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Abstract: (1) Background: Chaos, a feature of nonlinear dynamical systems, is well suited for
exploring biological time series, such as heart rates, respiratory records, and particularly electroen-
cephalograms. The primary purpose of this article is to review recent studies using chaos theory and
nonlinear dynamical methods to analyze human performance in different brain processes. (2) Meth-
ods: Several studies have examined chaos theory and related analytical tools for describing brain
dynamics. The present study provides an in-depth analysis of the computational methods that have
been proposed to uncover brain dynamics. (3) Results: The evidence from 55 articles suggests that
cognitive function is more frequently assessed than other brain functions in studies using chaos theory.
The most frequently used techniques for analyzing chaos include the correlation dimension and
fractal analysis. Approximate, Kolmogorov and sample entropy account for the largest proportion of
entropy algorithms in the reviewed studies. (4) Conclusions: This review provides insights into the
notion of the brain as a chaotic system and the successful use of nonlinear methods in neuroscience
studies. Additional studies of brain dynamics would aid in improving our understanding of human
cognitive performance.
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1. Introduction

The human brain is composed of 86 billion associated neurons with almost 150 tril-
lion synapses; its structure permits the passage of electrical or chemical signals between
neurons [1,2]. Brains are dynamic systems with multiple levels of nonlinearity [3]. Under-
standing brain functioning requires a thorough understanding of its nonlinear dynamics [3].
Communication in the neuronal network creates voltage input that can be monitored and
measured by EEG, which monitors the electrical activity produced by brain cells. EEG
signals derived from the central nervous system provide abundant information for neuro-
science studies and reveal the neuronal network’s state [4]. Among all analytical methods
to study neural networks, EEG systems are the most advantageous because they are non-
invasive, user-friendly, convenient, portable, and easy to maneuver. They also achieve
high temporal resolution and therefore are suitable for capturing rapid changes in neu-
ronal states [5]. These properties make EEG an excellent tool for neuroergonomics and
neuroscience studies [6].

The premise of modeling the human brain as a complex system is aimed at improving
understanding of the fundamental basis of behavioral, cognitive, and perceptual pro-
cesses [7]. Previously, features or descriptors of EEG signals have been captured by linear
methods in the frequency domain (e.g., fast Fourier transform or wavelet transform) and
parametric techniques (e.g., autoregressive modeling) [8]. Although linear techniques have
yielded useful results, they have limited ability to detect the underlying nonlinear processes
of EEG because the ultra-high-dimensional nature of EEG causes the signal to appear as a
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stochastic structure [9]. More recently, EEG signals have been found to exhibit apparent
random fluctuations in amplitude over time, leading scientists to recognize EEG as a signal
that displays nonlinear, dynamic characteristics. [10]. Thus, in addressing the intrinsic
nonlinear nature of EEG, nonlinear dynamics theories offer a more robust approach than
traditional linear EEG analysis methods [10].

Nonlinear dynamical methods provide a means for understanding the underlying
brain processes in EEG signals and assessing their physiological connotations. One feature
of nonlinear dynamical systems is “chaos”, which is well suited for the exploration of
biological time series, such as heart rates, respiratory records, and particularly EEG [10–12].
The theory of nonlinear dynamical systems and chaos theory address deterministic systems
that display complex and seemingly random behaviors [9]. Some studies of dynamic
systems have also generated mathematical equations to predict the future states of the
system by plotting its behavior trajectories [13].

In this review, we limited our search to EEG studies using chaos theory to analyze
large-scale synchronization between interactive brain regions in healthy participants. The
main objective of this article was to review recent studies using EEG data to analyze diverse
cognitive processes by applying chaos theory and nonlinear dynamical methods. We aimed
to determine whether the recognition of different brain functions and their characteristics
by the application of chaos theory might contribute to a better understanding of the
dynamic mechanisms underlying the brain’s cognitive performance, thus providing a
complementary method to linear and traditional techniques.

