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Abstract: Recognition of lying is a more complex cognitive process than truth-telling because of the
presence of involuntary cognitive cues that are useful to lie recognition. Researchers have proposed
different approaches in the literature to solve the problem of lie recognition from either handcrafted
and/or automatic lie features during court trials and police interrogations. Unfortunately, due to
the cognitive complexity and the lack of involuntary cues related to lying features, the performances
of these approaches suffer and their generalization ability is limited. To improve performance, this
study proposed state transition patterns based on hands, body motions, and eye blinking features
from real-life court trial videos. Each video frame is represented according to a computed threshold
value among neighboring pixels to extract spatial–temporal state transition patterns (STSTP) of the
hand and face poses as involuntary cues using fully connected convolution neural network layers
optimized with the weights of ResNet-152 learning. In addition, this study computed an eye aspect
ratio model to obtain eye blinking features. These features were fused together as a single multi-modal
STSTP feature model. The model was built using the enhanced calculated weight of bidirectional
long short-term memory. The proposed approach was evaluated by comparing its performance with
current state-of-the-art methods. It was found that the proposed approach improves the performance
of detecting lies.

Keywords: artificial intelligence; bidirectional long short-term memory; convolutional neural
network; computational intelligence; eye aspect ratio; hand gestures; lie recognition

1. Introduction

On average, every person tells lies at least twice a day [1]. More aggravating is lies
presented against others during court trials, police interrogations, interviews, etc., which
change the outcome of relevant facts and may lead to wrong judgments or convictions.
These problems have inspired the development of computer engineering systems, such
as electroencephalography (EEG). Despite the benefits of computer engineering systems
for lie recognition, some restrictions exist, such as being cumbersome, which allows a liar
to understand that they are being monitored, thus resulting in the presence of deliberate
behavioral attitude that can confuse the interviewers. Such deliberate behavioral attitude
affects involuntary cues, which mislead the actual results. These involuntary cues comprise
facial expression, body language, eye motion, and hand motion, as shown in Figure 1.
Each subfigure contains a scene from a court trial video. The scene contains a label in the
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white box corresponding to the number from the video clip of the original court trial video
data set. The scenes from the top left corner to the right show the behavioral attitudes of
lying people, while the scenes from the bottom left corner to the right show the behavioral
attitudes of truth-telling people. Addressing the problem of learning human involuntary
cues, recent research in the field of image processing/CV and machine learning reshapes
computer engineering systems into machine learning-based (ML) systems [2–4]. ML-based
systems can learn tiny facial marks [4] and behaviors in connection with body motion,
as well as hand gestures [5], therefore making lie recognition suitable via CV and ML
techniques. However, a combination of two or more human involuntary actions (known as
cognitive cues) provides good results at some expenses [6]. Therefore, deep learning with
CV features, such as bidirectional long short-term memory (BLSTM), has advanced with
appreciable performance, although only a few examples have appeared in the literature [1].
However, the weights of BLSTM do not highlight the key information in the context,
which leads to information redundancy when learning long video sequences [7], as well as
insufficient recognition accuracy and model instability [1].
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Figure 1. Sample of real-life court trial video data set with involuntary cognitive cues. From the top
left corner: (1) lying during the court trial with a forward head motion, (2) lying with double-hand
motions, (3) lying with a single hand motion, (4) lying with an eyebrow, (5) lying with an eye blink,
and (6) lying with a body motion. From the left bottom corner to the right: (7) truth-telling during the
court trial with a forward head motion, (8) truth-telling with double-hand motions, (9) truth-telling
with a single hand motion, (10) truth-telling with an eyebrow, (11) truth-telling with an eye blink,
and (12) truth-telling with a body motion [1].

The recognition accuracy of these methods [1,4] is low because some multi-modal
involuntary cues and their complementary information are missing; thus, their accuracy
needs to be improved since involuntary cues, such as those shown in Figure 1, are sig-
nificant factors in determining people’s behaviors while giving testimony during court
trials or investigations. These involuntary cues are difficult to capture by using classical
technique. Thus, deep learning methods are the suitable choice. However, deep learn-
ing methods provide a huge amount of information that is sometimes irrelevant to lie
recognition. Uncertainty about the type of multi-modal information to be used for lying
recognition remains a key factor. Thus, we improve this process by highlighting the key
information of multi-modal features by proposing multi-modal spatial–temporal state
transition patterns (STSTP). It is found that the highlighted multi-modal STSTP information
provides a sound basis for lie recognition under real-life court trial videos and paves the
way for the development of explainable and principled tools. Inspired by these results, we
propose spatial–temporal state transition patterns based on involuntary actions of lying
and truth-telling persons.

The organization of the paper proceeds as follows: the literature review is described
in Section 2. Section 3 deals with the process of the proposed methods and the adopted



Brain Sci. 2023, 13, 555 3 of 21

algorithms. Section 4 describes the data source and its characteristics. It also describes the
data preprocessing and feature engineering. Section 5 presents the results of the proposed
models and performance evaluations. It also discusses and interprets the main results of
the conventional methods. Finally, Section 6 concludes the paper. The main contributions
of this article can be summarized as follows:

(1) This study designs a state transition pattern vector based on STSTP to model the
involuntary cognitive cues of the hand, body, and eye-blinking motion of a lying or
truth-telling person.

(2) This study presents lie recognition with multi-modal STSTP based on hybrid ResNet-
152 and BLSTM.

(3) The proposed approach controls redundant features and improves computational
efficiency.

(4) The performance evaluation indicates the superiority of the proposed approach when
compared to classical algorithms.

(5) This study computes facial involuntary actions using the EAR formulation, while
complete body motion is computed using optical information to distinguish between
involuntary lying and truthful cognitive indices.

