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Abstract: Agomelatine (AGM) is one of the latest atypical antidepressants, prescribed exclusively
for the treatment of depression in adults. AGM belongs to the pharmaceutical class of melatonin
agonist and selective serotonin antagonist (“MASS”), as it acts both as a selective agonist of melatonin
receptors MT1 and MT2, and as a selective antagonist of 5-HT2C/5-HT2B receptors. AGM is involved
in the resynchronization of interrupted circadian rhythms, with beneficial effects on sleep patterns,
while antagonism on serotonin receptors increases the availability of norepinephrine and dopamine
in the prefrontal cortex, with an antidepressant and nootropic effect. The use of AGM in the pediatric
population is limited by the scarcity of data. In addition, few studies and case reports have been
published on the use of AGM in patients with attention deficit and hyperactivity disorder (ADHD)
and autism spectrum disorder (ASD). Considering this evidence, the purpose of this review is to
report the potential role of AGM in neurological developmental disorders. AGM would increase the
expression of the cytoskeleton-associated protein (ARC) in the prefrontal cortex, with optimization of
learning, long-term memory consolidation, and improved survival of neurons. Another important
feature of AGM is the ability to modulate glutamatergic neurotransmission in regions associated
with mood and cognition. With its synergistic activity a melatoninergic agonist and an antagonist
of 5-HT2C, AGM acts as an antidepressant, psychostimulant, and promoter of neuronal plasticity,
regulating cognitive symptoms, resynchronizing circadian rhythms in patients with autism, ADHD,
anxiety, and depression. Given its good tolerability and good compliance, it could potentially be
administered to adolescents and children.

Keywords: AGM; melatonin agonist and selective serotonin antagonist (MASS); autism spectrum
disorder (ASD); attention deficit hyperactivity disorder (ADHD); neurodevelopmental disorders

1. Introduction

Agomelatine (AGM) is a melatonin analog with antidepressant properties prescribed
for the treatment of depression in adults. It was approved by the European Medicines
Agency (EMA) in 2009 and the Therapeutic Goods Administration in Australia in 2010 [1,2].
This molecule is also effective in the treatment of generalized anxiety disorder (GAD) [2–4],
as well as in bipolar depression, alcohol abuse, and migraines [2,5,6].

Due to the paucity of clinical trials in the pediatric population, the safety and efficacy
of AGM in children and adolescents have not yet been established.
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AGM Pharmacology

AGM belongs to the pharmaceutical class of melatonin agonist and selective serotonin
antagonist (MASS) since it acts synergistically as a selective agonist of the melatoninergic
receptors MT1 and MT2, and a selective antagonist of 5-HT2C/5-HT2B receptors [7]. As
an agonist of MT1/MT2, AGM has positive effects on the sleep–wake cycle, while as an
antagonist of postsynaptic 5-HT2C receptors, it increases the availability of norepinephrine
and dopamine in the prefrontal cortex with an antidepressant and nootropic effect [8]. In
addition, antagonism of 5-HT2C may modulate the GABAergic pathway by the activation
of GABA neurons in the amygdala, bed nucleus of stria terminalis, and hippocampus, with
an anxiolytic activity [1,7].

After oral administration, AGM is rapidly absorbed (>75%) in the gastrointestinal
tract, although extensive first-pass metabolism cuts its bioavailability to less than 5%. AGM
is mostly metabolized by different hepatic cytochromes (CYP450, CYP1A2, and CYP2C9),
and the resulting catabolites (mainly 3 hydroxyAGM and 7 desmethyl AGM) are largely
eliminated by urinary excretion. Its mean half-life (t1/2) is approximately 2 h [2,7–9].

A recent meta-analysis, which included randomized and head-to-head trials of
21 antidepressants for the acute treatment of major depressive disorder (MDD) in adults,
highlighted the good efficacy and tolerability of this compound [10]. Moreover, several
studies also demonstrated the low incidence of side effects of AGM in anxiety disor-
ders, particularly in GAD [4], and also in obsessive–compulsive disorder (OCD), both in
monotherapy and in combination with other drugs [11–15].