This article is organized as follows. The “Methods” section presents the search strategy
and eligibility criteria used to collect the articles assessed in the literature review. The
“Results” section provides the literature search results, the study characteristics, a general
summary of the selected articles, and answers to RQ1 and RQ2. The “Discussion” section de-
scribes the theoretical implications and applications of chaos theory in the mental processes
performed in the brain and provides detailed answers to RQ1, RQ2, and RQ3. Finally, the
“Conclusion” section discusses future directions, outlines challenging issues, and provides
future perspectives for neuroscience in the progressing field of nonlinear dynamics.

2. Materials and Methods
2.1. Review Standards

The present literature review was conducted in accordance with the Preferred Re-
porting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines [14]. These
guidelines outline how to combine the results of studies to perform a robust systematic
review. Searches for relevant articles were based on predetermined research questions, and
the specified search strategy is explained below.

2.2. Research Questions

• RQ1: What mental processes have been studied by nonlinear EEG analysis?
• RQ2: What are the major chaotic measures used to characterize various brain functions?
• RQ3: For non-medical purposes, what are the findings of EEG studies that have used

chaos theory measures for analysis?

2.3. Search Strategy

Peer-reviewed research articles were extracted from PubMed, Engineering Village,
Web of Science, Science Direct, IEEE Xplore, EBSCOhost, ProQuest, and Google Scholar.
Articles in peer-reviewed journals and conference articles were the primary source of re-
viewed information. Boolean operators were applied with combinations of the following
keywords in the title, keywords, or abstract: (chaos OR “nonlinear dynamics” OR “nonlin-
ear dynamical”) AND (EEG OR electroencephalography OR electroencephalogram) AND
performance. The keyword “performance” was included because we aimed to identify
studies that investigated performance in aspects of the human brain using chaos measures.
The date range for the search was set from 1 January 2000, to 30 April 2023.
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2.4. Inclusion and Exclusion Criteria

To narrow the scope of the search results, we chose articles for the literature review
on the basis of language, text availability, article type, and publication date. To limit the
number of studies, predefined exclusion and inclusion criteria were applied. The following
set criteria were used to screen identified sources: (1) studies in English only; (2) studies in
peer-reviewed journals or conference publications; (3) studies performing experiments on
humans; (4) studies performing experiments on healthy participants; and (5) studies using
EEG as the data collection method.

EEG reflects the dynamic oscillations of the brain. Therefore, EEG analysis can detect
various brain disorders in early stages, such as epilepsy, autism, depression, or demen-
tia [13,15]. The wide range of disorders that are detectable by nonlinear methods in EEG
analysis is beyond the scope of this review. Furthermore, the focus of this article was on
non-medical applications of nonlinear dynamical tools; thus, the selection of articles was
limited to studies in only healthy participants.

2.5. Data Collection and Summary of Measures

Pertinent information was extracted, as summarized in Table 1, which displays the
numbers of chaos metrics, the domains of the studies, the EEG channels, the numbers of
participants, experiments, and major findings.
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Table 1. Summary of selected articles, including the numbers of EEG channels, chaos theory metrics, numbers of participants, domains, experiments, and summaries
of findings. Legend: Hurst exponent (HE), fractal dimension (FD), Lyapunov exponent (LE), correlation dimension (CD), Shannon wavelet entropy (ShEn),
Rényi entropy (REn), spectral entropy (SpEn), Kolmogorov entropy (KolmEn), wavelet entropy (WEn), approximate entropy (ApEn), sample entropy (SampEn),
permutation entropy (PE), recurrence quantification analysis (RQA), Lempel-Ziv complexity (LZC), and motor imagery (MI).

Article Chaos Metric Domain Number of EEG
Channels

Number of
Participants Summary of Experiments Summary of Findings

[16] HE Cognition 14 EEG channels 12 Raven’s test was performed.

Observed HE had a lower value in alpha bands, thus
indicating higher unpredictability. The HE values increased

the delta frequencies associated with cognitive mental
processing, thus suggesting that fundamental processes
attract the system to more organized, self-similar, less

chaotic, and more predictable conditions.

[17] CD Cognition 18 EEG channels 77

A domino test was performed, in
which participants identified the

correct piece corresponding to the
previous patterns of dominos.