(6) This work demonstrates empirical evidence of an improved police investigation/court
trial process with an automatic system, compared to a single and manual lie recogni-
tion system.

2. Literature Review
2.1. Eye Blinking Approach

Eye blinking is an involuntary cue during lying or truth-telling actions; however, it is
a valuable index to enhance effective recognition. The eye-blinking cues of a lie are hard
to learn during a cross-examination or a court trial. Although complex techniques are in
use to record eye blinking, such as eye trackers, these techniques need a biomarker and
complex data interpretation. Therefore, RGB videos from computer vision (CV) provide a
flexible data set for the recognition of lies. CV allows an algorithm to be built without the
need for a biomarker and/or complex data interpretation support. Eye-gaze lie systems,
such as that of Bhaskaran et al. [8], propose eye-gaze features based on dynamic Bayesian
learning. This method was reported to achieve an accuracy of 82.5% in learning distinct
features between deceit and non-deceit cues. The major limitation of this work includes
failure to reflect real-life scenarios, such as a suspect or witness wearing glasses or showing
flicking an eyebrow motion. Proudfoot et al. [9] proposed eye pupil diameter using a
latent growth curve modeling technique to capture changes in the eyes of the suspect and
complainant, while George et al. [10] evaluated the number of eyeblink counts and their
duration among lying and truth-telling persons. The former study finds that significant
changes occur when a person is telling lies, while the latter study can conclude when a lying
person is pressurized. The advantage of the work by Avola et al. [4] is that it highlights the
benefits of extracting macro- and micro-expressions (MME) during police interrogation,
cross-examination, and court trials. Macro- and micro-expressions of the face are built in
an ensemble fashion. Therefore, it can be observed that a truth-telling or lie-telling person
employs various body cues (multi-modal cues) to express themselves, as shown in Figure 1;
thus, single-body cues are not sufficient to discriminate lies from facts.

2.2. Multi-Modal Cue Approaches

An automated multi-modal lie recognition system can allow the building of a sys-
tem with potential behavioral cues to distinguish a lie from the truth [11]. The work by
PrezRosas et al. [12] exploited verbal and non-verbal indices to detect court verdicts with
decision trees and random forests. Abouelenien et al. [13] demonstrated the performance
of cross-referencing physiological information with a decision tree and majority voting
strategy, while Karimi et al. [14] exploited visual and acoustic cues using large margin
nearest neighbor learning. Wu et al. [15] considered visual, audio, and text information in



Brain Sci. 2023, 13, 555 4 of 21

unison to compare and select the best classifier among decision trees, random forests, and
linear SVM. Rill-Garcia et al. [16] jointly combined visual, acoustical, and textual indices
using SVM to evaluate the effectiveness of the combined information. Krishnamurthy
et al. [17] utilized a 3D CNN for feature extraction, and classification was conducted using
multi-layer perceptron. This work demonstrates the effectiveness of multi-modal deep
learning cues.

Furthermore, hand features are very stable cues for identifying human actions and
intentions, as reported in the literature [3,18,19]. Lu et al. [20] extracted hand and facial
features using color 3-D LUT, which are further utilized with blob analysis to track head
and hand motions (behavioral state). Their method needs to be improved to avoid complex
segmentation and long processing time. Meservy et al. [11] extracted hand and facial
features using color analysis, eigenspace-based shape segmentation, and Kalman filters.
The major limitation of this method is user invariability. Avola et al. [1] extracted hand
features from RGB videos using OpenPose. In their method, the hand is represented using
21 finger joint coordinates per frame along with acceleration and velocity. In addition, their
method calculates hand elasticity and openness to observe hand behavior while lying or
speaking the truth. Mut Sen et al. [5] proposed visual, acoustic, and linguistic modalities.
This method designs automatic and manually annotated features using a random seed,
and the features are validated using different classifiers in semi-automatic and automatic
modes. The best results are obtained from the semi-automatic system with artificial neural
network classifiers. The work in [5] proposes a multi-feature approach based on subject-
level analysis. The features are detected manually, which affects the performance. Most
of the current best works achieve the best result via deep learning methods. However,
eyebrow, eye blinking, and optical flow of involuntary information are not utilized by those
methods; thus, the current challenges have not been properly addressed.

3. The Proposed Conceptual Framework

Each process for the multi-modal STSTP real-life court trial video models for lie
recognition is detailed in the following sections. This study investigated and proposed
three spatial–temporal involuntary cognitive cues as a state transition pattern vector: the
hand, body motion, and eye blinking (eye aspect ratio (EAR) and eyelashes) staging video
information of fifty-six suspects and witnesses during real-life court trials, who were either
lying or truth-telling. In the first stage, the court trial videos were selected by a keyframe
selection threshold method, and the feature indexes were sorted according to the frame
significance. This study sorted the frames of each person by using the EAR, and the first
ten frames was randomly sampled. From these frames, a total of 20 hand joint poses were
located using principal component analysis (PCA), and body motion was detected using
optical flow information (OF). This information was combined as three spatial–temporal
state transition patterns (STSTP) that are significantly associated with a person either lying
or telling the truth, which were verified by the curve fitting tool. In the second stage, the
fully connected layer at the 20th layer was initialized using the effective weight of ResNet-
152 to achieve the best spatial feature (SP) extraction. In the third stage, the keyframe
selection approach was introduced to optimize the parameters and weights in the BLSTM
network training process to improve the stability and performance of the proposed STSTP
model. Finally, a lie recognition model of a person who is either lying or telling the truth
with the STSTP based on ResNet-152-BLSTM is established. The whole process is depicted
in Figure 2.
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3.1. Video Frame Representation from the Proposed Method
3.1.1. Convolutional Neural Network-Based Video Representation