Side effects, such as dizziness or nausea, are usually classified as mild or moderate.
Of note, the risk of liver injury is dose-dependent and the main risk factors promoting
hepatotoxicity include female gender, polypharmacy, and old age [16]. However, there is
no agreement on this issue, as different research did not confirm these risk factors [2,17].
Regarding hepatotoxicity, EMA recommends performing liver function tests before starting
treatment and then after approximately 3, 6, 12, and 24 weeks. If an elevation of transami-
nases is detected, these exams should be repeated within 48 h and agomelatine should be
discontinued if the increase results in being more than three times above the limit of the
normal range [18]. AGM tolerability has been considered throughout clinical trials, as a key
benefit for treatment initiation and long-term adherence [1,14]. The lack of early relapse on
switching to a placebo supports a minimal discontinuation syndrome [19].

The use of AGM in the pediatric population is limited by the paucity of data. Only
one study investigated the efficacy of agomelatine among adolescents with MDD. This
randomized, double-blind, multicenter study tested the short-term antidepressant efficacy
and safety of AGM (10 mg or 25 mg per day) versus placebo with active control (fluoxetine
10–20 mg depending on symptom severity) after 12 weeks on patients aged 7–17 years. The
AGM highest dosage of 25 mg/day resulted in an improvement versus placebo, with a
similar effect for fluoxetine in adolescents but not in children. No unexpected safety signals
were observed with agomelatine, with no significant weight gain or effect on suicidal
behaviors [20].

2. Clinical Use of Agomelatine in ADHD and ASD

Here we provide an overview of the recent literature on the use of AGM in patients
with ASD and ADHD.

2.1. ADHD

There is a limited number of clinical studies on the use of AGM in the ADHD popula-
tion. We report on six articles. Three of them are single cases and two are clinical trials. All
studies included children and adolescents. (Table 1).

In 2012, Niederhofer et al. demonstrated greater efficacy of add-on AGM (25 mg/day)
to ongoing treatment with methylphenidate (MPH) or atomoxetine compared to placebo in
a sample of 10 boys with ADHD (age range 17–19 years, M:F = 8:2) [7,8]. Patients treated
showed less hyperactivity, greater tolerance to frustration, less irritability, and overall better
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affective modulation. Few side effects were observed, suggesting that AGM is a valid
therapeutic option, especially in ADHD patients with sleep disorders (70% ADHD), anxiety,
or oppositional–provocative comorbid disorder [21].

Table 1. Clinical use of AGM in ADHD patients.

Authors Year Article Type Age (Year) Number of
Patients Gender Diagnosis/Comorbidity Dose of

Agomelatine

Niederhofer
H., et al. [21] 2012

Placebo-
controlled
study

17–19 years old 10 M:F = 8:2 Severe ADHD 25 mg/day

Naguy A. and
Al-tajali A. [22] 2015 Case report 13 years old 1 F Severe ADHD 25 mg/day

Salardini E.,
et al. [23] 2016

Double-blind
randomized
controlled trial

6–15 years old 54 Not available Severe ADHD

15 mg/day in
patients with
weight ≥30 kg
and
25 mg/day in
patients with
weight ≥45 kg

Naguy A. and
Alamiri B. [24] 2020 Case report 15 years old 1 F Severe ADHD/migraine 25 mg/day

ADHD = attention deficit hyperactivity disorder; ID = intellectual disability.

The addition of AGM (25 mg/day) to MPH in a 13-year-old female with severe ADHD,
insomnia, and dysphoria resulted in clinical improvement and a global enhancement
of MPH’s cognitive and behavioral effects. Good tolerability and no drug interactions
were reported [22]. More recently (2020), the same authors reported an interesting case
of a 15 year old girl with drug-resistant ADHD, who responded only to agomelatine
(25 mg/die) [24].

In a cohort of 54 children with ADHD aged between 6 and 15 years of age, a pharma-
cological study compared the efficacy of MPH (20–30 mg/die depending on weight) with
AGM (15–25 mg/day depending on weight) over about 6 weeks. No statistically significant
difference emerged between the two randomized groups in terms of efficacy according to
the parent and teacher ADHD Rating Scale-IV. Agomelatine was well-tolerated and also
improved insomnia [23].

