal corresponding to the different salient phases of the training process, grouped
according to the following specific topic: group 1/2/3, trainer, and feedback. The average
length of each topic was twenty minutes and was homogeneous among the topics.

For the statistical analysis, four ANOVA models were run, one per frequency band
(delta, theta, alpha, and beta) dependent variable. The following independent variables
were modeled: condition (2: face-to-face, remote) electrodes (4: AF7, AF8, TP9, and TP10)
as within factor, and topic (group 1, group 2, group 3, trainer; feedback) as a between factor.
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Post hoc analysis (contrast analysis for ANOVA, with Bonferroni corrections for multiple
comparisons) was successively applied to reduce type I error. The sphericity was assessed
via Mauchly’s test and, when violated, the Greenhouse–Geisser correction was applied.
The size of statistically significant effects was estimated via partial eta squared (η2) indices.
Significant results for theta, alpha, and beta are reported and interpreted. No significant
results were detected for the delta wave.

3. Results
3.1. Theta Band

The effect of condition was found to be significant (F [1,24] = 14.43, p ≤ 0.05, η2 = 0.38).
Specifically, we observed increased theta power in the face-to-face condition, compared to
the remote setting. Data are reported in Figure 3A. We also reported the interaction condi-
tion*electrode. Right temporoparietal theta power in face-to-face conditions is descriptively
higher than the anterior–frontal PSDs. Data are reported in Figure 3B. Theta power for the
two conditions is also represented in two head displays in Figure 4A,B.
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Figure 3. (A). The bar graph shows differences in theta power mean values for condition. Error
bars represent ± 1 standard error (SE). Stars (*) mark statistical significance. (B). Bar graph shows
differences in theta power for the not-significant interaction condition*electrodes.
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Figure 4. Theta power EEG display for face-to-face condition (left head, (A)) compared to remote
condition (right head, (B)). For all EEG head displays, red represented an increase in power for the
considered frequency band.

3.2. Beta Band

The effect of condition was found to be significant (F [1,24] = 14.43, p ≤ 0.05, and
η2 = 0.38). Higher beta power was found in the face-to-face condition compared to the
remote one. Data are reported in Figure 5A. Moreover, the interaction condition*topic
was found to be significant (F [4,24] = 5.546, p ≤ 0.05, and η2 = 0.48). Post hoc analysis
highlighted that in two group phases out of three there was a significant difference between
face-to-face and remote conditions. Specifically, group 1 (p ≤ 0.05) and group 2 (p ≤ 0.05)



Brain Sci. 2023, 13, 356 7 of 11

showed increased beta power in the face-to-face condition compared to the remote one.
Data are reported in Figure 5B.
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3.3. Alpha Band

The effect of condition was found to be significant (F [1,24] = 9.38, p ≤ 0.05, and
η2 = 0.28). We observed increased alpha in the face-to-face condition compared to the
remote setting. Data are reported in Figure 5C.

4. Discussion

This research brings to the fore the advantages of applied neuroscience for the inves-
tigation of organizational training experience, where the investigation of the impact of
the setting, considered in remote or face-to-face conditions was the main focus. During
two training sessions, electrophysiological indices were collected to explore the cognitive
and emotional states of a trainer and trainees. The analysis of the data encompassed three
stages: discourse analysis, EEG data extraction within the frequency domain starting from
the qualitative evaluation, and statistical modeling. The identification of compatible phases
between the two considered conditions was made possible by the qualitative content analy-
sis. As performed in previous studies [33], time blocks were created for the EEG recording
based on the themes that emerged from the qualitative analysis. We then retrieved the
corresponding electro-physiological activity for each participant based on these temporal
segments. For the following frequency bands: theta, beta, and alpha PSD noteworthy
evidence was observed.

As expected, the factor condition was found to be significant. In comparison to the
remote situation, there was increased theta power activity in the face-to-face condition.
Theta rhythm’s involvement in the control of emotion was solidly emphasized in the liter-
ature (e.g., [37–39]). Theta pattern is generally considered a global processing mode that
spans large cortical regions, mostly for regulating spatially distributed neural assemblies
(e.g., [40]). Consistent data suggest that during emotional arousal, neurons in the amyg-
dala produce theta activity (e.g., [41]). Its role in interindividual communication, social
feedback [30], and emotional processing is widely known [28,29]. Data showed that in the
occurrence of immersive experience, theta tends to increase [42]. It is also associated with
stress relief, memory recollection [43], and improved creativity and learning [44]. From
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the gathered EEG evidence, we state that face-to-face settings could elicite a better general
learning experience, supporting already existing data previously introduced. This line of
studies supports the idea of remote conditions weakening empathy levels (e.g., [8]) and
work engagement [10], and ultimately affecting social interactions at an emotional level.
Some explanatory factors could be related to interindividual issues, such as reduced facial
expression patterns, body appearance, and miscellaneous body movements. Interestingly,
even though at a descriptive level, temporoparietal loci (TP9, TP10), in particular the right
one, presented higher powers. Converging neuroimaging evidence show that the right
temporoparietal junction (rTPJ) is connected to social processing [45,46] and slow waves
(i.e., theta) support TPJ functionality [47]. In particular, its activation seems to be linked
to the processing of social cues required for empathy [48]. Although further investigation
should address this evidence.