Convolutional neural network (CNN) has excelled in many image and video recog-
nition problems due to its local dependencies and scale invariance. However, in CNN,
the window size is also investigated, where it has been found that a larger window size
does not lead to a better performance in all cases of cross-examination classification. We
designed a wide convolution to control CNN feature maps. In this case, we exploited the
benefits of the residual network (ResNet) layer as a CNN variant. We adopted the ResNet
output from the Conv1-2 layer as our feature extractor. The output of the Conv1-2 layer is
utilized in the average pooling layer for the recognition and classification by the BLSTM
layers. Let the video set of lie and truth be L = c1, c2,...,cn, with ci ∈ Rs, where s denotes
the cognitive index size. The total number of cognitive indices considered in each window
for the convolution operation is denoted as o; then, the width of the convolution kernel is
maintained as in the cognitive embedding size. Therefore, the convolution kernel can be
obtained as e ∈ R(o×s). However, each window slide gives a convolution output as follows:

yi = ReLU{e · ci:i+o−1}+ q, (1)

where ReLU, ci:i+o−1, and q denote the nonlinear activation function, the number of cogni-
tive indices taken in each convolution operation, and the bias term q ∈ R, respectively. The
padding parameter is set to be the same as the length of the video set L, which is set to be n.
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The stride size is D. Therefore, the convolution output becomes y = [y1,y2,...,cn/D]. Then,
the pooling layers perform maximum pooling operation, as shown in Equation (2). The
pooling operation includes sliding a 2D filter per channel of feature map and summarizing
the features spreading within the region covered by the filter. Thus, the dimensions of the
output obtained after a pooling layer are given as follows:

Pmax =
H f −U + 1

D×
∣∣∣(W f −U + 1

)∣∣∣D× C f

(2)

where H f , W f , C f , U, and D denote the feature map height, width, number of channels,
filter size, and stride length, respectively. In addition, padding layers K are added such that
the output image has the same dimensions as the input image, as given below:

{(I + 2K)× (I + 2K) f rame} ∗ {(U ×U)ker n el} ↪→ {(I × I) f rame} (3)

where K = (U−1)
2 .

Finally, the total output of the fully connected layer for the cognitive CNN is obtained
as follows:

CNN =→ {[G], Λ = −1} (4)

where→, G, and Λ denote the concatenation operation, the output of the layer, and the
procedure of dimension/size splicing, respectively.

3.1.2. Bidirectional Long Short-Term Memory-Based Video Representation

Long short-term memory (LSTM) architecture was chosen because of its capability to
learn long-term dependencies in video sequences [21]. LSTM with backward and forward
memory cells is known as BLSTM, which can effectively preserve the semantic information
of longer sequences. A single BLSTM network for multi-modal feature recognition leads
to low accuracy and over-fitting, especially when learning complex video sequences. To
address this problem, stacking more than one BLSTM unit, such as in [7,21], enhances
the recognition performance of multi-modal features. Therefore, inspired by these works,
this study designed a BiLSTM architecture using two BLSTM units. This architecture
allows the achievement of high-level sequential modeling based on the selected STSTP
features. Finally, the splicing of the output vectors of the forward and backward BLSTM
units is performed, and the feature vectors with bidirectional semantics are the output of
the BiLSTM layer, as given in Equation (5). The BiLSTM fails to show the importance of key
information in context during computation, and it causes information redundancy when
dealing with long STSTP sequences. Therefore, we set up a threshold value to average
the entire STSTP features that can effectively highlight important cognitive features to
ease the BLSTM learning. The key feature extraction according to the threshold method is
highlighted in Equations (6) and (7). Finally, a categorical label is designed from the two
classes LIE and TRUTH, which are further classified using the Softmax layer at the last
LSTM layer with FC to better analyze lying and truth-telling persons. Therefore, the final
BLSTM output is obtained as follows:

BLSTM = {
→
ht; ht} ∈ RF (5)

where ht and F denote the backward and forward hidden layer output information and the
key features, which can be obtained as follows:

F =

{
0, i f Ki < T
F, i f Ki ≥ T.

(6)



Brain Sci. 2023, 13, 555 7 of 21

3.1.3. Scheme to Control the Network Saturation

The strategy used in this paper to control the hard learning of BLSTM weight is to
create an empty set matrix X from the pool of generated STSTP cognitive cues Y by the
LSTM neurons. In such a case, X is fed from the pool and increments the search criterion
J. The most significant features/context Y from the STSTP is fed into the corresponding
set in each cell in the matrix, as described in step 1 of Algorithm 1. However, the worst
STSTP value from the set is dropped if J increments, as described. Then, the newly created
matrix set vector is the sub-partition set of the classes L (lie) and T (truth). The newly
created matrix is fed into the BLSTM layer for recognition in step 10. Aiming to control the
BLSTM learning instability, which can lead to poor recognition results, we further tuned the
learning rate and batch size of the BLSTM network; the formulated learning loss function
is explained in Section 4.3.

Algorithm 1: Guided-learning algorithm

1: start
2: set V[row, col] = X in Equation (1) {create matrix}

3: set Y =
[
y; |j=1 : N

]
in Equation (1) {STSTP sequence}

4: set Xk =
[

xl|l=1
: D, xlεY

]
{output}

5: set X0 = 0 {Initialization}
6: Evaluate Equation (6) {selection}
7: for each k = k + 1 do
8: repeat
9: if J(X_k|max_{xεY|x_k}J(X_k|x) > J(X_k)) then
10: Evaluate Equation (5)
11: else
12: go to STEP 1
13: until Equation (14) converge
14. return {K = K + 1}
15: end

3.2. Video Frame Feature Extraction
3.2.1. Frame Extraction Strategy

First, we adopted the strategy of obtaining keyframes F to control the processing time.
Equation (6) searches for any similar frames within the sequence for each performance.
The equation further finds the difference between the sum values of each RGB image and
its adjacent RGB images to distinguish between similar frames using a threshold value. In
Equation (7), V denotes the video frames, P denotes the parameter to set a threshold for K
video frame representation, and T denotes the threshold used as given in Equation (6).