In ADHD patients have reduced neural tissue volume, particularly in the right frontal
and parietal cortices, in association with hypo-functioning catecholaminergic circuits in the
prefrontal cortex, which may explain the finding of AGM being comparatively effective as
MPH for ADHD treatment [25,26].

2.2. ASD

The impact of AGM on ASD has been studied in the adult population or in animal
models, with the exception of a single case report of a 10 year old child. (Table 2).

Table 2. Clinical use of AGM in ASD patients.

Authors Year Article Type Age (Year) Number of
Patients Gender Diagnosis/Comorbidity Dose of

Agomelatine

Niederhofer H.,
et al. [27] 2011

Case report:
10 week clinical
trial

Adults 2:1 M Severe ASD/ID 25 mg/day

Naguy A. and
Ali Al Tajali [28] 2015 Case report 10 years

old 1 M Severe ASD/behavioral
disorder and insomnia 25 mg/day

Ballester P.,
et al. [29] 2015

Randomized,
cross-double-blind,
multicenter study

30–32 years old 25 M:F = 20:5 Severe ASD 25 mg/day
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Table 2. Cont.

Authors Year Article Type Age (Year) Number of
Patients Gender Diagnosis/Comorbidity Dose of

Agomelatine

Ballester P.,
et al. [30] 2019

Cross-sectional,
randomized,
triple-blind,
placebo-controlled
study

35 ± 12 years
old 23 M:F = 19:4 ASD/ID and sleep

disturbance 25 mg/day

Kumar H.,
et al. [31] 2015 Study on animal

models / / / Autism VPA-induced /

ASD = autism spectrum disorder; ID = intellectual disability; VPA = valproic acid.

In 2015, Nagury emphasized the therapeutic efficacy of AGM on a 10-year-old autistic
patient with severe behavioral disorder and insomnia, poorly responsive to aripiprazole
and risperidone. Clinical improvement in terms of irritability, hyperactivity, and stereotypes
was reported after the administration of AGM (25 mg/day) as monotherapy [28].

In the same year, Ballester conducted a randomized, cross-double-blind, multicenter
study of 25 patients with ASD (M:F = 20:5) with an average age of approximately 32 years.

Participants were randomized to receive AGM (25 mg/die) or placebo for 3 months,
at two different moments. Functional circadian rhythm markers (i.e., wrist temperature,
actimetry, and position [TAP]) and salivary cortisol were measured during a week at the
beginning and at the end of each period. Significant differences in improving circadian
rhythms in the AGM group were noticed. AGM was effective in improving sleep patterns
in ASD compared with placebo [29].

Later, the same group published a cross-sectional, randomized, triple-blind, placebo-
controlled study conducted on 23 adult patients with ASD and intellectual disability with
associated sleep disturbance. The results show a significant improvement in the sleep
structure in the group treated with AGM, in terms of increased total night-time sleep time,
sleep stability, and phase correction. The adverse effects were minimal [30].

In animal models of ASD induced by prenatal administration of valproic acid (VPA)
in mice (2015), it was observed that the administration of AGM was associated with a
reduction in autistic-like behaviors, a decrease in oxidative and nitrosative markers, and
inflammation [31].

Previously, in 2011, Niederhofer demonstrated that AGM (25 mg/die) was not more
efficient compared to duloxetine (40 mg/day), respectively, in one and two adult pa-
tients with ASD and intellectual disability. In addition, no major adverse effects were
reported [27].

3. Potential Effects of AGM in Neurodevelopmental Disorders

Despite belonging to different and well-defined nosographic entities, neurodevelop-
mental disorders and, more broadly, psychiatric disorders seem to share common etiopatho-
genetic mechanisms, with consequent symptomatic overlap [32–35].