Regarding beta activity, we detected higher PSD when participants were experiencing
the training in the face-to-face than in the remote condition. Significant differences were also
observed in the two group phases out of three (groups 1 and 2), with increased beta power
in face-to-face conditions. Generally, beta is considered a proxy for attentive accuracy, and
the sensorial detection of internal and external stimuli [49]. The contribution of the cortico-
thalamic supported by the projections from the lateral geniculate nucleus (LGN) and the
primary visual cortex (V1) is crucial for attentional perception and higher visual processing.
Additionally, the beta pattern tends to increase during awareness, concentration, and
immersive tasks [42]. In this sense, the setting condition seems to play an important role in
the modulation of attention. Interindividual differences within the groups were shown to
have a certain weight on the learning experience, supported by the detected differences in
the PSD. Instead, the trainer’s activity and the feedback exchange appeared unaffected by
the condition factor.

Lastly, concerning alpha activity, we found a wave desynchronization in the face-
to-face condition. The interpretation of alpha starts from Berger’s studies [50] as it was
considered a reverse measure of activation, thus exhibiting a negative correlation with
cognitive performance. Recent evidence suggests a reconceptualization of alpha, which is
now mainly considered for its inhibition function, towards task-irrelevant or conflicting
processes, and a mechanism for increasing the cortex signal-to-noise ratio [51,52]. Alpha
oscillations decrease while experiencing concentration and immersion states [42]. There-
fore, from the observations we gathered, it could be argued that the face-to-face condition
allowed a better experience, cognitively, for participants, possibly experiencing an im-
mersive learning process. From a learning efficacy perspective, alpha desynchronization
was previously linked to memory encoding; thus, the face-to-face condition potentially
allowed the participants to reach increased learning outcomes. This evidence is in line with
literature suggesting a needed higher cognitive load for remote conditions, due to increased
looking at one’s reflection and evaluating oneself, as well as physical limitations [10,11].

5. Conclusions

To sum up, this research, combining a conversational approach with EEG data, cor-
rectly addressed the set objectives and hypothesis. Cognitive and affective processes, such
as selective attention, general cognitive arousal, memory, and social cues encoding, were
considered in their general effect, revealing specific modulations for the condition factor.

The present work could present some strengths and weaknesses. We believe that the
presented study adds value to the literature for three main reasons: First, the wearable EEGs
used to evaluate the impact of the condition factor (remote vs. face-to-face) on the training
experience is a novelty. Secondly, the combined approach used in this study (exploiting
both quantitative and qualitative data) represents a strength point. We were able to success-
fully compare the two considered conditions, via an in-depth qualitative analysis of the
conversation content, while employing hard metrics, such as electrophysiological correlates
(i.e., EEG PSD per band) for covert processes. We believe that it represents a robust solution
for the assessment of complex social interactions. Lastly, the research involved a real setting,
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trainer, and trainees in order to preserve ecological validity. Instead, the study’s limitations
we identified are related to internal validity and external validity. Regarding the latter, the
research generalizability might represent a weakness due to the inherent complexity of
social interactions. Internal validity is also a dimension that should be further assessed. In
fact, confounding variables are possibly present (e.g., learning content, individual variables,
order effect of the condition). For these reasons, such preliminary findings should be
replicated and further researched with appropriate samples via the computation of power
analysis to establish the needed sample size. Lastly, the recorded signal could be analyzed
through more sophisticated processing [53], while considering other sociodemographic
factors and self-report variables (e.g., motivation and psychological traits), as well as a
training approach. Additional contributing independent variables should be taken into
account and adjusted for in order to increase statistical power.

Practical consequences can be considered as well. This evidence demonstrated that
the environment may have an impact on how a training experience is designed.

When deciding on the specifics of the training, consideration for the targeted de-
mographic of trainees should be given. Moreover, the used commercial EEG equipment
proved to be effective for practitioners as well. Even with a limited technical background
in evidence-based practices, these tools represent an affordable solution.
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