Intelligence levels and the degree of intelligence levels were
positively correlated. Data suggested that participants with
highly oscillating signals scored higher on intelligence tests
than those with more periodic oscillations. Thus, intelligent
participants appeared to have a more complex and chaotic

EEG structure.

[18] CD and KolmEn Cognition 64 EEG channels 6 Resting state EEG was examined.

A comparison of the chaotic features of internet-addicted
students and controls of typical students indicated that the
former have higher levels of neuronal activity and higher
chaotic behaviors of EEG signals in the prefrontal cortex

at rest.

[19] FD and CD Cognition 9 EEG channels 42: male = 20,
female = 22

Participants were asked to listen to
25 verb-and-object sentences and to
understand and imagine the action

indicated.

The response times and EEG records of participants
visualizing a series of MI tasks clearly demonstrated

self-similarity and chaotic behaviors, thus explaining how
the nervous system is a self-organizing mechanism.

[20] CD Cognition 28 EEG channels 2: male = 1, female = 1

Participants were presented with
stimuli on an LCD screen in the

categories of arithmetic, language,
and symbol processing and were
asked to determine whether the
stimulus was in the correct or

incorrect domain.

The CD method indicated that the right side of the brain
exhibited more prominent engagement during an

arithmetic task. This finding would have been missed by
the spectral analysis method.

[21] SampEn Cognition, working
memory, attention 128 EEG channels 6: male = 3, female = 3

The following were examined: first,
a passive state with eyes closed;
second, performance of a mental
task; and last, performance of the
same mental task followed by a
fatigue-causing physical task.

SampEn was diminished during the arithmetic task in the
prefrontal and occipital regions with respect to the recorded

baseline relaxed state, thus indicating less chaos. When
fatigue factors were present, diminished SampEn in the
central, temporal, and parietal regions associated with

performing motor actions was observed. Fatigue changes
the dynamics of the brain in the motor cortex areas.
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Table 1. Cont.

Article Chaos Metric Domain Number of EEG
Channels

Number of
Participants Summary of Experiments Summary of Findings

[22] LE, FD, and SampEn Cognition (attention,
memory), attention 19 EEG channels 4

EEG signals in response to four
categories of cognitive tasks were

investigated—focus, problem
solving, memory, and emotion

recognition. Cognitive load was
assessed using the NASA Task Load
Index sheet. The EEG session was

designed with the eyes open
condition, and a qualitative

assessment was performed to
determine the difficulty level of

executing the task.

This study established a spatiotemporal descriptor for
perceiving changes in the properties of the EEG signal,

which occurs in response to cognitive load. The study used
three different nonlinear parameters to analyze the EEG
signals, LE, FD, and SampEn. The researchers used these
findings to create a classification model that can identify
different states of the brain based on the changes in the

EEG signal.

[23]

CD and two coupling
measures: pointwise
trans-information and
pointwise conditional
coupling divergence

(PCCD)

Attention 58 EEG channels 9

Participants with eyes closed
listened to two types of tones: a

constant 1000-Hz tone as the
standard stimulus and an

intermittent 800-Hz tone as the
deviant stimulus. Participants were

asked to count the number of
deviant tones and provide feedback.

In the deviant stimulus experiment, nonlinear coupling
increased with age, while CD/complexity decreased.

[24] ApEn, SampEn,
multi-scale entropy Visual Attention 19 EEG Channels 14: male = 7, female = 0

Participants were required to
maintain their gaze fixed on the

center of a computer monitor.
Although the time courses of the

two experiments were the same, the
difference between them was in the

action phase: Experiment 1
displayed a cartoon character

playing ball, while Experiment 2
showed a cartoon character walking.

The findings indicate that SampEn fared very well among
the dynamical parameters, with accuracies of 76.19% and
85.24% in recognizing the three levels of attention for the

two experiments, respectively. SampEn also outperformed
theta/beta power ratio. These results suggest that

nonlinear dynamical parameters may be essential for
developing a reliable system for attention recognition.

[25] EEG algorithm Attention 5 EEG channels 12
A visual task that incorporates

perception and primary processing
of visual information.