Numerous pieces of evidence show how the pathophysiology of ASD, ADHD, anxiety,
and depression is multifactorial, involving different mechanisms such as neuroinflam-
mation, oxidative stress, and glutamatergic dysfunction [33–42]. These pathways are
complementary and strictly interconnected, able to activate a self-amplifying vicious cir-
cle [38–41].

There is currently no specific cure for the symptomatic core of autism, while psy-
chotropic medication aims to alleviate psychiatric and behavioral problems such as ag-
gression, self-injury, impulsivity, hyperactivity, irritability, anxiety, and mood disorders.
Benefits have been reported with (i) atypical antipsychotics for aggression, self-injurious be-
havior, or temper tantrums; (ii) selective serotonin reuptake inhibitors (SSRI) for anxiety and
repetitive behaviors; and (iii) psychostimulants or opioid antagonists for hyperactivity [43].

Psychostimulants are still considered the most effective therapy for children, adoles-
cents, and adults with ADHD. The first choice drug is MPH [44–47]. Among noradrenergic
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modulators approved for the treatment of ADHD, we find tricyclic antidepressants with
secondary amine structures such as desipramine and nortriptyline, alpha-2 adrenergic
agonists including clonidine and guanfacine, indirect agonists such as bupropion, and
atomoxetine, which is a selective blocker of the reuptake of noradrenaline [45,48].

In general, AGM treatment would aim not only to reduce depressive and anxiolytic
symptoms, but also to prevent relapses, chronicity, and complications, and improve social
and functional adaptation.

Anxiety and depression co-occur frequently with ADHD and ASD, increasing their
clinical severity [49–54].

Although available antidepressants significantly ameliorate these disorders, they take
several weeks to exert their full efficacy. Furthermore, many patients respond inadequately
and co-morbid symptoms are often not well-controlled, leading to problems of poor tol-
erance, including gastrointestinal disturbances, weight gain, sleep disturbances, sexual
dysfunction, and discontinuation effects [55].

3.1. Melatoninergic Action

Sleep is a fundamental operating state of the central nervous system and occupies up
to a third of the human life span. Human research demonstrated a central role of sleep
in mental health, influencing a wide range of cognitive and emotional functions such as
memory consolidation, problem-solving, creativity, affective reactivity, and management of
interpersonal conflicts [56–60].

Genes associated with circadian rhythm regulation have been found to be related to
many mental diseases, and the function of dopaminergic and serotonergic networks has
been shown to interplay with circadian and sleep biological mechanisms [61].

Neurobiological balance between arousal and de-arousal is disturbed in most mental
disorders and likely represents a basic dimension for brain function [56,62]. From this point
of view, it can be assumed that sleep impairment plays a relevant role in facilitating and
maintaining mental disorders and that transdiagnostic treatment of sleep disturbance may
improve intervention outcomes [61,62].

An intrinsic melatonin deficiency has been supposed to dysregulate sleep architec-
ture [63].

Some studies found abnormal concentrations of melatonin in the urine and blood
of patients with neurodevelopment disorders, corresponding to altered circadian release
patterns [34,64,65].

Melatonin is an indole hormone that is enzymatically synthesized in the pineal
gland from the amino acid tryptophan by N-acetylation and subsequent O-methylation of
5-HT [66]. Its secretion is inhibited by light and regulated by the circadian clock located
in the hypothalamic suprachiasmatic nuclei. In humans, this neurohormone is mainly
produced in the pineal gland, gastrointestinal tract, and retina, but only melatonin secretion
by the pineal gland and retina follows a typical circadian rhythm [67]. At the onset of dark-
ness, reduced retinal input leads to the disinhibition of enzymes responsible for melatonin
synthesis [68]. (Figure 1). This increased synthesis leads to the highest nocturnal plasma
concentrations of approximately 80 to 120 pg/mL between 2 and 4 h. Then, melatonin
levels decrease until daylight onset, with low (10–20 pg/mL) concentrations during the
daytime [67]. A study by Sadeh et al. demonstrated that infants with an immature pattern
of melatonin secretion showed a delayed peak in melatonin levels, with more fragmented
sleep during the night [69].