T =
P
V ∑v

i=1|Ki − Ki+1| (7)

3.2.2. Optical Features of Real-Life Court Videos

Motion provides multi-contextual information, which highlights the need to under-
stand visual actions, etc. Estimating the motion of every pixel in a sequence of court
trial RGB video frames is an effective way of using the OF. The OF is a method for RGB
video motion estimation. The OF represents a sparse vector, where a displacement vec-
tor is devoted to a specified pixel position that points to where a pixel can be found in
another image [22]. Since the Lucas–Kanade schema can track points on a moving video
frame precisely, we employed a function cv2.goodFeaturesToTrack() to compute the points
within the court trial videos. A value of 100, 0.3, 7, and 7 was chosen for the maximum
corner points, quality level, minimum distance, and block size, respectively. For each
video, we tracked the initial frame and captured its corner points using the Lukas schema
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cv2.calOpticalFlowPyrLK(). The following parameter values were chosen for the Lukas
schema: 15 and 4 for the window size and the maximum level, respectively.

3.2.3. Hand Features

We extracted 21 hands joint information from 5 conventional fingers, palm, and wrist
joints of a single hand, while information from 42 hand joints was extracted in the case
of double hands. Each finger joint was computed according to its anatomical definition,
as shown in Figure 3. We further ignored the palm center pose as it was less important
to our gestures. Finally, we have 20 and 40 hand joint poses for single and double hands,
respectively. The thumb is labeled as t1 to t3. The index finger is labeled as i1 to i3. The
middle finger is labeled as m1 to m4. The ring finger is labeled as r1 to r4. The little
finger is labeled as p1 to p4, while the wrist is labeled as w. In the case of double hands,
we consider the relationship between the two hands, which is denoted as σ in Figure 3.
However, some hand motion information is also obtained from the OF information. We
further obtained hand information within the video frames using principal component
analysis (PCA). In PCA, each frame coordinate is transformed into eigenvector space, with
the mean of the frame being mean(f), which is modeled into a transformed frame, g, using
the transformation matrix B to obtain Karhunen–Loeve transform, as defined in Equation
(8). It becomes clear that the vector rotation makes a huge amount of eigenvector spread
within the features. Justification for the hand shape and orientation features within each
frame stems from their ability to show orthogonality.

g = B(F−mean( f )) (8)
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3.2.4. Eye Aspect Ratio Features

In this method, eye poses are computed as eye-blinking features using the algorithm
designed by [23]. The eye-blinking poses are known as eye aspect ratio (EAR) features.
We were able to capture eye-blinking poses, such as eyebrow, bottom eyelid, top eyelid,
etc. We localized the initial face position, and then we further bounded the point of
interest (POI). We defined the circular Hough transform (CHT) to locate and write the iris
in the POI. During an eye blink, the CHT displays approximate null information, while
the centroid rotation coordinates are considered, as shown in Frame (b) of Figure 4. The
POIs are tracked among the consecutive frames with the keyframe method. This method
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allows us to obtain frames that have the point with the maximum likelihood value. These
frames have the POI denoted from point L. The point for a given time t consists of six cues
Lt = (l1t, l2t, l3t, l4t, l5t, l6t), denoting the x and y coordinates of eye rotation, as shown in
Frame (a) of Figure 4. Lt is mapped by a Gaussian distribution enclosed in Lt − 1. The most
likely POI is learned and corrected with adaptive histogram equalization. The bounding
box is used to obtain the eyebrow region when the subject blinks their eyes. With this
information, we finally computed eye aspect ratio (EAR) using the following equation:

EAR =
||l2− l6||+||l3− l5||

2||l1− l4|| (9)

where l1, . . . , l6 denotes the 2D poses between top and bottom lid blinking.
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(b) show the computed EAR features while eye is closed [1].

We computed the accuracy of the EAR detection using the error metric obtained by
Equation (15). This metric shows how effective the point of interest (POI) of each face has
been detected, as labeled in Figure 4. In Figure 4, the eyebrow features are saved in the
vectors (V1, . . . , V3) format so that the significance of each data point is computed with
the curve fitting nnftool and measured using the R2 metrics to achieve the best features, as
illustrated in Table 1. In addition, the EAR features are saved in vectors (Var1, . . . , Var3),
where an EAR vector is used as the dependent variable while the three vectors are used
as the independent variables; thus, the relationship between the vectors is computed with
nnftool and the significance of the results is measured using R2, as illustrated in Table 2.
We performed a statistical confidence test to observe the contributions of the relationship
between the eyebrow and eye-blinking features in recognizing involuntary cognitive cues.
The test was performed using a curve fitting tool and measured using the R2 metrics
obtained from Equation (16). The results of the test are presented in Table 3. The test shows
high values of R2, which demonstrates a good relationship among the features.

Table 1. Statistical confidence of eyebrow features using EAR.

V1 V2 V3

V1 0.99999

V2 0.99772 0.9992

V3 0.99761 0.9974 0.99981
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Table 2. Statistical confidence of eye features using EAR.

Var1 Var2 Var3

Var1 0.99847

Var2 0.99706 0.99465

Var3 0.98863 0.9344 0.9965

Table 3. Confidence score between eye versus eyebrow features using EAR.