Due to the low bioavailability of melatonin as a supplement, AGM would represent a
better pharmacological strategy for restoring melatoninergic homeostasis and physiological
circadian rhythmicity [41,70].

3.2. Anti-Inflammatory and Oxidative Stress Action

Melatonin regulates several biological functions since it shows anti-inflammatory,
antioxidant, and free radical scavenging properties.
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Figure 1. Dark/light signaling, melatonin synthesis.

Several authors argue that the depletion of endogenous melatonin could be explained
by hyperactivation of the Kynurenines pathway (KP) from tryptophan, with the sub-
sequent reduction in its bioavailability for the synthesis first of serotonin and then of
melatonin [71–73]. Kynurenines represent a heterogeneous group of neuroactive catabo-
lites, which mediate different pathways such as neuroinflammation, redox homeostasis,
and glutamatergic toxicity by acting directly and indirectly on neurotransmitter systems
involved in the pathogenesis of psychiatric disorders [72]. (Figure 2).

Figure 2. Melatonin antioxidant properties and tryptophan metabolic pathway.

The shift of tryptophan towards the KP seems to be promoted by high concentrations
of pro-inflammatory cytokines (IL-6, INF-y), ROS/NOS, and cortisol, which are associated
with neuroinflammation, oxidative stress, and HPA-overactivation [39,41,71–73].

Interestingly, polymorphisms localized in genes involved in the tryptophan catabolic
pathway may modulate the response to antidepressant treatment. Polymorphism of trypto-
phan hydroxylase-1 and -2 (TPH1- TPH2) and kynurenine aminotransferase I (KATI) genes
may be associated with a lack of response to conventional antidepressant therapy since
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they can change messenger RNA (mRNA) and protein expression levels or methylation
status of promoter regions [74–78].

Studies on animal models highlighted how the administration of AGM may modulate
the transduction of mRNA and protein, as well as the expression of genes involved in
the tryptophan pathway in the blood and brain structures [74,75]. This potentially may
protect the brain from the neurotoxic consequences, due to the conversion of kynurenic
acid (KYNA) to quinolinic acid (QUIN).

Furthermore, AGM treatment ameliorated inflammatory responses by decreasing
the protein levels of inflammasome components, and by inhibiting microglial activation
through the toll-like receptor 4/NOD-like receptor protein 3 (TLR4/NLRP3) signaling
pathway [79].

Oxidative stress may be associated with the development of depression, ASD, and
ADHD. A recent pre-clinical study shows that chronic administration of AGM modifies
the expression level and methylation status of the promoter region of genes involved in
oxidative and nitrosative stress. Stressed rats treated with AGM displayed a significantly
lower glutathione peroxidase 4 (Gpx4) level in the hypothalamus [74]. Additionally, for the
evaluation of the effect of AGM on oxidative stress and inflammation, glutathione (GSH),
malondialdehyde (MDA), tumor necrosis factor (TNF), and interleukin-6 (IL-6) levels were
analyzed in immortalized mouse hippocampal neuronal cell HT-22 and in hippocampal
tissues in male rats. AGM significantly attenuated oxidative stress and inflammation due
to the cisplatin insult in vitro and in vivo, and ameliorated the neuronal pathology in the
hippocampus, which is strongly related to cognition and memory [80].

3.3. Neurotrophic, Anti-Glutamatergic, and Anxiolytic Actions

One of the most relevant effects of melatonin and, therefore, of AGM, is the activation
of the gene expression of the neurotrophic factor brain-derived neurotrophic factor (BDNF)
in the prefrontal cortex, hippocampus, subventricular area, and olfactory tubercle [42,81].
BDNF is responsible for neurogenesis and neuronal trophism, underpinning neuronal
plasticity [81]. Neurogenesis (especially hippocampal neurogenesis) has been implicated in
cognitive processes such as learning, memory, pattern separation, and cognitive flexibil-
ity [82,83]. Abnormal neuronal plasticity leads to an inability to adapt to stressful stimuli,
with reduced resilience and dysfunctional behaviors [81,84–86]. Furthermore, AGM would
increase the expression of the activity-regulated cytoskeleton-associated protein (ARC) in
the prefrontal cortex [87,88]. ARC regulates glutamatergic synapse plasticity and its expres-
sion is induced in a number of brain regions following emotionally relevant experiences,
including exposure to novelty, environmental enrichment, and stressful experiences. It is
also involved in other cognitive functions such as memory consolidation, spatial learning,
and memory, and fear learning [87].

AGM has been shown to modulate glutamatergic neurotransmission in regions as-
sociated with mood and cognition. More precisely, AGM reduces the stress-induced
release of glutamate in the prefrontal and frontal cortex [38]. In predisposed subjects,
exposure to intense and chronic stress excessively activates excessively the hypothalamic–
pituitary–adrenal (HPA) axis, causing a high release of ACTH and cortisol [88,89]. High
concentrations of glucocorticoids lead to an excessive release of glutamate, with the imbal-
ance between inhibition/excitation of the neuronal circuits and consequent glutamatergic
excitotoxicity [89].

Excitotoxicity promotes abnormal neurogenesis and neuronal plasticity, as well as
dysfunction in the default mode network, and visual and auditory systems, with the onset
of cognitive deficits, general dyspraxia, behavioral changes, social dysfunction, and EEG
abnormalities/seizures [63,90].

In animal studies, chronic AGM administration (3 weeks) increased cell proliferation
and neurogenesis in the ventral dentate gyrus (a region implicated in fear-related behaviors)
and prevented transcription of the interleukin-1β (IL-1β) and metabotropic glutamatergic
receptor (mGluR) genes [91].
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AGM also displayed robust anxiolytic properties in rats [1]. Early life adversity
(e.g., social isolation rearing) has profound effects on neurodevelopment, altering 5-HT
and other neurotransmitters, leading to anxiety, depression, and antisocial behavior in later
stages [92]. Social isolation rearing is known to destabilize circadian rhythms while altered
circadian fluctuation of different neuropeptides, such as vasopressin, oxytocin, and corti-
costerone has been described in chronic anxiety states [93]. In rats, social isolation rearing
is associated with reduced plasma corticosterone and oxytocin and increased vasopressin.

Given the chronobiotic effects of AGM through simultaneous stimulation of MT1/MT2
and blockade of 5-HT2C receptors in the suprachiasmatic nucleus, during chronic stress,
AGM may regulate oxytocin and vasopressin release by resynchronizing related neuropep-
tide rhythm disorders [94]. Thus, the anxiolytic effect of AGM could also be attributed to a
decrease in vasopressin and an increase in oxytocin levels [92,93].

3.4. 5-HT2C Antagonist Action

Dopaminergic and noradrenergic pathway dysfunction in the frontal cortex represents
one of the neurobiological mechanisms underlying psychiatric disorders. The frontal
cortex plays a fundamental role in cognitive processes and the regulation of behavior and
emotions [94–96].

Impairment in this area leads to loss of motivation and disinhibition, considered
clinical key features of depression, ADHD, ASD, and some anxiety disorders [96–98].

Neuroimaging techniques prove that symptomatologic overlap between those dis-
orders is linked to dysfunction in specific neuroanatomical areas. In depressed patients,
the basal activity of the dorsolateral prefrontal cortex is reduced; in the ADHD popu-
lation, the frontal cortex and some basal ganglia (caudate nucleus and the pale globe)
are smaller [99–101], and characterized by a slower activation with less oxygen consump-
tion [102]. In ASD patients, synaptic and neurotransmitter dissociation between the pre-
frontal cortex and other brain regions has been noted, which, in turn, has been correlated
to social and communication impairment [103–106].

AGM inhibits the release of dopamine and norepinephrine, by blocking 5-HT2C presy-
naptic receptors, enhancing its transmission in the prefrontal cortex [48]. The increase in
norepinephrine and dopamine availability in the frontal cortex acts both as antidepressant
and psychostimulant.