Var1 Var2 Var3

V1 0.9858

V2 0.95762 0.98768

V3 0.9838 0.99291 0.98635

3.3. Multi-Modal Spatial–Temporal State Transition Pattern Feature Vector

In this section, we simply augment each computed vector and matrix in
Sections 3.2.1–3.2.4. This is because either CNN, OF, PCA, or EAR feature is not suffi-
cient to decide the action of a suspect, witness, and/or complainant during interrogations,
court trials, and cross-examinations. We further use the simple vector operation to combine
the spatial information (pixel-level features) from the CNN layers with the augmented (OF,
PCA, EAR) features as a single multi-modal STSTP vector. The contribution of each feature
per STSTP vector for the utilized method is depicted in Figure 5. The multi-modal STSTP
vector is fed into the two enhanced BLSTM layers to generate temporal dependencies with
respect to time series. The multi-modal STSTP vector β is finally obtained from the simple
vector concatenation as follows:

β = concat[CNN, OF, PCA, EAR] (10)
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3.4. Qualitative Analysis of Real-Life Court Trial Videos

This study employed both deductive and inductive approaches in qualitative court
trial video analysis. We constructed a deductive framework with the main categories as
the presentation of the video results, including the hand gestures, eye blinking, and body
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motion, and the presentation of the filtering options. We independently performed an
inductive analysis with the sub-categories as the number of females and males per scene in
the videos, the number of times each person performs an involuntary cognitive index, and
the body part(s) employed to perform each index, as well as the occurrences via descriptive
statistical method and clustering. It is generally observed in Figure 6 that all involuntary
cognitive indexes are higher in females, as indicated in the black dotted lines, than in
males, as denoted with the black solid lines, except for hand motion which is lower when
females are being truthful. Additionally, the blinking rate is generally higher than all other
cognitive indexes regardless of gender, followed by body motion and eyebrow, while hand
motion is the least utilized by both genders. However, the cognitive indexes in males do
not portray appreciable changes, except in the blinking rate which increases when they are
making truthful testimony.
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4. Experiment

The proposed multi-modal STSTP with the ResNet-152-BLSTM method is experimen-
tally validated using a real-life court trial video data set. The algorithms are built on the
Python 3 and MATLAB R2022a platforms. The platforms are run on a PC equipped with
Window 8, CPU intel Core i7, and RAM 8. In this section, the experimental validation is
achieved from the following processes: data study, confidence test on the real-life court
trial data, recognition of STSTP, selection of network parameters, and finally, performance
evaluation metrics. These processes are further elaborated below.

4.1. Data Study

The data set is adopted from [1]. This data set consists of one hundred and twenty-one
court trial videos. Unlike [1] where they had selected only videos that applied single hand
or double hands because of human peculiarities, in this work, we employed the complete
121 videos. The data set was created using a template based on three court trial outcomes:
guilty, non-guilty, and exoneration. These three outcomes were labeled as truthful or
deceptive. We clustered the truthful cues from exoneration and disposition, which were
agreed by the police to be true, whereas the lie or deception cues were clustered from
the declarations in favor of the guilty suspects. We confirmed the average duration of
the videos to be twenty-eight seconds (28 s), which were filmed by twenty-one females
and thirty-five males, respectively. However, in some videos where hand(s) appears, we
applied the suitable hand detection algorithm to extract local and global features; where
no hand information appears in the clip, the algorithm is written in such a way that the
csv files are zero-padded, as shown in Figure 7. In situations where the eyes of the subject
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are readily available, we applied the eye detection algorithms and the EAR computation
mechanism to extract eye and some facial cognitive indices; where such gestures are absent,
the csv files are zero-padded. In addition, we further utilized the optical information of
each frame to obtain motion features. We split the data into sixty videos to contain truthful
scenes, while sixty-one videos contain lie or deceptive scenes. For effective evaluation of
the proposed features, we employed k-fold validation with k = 10.
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4.2. Confidence Test

We obtained a huge number of features from the fully connected layer but features
with high confidence scores can improve the computational speed of ResNet-152-BLSTM
learning and avoid ignoring important variances [3]. The confidence score of all features is
illustrated in Table 4. Since the concatenated STSTP vector generated by the weight of the
BLSTM (hidden layers) βi contains cognitive cues hi, the feature selection M can be treated
as a maximization problem, using the following formula:

M = max
{

βε[0,1]{i

{
∑i

l=1,u=1(hiβi)
2

∑i
l=1(βi) + ∑i

u 6=1 2× (hl βl,u)

}
(11)

Table 4. Confidence test of the STSTP features.

β1 β2 β3

β1 0.8334

β2 0.7641 0.8167

β3 0.7739 0.7992 0.8049

Features with a big confidence score are considered less significant; thus, we selected
STSTP features with high significance among consecutive features. Thus, feature weight
was obtained using Algorithm 1 and fed into the Softmax layer for classification.

4.3. Recognition of Spatial–Temporal State Transition PatternTransition

We fine-tuned the ResNet-152 network using the output of the last CNN layer (fc-2)
which is initialized from the standard CNN layers as described in Table 5, to extract the
pixel-level features from the RGB video frames. The ResNet has a depth of 152 layers [14].
From these layers, the residual stage is obtained via identity mapping (IM). However,
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IM is realized in the residual block via skip connection, thus having the ability to bypass
nonlinear transformation. This strategy allows an increase in the network depth without
optimization or hard learning. We generated a datastore that reads all the videos and
automatically resizes them into 224 × 224 for batch learning of huge video sequences. The
224 × 224 frame size enables this method to preserve memory usage, computing time, and
spatial resolution. Since our videos are in RGB format, we chose the channels as 3. This
network chose 32 court trial video frames so that the datastore could output each time to
exploit more temporal information. The createFileDatastore function was used to configure
the datastore and to load the court trial videos to Resnet-152. The ResNet-152 models were
trained on 121 court trial videos. The ResNet layer extracts geometrical hand and body
features. We adopted the output from the 20th layer as our feature extractor as explained
in Table 5. The output of the 20th layer was used as the Conv1-2 and replaced with global
average pooling which is fed into the BLSTM layer for sequence time-dependent generation
as described in Table 6, which was further utilized for the recognition and classification by
the Softmax layers. The overall output of the ResNet-152-BLSTM network was obtained by
a simple vector concatenating both inputs of the two networks, as given in Equation (12).