This innovative mechanism for an antidepressant provides more physiological acti-
vation of the areas of executive functions such as working memory and decision-making
processes, improving, theoretically, ASD and ADHD functioning. In particular, AGM seems
to ameliorate intentional cognition and discriminatory attention, leading to less irritability
and better affective regulation, as shown in patients on treatment [107,108].

4. Potential Therapeutic Role of AGM against SARS-CoV-2

Melatonin has been recently identified among the top five molecules with potential
anti-SARS-CoV-19 action [109].

It has been hypothesized that melatonin significantly inhibits inflammasome stimu-
lation, which could indirectly reduce the intensity of the cytokine storm following infec-
tion [110]. Moreover, it can promote the restoration of circadian rhythm and mitochondrial
metabolism and can regulate the cellular oxidative status, favoring cell survival in the lung
under stress and inflammatory conditions [111,112].

In a one-silico study, it was demonstrated that melatonin could act as a SARS-CoV-2
main protease (Mpro) inhibitor [113]. Another preclinical study showed that melatonin,
AGM, and ramelteon can bind to host cell angiotensin-converting enzyme 2 receptors
(ACE 2) and viral receptor-binding domain (RBD) [112,114,115], preventing viral entry into
the host cells [112]. More recently, in transgenic mice expressing human ACE 2 receptor
(K18-hACE 2), strongly susceptible to SARS-CoV-2 infection, daily melatonin, AGM, or
ramelteon administration delayed the occurrence of severe clinical outcomes, with the
improvement in survival, especially with a high melatonin dose [116].
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By restoring antioxidant and inflammatory status and sleep patterns in COVID-19
patients, AGM could serve as an adjuvant in COVID-19 disease management [117]. It is
to be reiterated that it could also be used as an antidepressant to manage the psychiatric
complications of COVID-19 infection [112].

5. Conclusions

Comorbidity is the rule and not the exception in mental illnesses, making it important
to spread the focus from specific disorders to psychobiological mechanisms that cut across
mental disorders.

In the pediatric population, the strict categorical approach to psychopathology is much
more difficult than in the adult population. During childhood and adolescence, psychiatric
symptoms appear as much more nuanced and variable, in line with the different ages of
development and the immaturity of the internal psychic systems.

Therefore, the idea of a symptomatologic continuum among mental disorders consti-
tutes an increasingly pressing concept. According to what has been said, the use of multi-
target drugs that act on specific symptoms, modulating simultaneously the pathological
background, would allow not only the customization of therapy according to the patient’s
need, but also the treatment of different pathological conditions. With its synergistic ac-
tivity as a melatoninergic agonist and 5-HT2C antagonist, AGM acts as an antidepressant,
a psychostimulant, and a promoter of neuronal plasticity, regulating cognitive, affective
symptoms, and resynchronizing circadian rhythms in patients with autism, ADHD, anxiety,
and depression. It is considered to have a favorable side-effect profile, without the weight
gain, sexual side-effects, or discontinuation syndrome seen with traditional antidepressants
such as SSRI/SNRIs.

Given its good tolerability and good compliance, AGM can be potentially administered
to teenagers and children. To bypass the current gap of data on the use of AGM in
developmental patients, controlled clinical trials are needed. The high frequency with which
anxiety, depression, and sleep disorders co-occur in ASD and ADHD, in conjunction with
their unique impact on functioning, adult outcome, and quality of life, is critical to consider
how to best prevent and treat these disorders among children and adolescents. Also,
considering the historical moment and the personal and family upheaval that the COVID-19
emergency has created and is still creating, it is not surprising to detect an exponential
growth of affective, cognitive, and behavioral symptoms, as well as sleep disturbances,
among children and adolescents with neurodevelopmental disorders. This phenomenon
could be presumably correlated to pandemic-related stress and higher anxiety levels in
vulnerable adolescents and young adults [118,119]. In this scenario, using a versatile
and tolerable drug such as AGM would represent an innovative opportunity to improve
the therapeutic perspective of chronic neurodevelopmental disorders. Modulation of
neurocircuits in developmental age would improve clinical outcomes, preventing chronicity
of therapy and, of course, bringing a reduction in dysmetabolic side effects.
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