ResNet− BLSTM =→ {[ResNet, BLSTM]} (12)

Table 5. Layers and parameters of the CNN-STSTP network.

No. Layers Name Activation

1 Image input 227 × 227 × 3

2 Convolution 1 55 × 55 × 3

3 ReLU 1 55 × 55 × 96

4 Cross Normalization 1 55 × 55 × 96

5 Max pooling 1 27 × 27 × 96

6 Convolution 2 27 × 27 × 256

7 ReLU 2 27 × 27 × 256

8 Cross Normalization 2 27 × 27 × 256

9 Max pooling 2 13 × 13 × 256

10 Convolution 3 13 × 13 × 384

11 ReLU 3 13 × 13 × 384

12 Convolution 4 13 × 13 × 384

13 ReLU 4 13 × 13 × 384

14 Convolution 5 13 × 13 × 256

15 ReLU 5 13 × 13 × 256

16 Max pooling 5 6 × 6 × 256

17 Fully Connected (Fc6) 1 × 1 × 4096

18 ReLU 1 × 1 × 4096

19 Dropout 1 × 1 × 4096

20 Fully Connected (Fc7) 1 × 1 × 4096

21 ReLU 1 × 1 × 4096

22 Dropout 1 × 1 × 4096

23 Fully Connected (Fc8) 1 × 1 × 1000

24 Softmax 1 × 1 × 1000

25 Classification Output 2 classes
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Table 6. Layers and parameters of the ResNet-152-STSTP network.

Conv7-64
Maxpool

×3
Conv1-64S
Conv3-64

Conv1-256

×8
Conv1-128
Conv3-128
Conv1-512

×36
Conv1-256
Conv3-256
Conv1-1024

×3
Conv1-512
Conv3-512
Conv1-2048

Conv1-2
Global averaging pooling

The information obtained in Equation (12) was utilized as the input to the categorical
probability M for the classification of cognitive indices with encoded labels M as follows:

M = so f tmax
{

Φg · ResNet− BLSTM + qg
}

(13)

where Φg and qg denote the weight and the bias matrix of the average pooling layer,
respectively as shows in Table 6. We chose Softmax cross-entropy for the loss function
χ throughout the BLSTM network training as follows:

χ
(

M, M
)
= −∑ f

i=1 Mi · log M (14)

4.4. Selection of Network Parameters

See Table 7 for the desired values of each deep learning network design.

Table 7. Suitable values for network training.

Network Parameters Values

ResNet-152

SGDM 0.9
Batch size 128

Max. iteration 500
No. of epochs 250

Gaussian with S.D 0.01
Learning rate 0.01
Weight decay 0.0005

Dropout 0.7
Params >60 M

BLSTM

Input 1 dim.
Hidden layer 100

Output Last
Batch size 32

FC 2
Max epochs 64

Dropout 0.2

4.5. Performance Evaluation Metrics

We trained the proposed STSTP with the ResNet-152-BLSTM method using the k-fold
splits of the data set for both training and testing. The proposed STSTP with ResNet-152-
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BLSTM outperformed the classical BLSTM, FV-BLSTM, and CNN-BLSTM. The letters used
for the metrics are defined as Oi, O’i, S, θ, σ 2 r, Oa, U, and c, which denote the original
template of the image POI, the estimated POI information, the number of frames, the
params., the mean, the POI being considered, and the Euclidean distance between the eye
centers, respectively.

4.5.1. Eye Aspect Ratio Detection Error

This study computed the accuracy of the EAR detection using the error EARerr metrics,
as explained in Section 3.2.4. This metric shows how effective the point of interest (POI)
of each face feature has been detected, as labeled in Figure 4. The EARerr describes the
average relative landmark localization error. The EAR detection error is obtained by using
Equation (15), where Oi denotes the original template location of landmark I within the
video image, Oi’ denotes the predicted landmark location by the EAR estimator, S denotes
the number of landmarks, and U denotes the Euclidean distance between the eye centers
within the video image. We computed a cumulative histogram of the EARerr for a point of
twelve landmarks of the eyes. We also computed the interface landmarks (that is, eyebrow),
but we considered the intra-face for eye landmarks only.

EARerr =
100
cU ∑S

i=1

(
Oi −O′i

)
(15)

4.5.2. Coefficient of Determination

This study computed the R2 using the sum of the square errors of the fitting model

∑S
i=1
(
Oi −O′i

)2 and the total sum of the squares ∑S
i=1
(
Oi −O′ai

)2. The sum of the square
errors is computed from the sum of the squares of the original template of the image POI
values and the estimated POI values. The total sum of the squares is computed from the
sum of the squares of the POI being considered and the mean value. If the curve fit is
good, the sum of the square errors is smaller than the total sum of the squares. The general
equation for computing the R2 is as follows:

R2 = 1− ∑S
i=1
(
Oi −O′i

)2

∑S
i=1
(
Oi −O′ai

)2 (16)

4.5.3. Accuracy

We computed the average recognition accuracy (Acc.) for the performance of the
proposed multi-STSTP ResNet-152-BLSTM from the confusion matrix [21]. The confusion
matrix contains the correct classified lie and truth within, below, above, and at the diagonal
of the entries. The classes are estimated from the possible, available developed STSTP
models. Each class is computed based on the frequency of occurrence of the features in the
STSTP model. Then, the estimated features are plotted in a matrix according to the four
major entries. We defined a1, a2, b1, and b2, which denote true positive, true negative, false
positive, and false negative, respectively, as the four major confusion matrix entries. The
average recognition accuracy is obtained as follows:

Acc. =
a1 + a2

a1 + a2 + b1 + b2
(17)

The true positive rate or the sensitivity of the model to precisely recognize the invol-
untary cue of lie during the recognition of all court trial features is computed using the
following equation:

true positive rate =
a1

a1 + b2
(18)
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The false positive rate or specificity metric is computed to show that the STSTP
model recognizes the non-lie cue during the recognition of all negative court trial features
as follows:

true negative rate =
a2

a2 + b1
(19)

5. Results and Analysis

In this section, we present the performance results of the STSTP with ResNet-152-
BLSTM. This study evaluated the performance of the ResNet-152-BLSTM based on the
STSTP vector from real-life court trial videos in seven different cases. The seven cases
were explored using the proposed STSTP models. As shown in Table 8, the first model
was developed using the STSTP vector of optical flow information (STSTP-OF), known
as model 1. The OF feature vector comprises the body motion information at both local
and global levels, as explained in Section 3.2.2. Model 1 achieves an average recognition
accuracy of 71.39%. The second model was developed using the computed features of the
hand using the PCA method, as described in Section 3.2.3. However, these features were
further built to exploit their time-series dependency, and the model is known as Model 2,
as shown in Table 8. Model 2 returns an average recognition performance of 59.87%. This
accuracy rate demonstrates that the hand features alone are insufficient to recognize the two
classes of Lie and Truth. The third model was developed using the computed EAR features,
as described in Section 3.2.4, and this model is known as Model 3. Model 3 achieves a
recognition accuracy of 61.25%. It is shown that the EAR features are more stable as a
cognitive index in lie recognition than the hand features. We developed the fourth model
(Model 4) using feature augmentation by combining Model 1 and Model 2. There is an
improvement in accuracy of more than 3% when compared to the constituent models. The
fifth model was developed using the combination of Model 1 and Model 3, achieving an
improvement in accuracy of more than 13%. This accuracy rate demonstrates that it is likely
OF and EAR are the salient features that make lie recognition to be robust. Model 6 was
developed using the combination of Model 2 and Model 3. Model 6 achieves an average
recognition performance of 77.38%. In addition, Model six is better than the previous
individual models and Model 4. We combined all the models as a single vector model in
the ResNet-152-BLSTM, as explained in Section 3.3. This model achieves an accuracy of
92.14%. In addition, we employed a feature selection strategy to guide the BLSTM learning.
With the keyframe selection algorithm, we developed a new model known as multi-STSTP,
as illustrated in Table 8. The multi-STSTP model achieves an average recognition accuracy
of 96.56%. We further compared the recognition accuracy of the proposed method with
some state-of-the-art methods.

Table 8. Model analysis.

Models Feature Vector Accuracy (%)

STSTP Model 1 OF 71.39
STSTP Model 2 Hand-PCA 59.87
STSTP Model 3 EAR 61.25

STSTP [Model 1 + Model 2] OF + Hand-PCA 74.43
STSTP [Model 1 + Model 3] OF + EAR 88.29
STSTP [Model 2 + Model 3] Hand-PCA + EAR 77.38

Multi-STSTP OF + Hand-PCA + EAR 96.56

5.1. Comparison between the ResNet-BLSTM and State-of-the-Art Methods

For transparency, we selected some of the best methods with baseline features from
real-life court trial videos. These methods were selected because they utilized the same
data set as the proposed multi-STSTP method with ResNet-152-BLSTM. As shown in
Table 9, this study analyzed the robustness of the two baseline features via hand gesture
and face information. These two features are utilized by most of the existing works. The
performance of these features shows that multi-feature fusion is highly needed to meet
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the required recognition results. For comparison, where a metric is not fully utilized by
the method, it is represented with “NA”, which means that the metric is not assigned.
However, the results of the proposed multi-STSTP method are in conformity with existing
results in the literature, except for Krishnamurthy et al. [17] and Fisher-LSTM [1], whose
feature performance is much better than ours. Krishnamurthy et al. achieved the best
recognition performance of 64.97% and 80.79% for the individual features of the hand
and face, respectively. When the two features were combined, the average recognition
accuracy of the method was reduced drastically. Fisher-LSTM [1] was proposed to obtain
temporal fine-grained information of hand and face poses, where each pose is treated as the
energy density. The recognition performance of the Fisher-LSTM for individual features
was superior to existing results. However, the average recognition results of the combined
information decreased to 90.96%. The decrease in recognition performance was due to the
Fisher-LSTM’s inability to capture most of the involuntary cues of people’s actions. The
multi-STSTP method with the ResNet-152-BLSTM method was compared to the work in [4],
and the results are presented in Table 10. This work employed LOSO cross-validation on
real-life court trial videos, showing a recognition accuracy of 92.01% from the best classifier.
However, the method reveals a precision using the AUC metric of 93.57%. We compared the
performance results of the ResNet-152-BLSTM according to the recognition accuracy of the
methods in [11–25]. Avola et al. [25] demonstrated that facial action units are good features
for human RGB video recognition; however, these features are insufficient to discriminate
between lie- and truth-based features. These findings prove that the combination of more
than one feature can be harnessed to distinguish between the two classes of deception and
truth. Therefore, the recognition accuracy and AUC of our proposed multi-STSTP method
with ResNet-152-BLSTM outperformed most of the existing methods. The multi-STSTP
vector model for the recognition of involuntary cognitive indices of a lying or truth-telling
person is more reliable than the existing models.

Table 9. Comparison of different involuntary features from existing methods.

Methods
Hand Gesture Facial Information

AUC (%) Accuracy (%) AUC (%) Accuracy (%)

RF [12] NA 62.8 NA 76.03
DT [12] NA 71.9 NA 59.5

L-SVM [15] NA NA 66.33 NA
MLP [17] 66.71 64.97 94.16 80.79

Fisher-LSTM [1] 91.14 90.96 NA NA
ResNet-152-BLSTM 68.09 59.87 73.11 61.25

Table 10. Comparison between multi-STSTP ResNet-152-BLSTM with some state-of-the-art methods.

Methods AUC (%) Accuracy (%)

RF [12] NA 75.2
DT [12] NA 50.41

L-SVM [15] 90.65 NA
LR [15] 92.21 NA

Hierarchical-BSSD [16] 67.1 NA
LSTM [16] 66.5 NA

RBF-SVM [25] NA 76.84
Fisher-LSTM [1] 91.14 90.96
Stacked MLP [4] 93.57 92.01

NN [5] 94 84.18
ResNet-152-BLSTM 97.58 96.56
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5.2. Discussion

We performed a keyframe selection to drop empty and noisy frames, as explained in
Figure 1. The keyframe selection enhanced the feature extraction as well as the network
learning. However, we conducted feature analysis using curve fitting tools to investigate
the relationship and weight of each feature before training. The relationship of each feature
from the curve fitting tool was obtained using a coefficient of determination metric. This
approach of feature analysis provides a basis to learn the most significant features for model
development. Furthermore, we conducted a qualitative analysis to learn the statistics of
each demographic cue in lying or truth-telling actions. This analysis provides a basis for
interviewers to concentrate more on some demographic data, while extracting important
insights from the data. The analysis demonstrates that involuntary cognitive indices are
present more in females than males, excluding hand actions. It also shows that eye blinking
is the involuntary cognitive index that is performed more by all the demographic groups
compared to other indices. It is observed that hand action is the index least performed by
both two groups during lying. The involuntary cognitive indices lead to the acquisition
of baseline features. We compared and analyzed baseline features that have appeared
in most of the literature, as described in Table 9. The recognition performance of the
proposed multi-STSTP model was performed in two phases. In the first phase, we designed
a simple ResNet-152 network without any further optimization to achieve state-of-the-
art performance. In the second phase, we designed a simple ResNet-152 based on the
significant features of the proposed multi-STSTP model. The sensitivity of the best multi-
STSTP model was obtained using the receiver operating characteristics curve (ROC), as
illustrated in Figure 8. This study is interested in precisely recognizing a lie/deceptive
class from court trial videos; thus, we performed a one-versus-one strategy that gives the
sensitivity of the best features with a chance level of 0.8. The sensitivity of the network
parameters on the proposed multi-STSTP features shows that the best model (multi-STSTP
model) achieves a ROC of 97.58%, as shown in solid blue, while the second-best model
(STSTP model 1 + STSTP model 2) achieves a ROC of 89.88%, as shown in the pre-step
curves. The results obtained in Table 8 show that the multi-STSTP model achieves the
best performance. We compared the recognition performance of the multi-STSTP model
with one of the best existing recognition models, as shown in Figure 9. The recognition
performance was compared based on the percentage of the recognition error versus the
strategies employed by the recognition method, which include the basis of involuntary cues
(IVC), the application of handcraft features, and the deep learning (DL) features. In addition,
we compared the performance of the proposed multi-STSTP with the Fisher-LSTM in [1].
As shown in Table 9, the Fisher-LSTM outperforms our proposed method for the individual
features of hand and face information. However, the average recognition of the combined
hand and face information is not appreciable. The average recognition results show that our
proposed multi-STSTP model is superior to existing lie recognition models, as well as the
Fisher-LSTM. The major failure of the proposed approach is in two phases. The first phase
of the failure is due to the EAR algorithm’s inability to compute the eye poses of highly
noisy faces, such as the image of persons in scenes Lie036 and Truth041. The faces and eyes
in these scenes are not upright. This problem could be addressed by using an adaptive
approximation algorithm. The second phase of the failure is the inability of the PCA
approximation to handle the issue associated with skin color in some video scenes, such as
in Truth029. This failure could be addressed using the pixel-wise or fine-grain information
approach. The proposed approach provides an effective model that could be built into a
lie detection system to improve artificial intelligence detection of deception during police
investigations, court trial processes, dispute resolution mechanisms, appropriate reward,
and punishment mechanisms, etc.
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6. Conclusions

This work proposed a multi-STSTP method with hybrid Deep ResNet-152 and BLSTM
to improve the performance of detecting lies in real-life court trial videos. The results show
a significant correlation between hand, eye blinking, and body motion STSTP features,
which were built inside the deep learning method for efficient recognition of involuntary
cues from a lying or truth-telling person. This study initialized STSTP features using
ResNet-152-BLSTM networks to handle complex long-time video frame estimation as
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potential enablers in conventional deep learning networks. Interestingly, the proposed
method demonstrates outstanding performance in real-life court trial videos. Compared to
some state-of-the-art methods, the proposed multi-STSTP method with ResNet-152-BLSTM
achieves good recognition in the same data set because of the simple network design
with the best parameter selection, which is automatically achieved from the feature space
searching algorithm. In future work, we will design a single and automatic algorithm
for all the methods for feature extraction so that the system can be extended to real-time
applications by considering both the time complexity and the deployment issues.
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The following abbreviations are used in this manuscript:

STSTP Spatial–temporal state transition patterns
BLSTM Bidirectional long short-term memory
CV Computer vision
DL Deep learning
ML Machine learning
RGB Red, green, and blue
CNN Convolutional neural network
SVM Support vector machine
LUT Look-up table
EAR Eye aspect ratio
ResNet Residual network
PCA Principal component analysis
OF Optical flow
FC Fully connected layer.
POI Point of interest
CHT Circular Hough transform
SGDM Stochastic gradient decent with momentum
ReLU Rectified linear unit.
IVC Involuntary cognitive cues
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