The results obtained suggest that cognitive resources are
finite, and to sustain optimal performance over an

extended period, the brain needs to operate under a
“safe-mode” regime.

[26] Symbolic dynamics Attention and Mental
Fatigue 11 EEG channels 20: male = 20,

female = 0

Continuous performance task (CPT)
algorithm-based task called
“Sustained Attention Dots.”

Participants were asked to respond
in a certain way where there was a
4-dot pattern. There were a total of

600 patterns and 4 trials.

The findings indicated that, using nonlinear analysis of
reaction time, as well as EEG signals from the frontal and

central lobes of the brain, it was possible to distinguish
between attention and the onset of mental fatigue during

trials. Furthermore, the changes in entropy over time
demonstrated a decrease in the complexity of mental

activity as fatigue set in.
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Table 1. Cont.

Article Chaos Metric Domain Number of EEG
Channels

Number of
Participants Summary of Experiments Summary of Findings

[27] WEn, ApEn, PE, FD Short-term memory 2 EEG channels 16

Participants were shown 12 black
and white pictures for 10 s and then
asked to close their eyes for 2 min

and provide the names of the
pictures that they could remember.

PE increased significantly for FD, ApEn, root mean square,
and waveform length in the frontal lobe and the occipital
lobe, thus improving the effectiveness of memory-based

neurological systems assessing feedback.

[28] CD Working memory 21 EEG channels 21: male = 9,
female = 12

Participants recalled any of the 12
black and white pictures shown to

them within 1 min of their eyes
closing.

Working memory conditions increased the lower alpha
band’s dimension. A correlation was observed between

greater working memory capacity and a smaller theta band
dimension in women during the no-task condition. Lower

band alpha complexity is associated with attention
functions. Higher chaotic behavior and desynchronization

in women are closely associated with task performance.

[29] CD, HE, ApEn Working memory 32 EEG channels 1: male = 0, female = 1

An arithmetic task with seven levels
of difficulty, from very low to

extremely difficult, was shown on a
computer display. Participants were

asked to select the correct answer
using a mouse button.

The decrease in the HE suggests that the random behavior
of the brain signals vanishes, and a structured oscillation
forms in response to the difficulty of the arithmetic task.

[30] CD, LE, HE Anesthesia N/A 5

After premedication with morphine
and atropine, five participants

underwent anesthesia with propofol
intravenously, followed by a

thiopentone injection.

By combining nonlinear chaotic measures and neural
network classifiers, anesthetic depth levels based on EEG

signals can be identified. Using the LE with Elman
networks (feedback model) detects the optimum depth of

anesthesia with 99% accuracy.

[31]
Permutation
Lempel-Ziv

complexity (PLZC)
Anesthesia 3 EEG channels 20: male = 10,

female = 10

Sevoflurane gas was administered to
participants for 2 min at 3%,

followed by 7% in group 1, and
intravenous propofol was delivered

to group 2.

A permutation Lempel-Ziv complexity test (PLZC)
surpassed all other indices in differentiating between

awake and deep anesthesia and in predicting the anesthetic
drug’s effect.

[32] HE Anesthesia 3 EEG channels 16: male = 0,
female = 16

During the first 2 min of sevoflurane
administration, the vaporizer
delivered 3% of the inspired
concentration to participants,

followed by 7%.

The novel method maximal overlap discrete wavelet
transformation (MODWT) based on HE analysis was used
to describe the effects of sevoflurane on the brain. HE of

low-frequency bands (HEOLFB) tracked sevoflurane
concentration best and was less susceptible to artifacts than

the other methods examined.

[33] Poincaré map
(phase-space), SpEn Anesthesia 3 EEG channels 110

Ultrasonographic endoscopy was
performed under

sedation-analgesia.

The Poincaré plot model is effective in estimating
sedation–analgesia levels. The ratio of the ellipse’s width in
the Poincaré plot to its length in a band frequency of 30–110

Hz showed promising results for determining sedation
levels, owing to high prediction probability.
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Table 1. Cont.

Article Chaos Metric Domain Number of EEG
Channels

Number of
Participants Summary of Experiments Summary of Findings

[34] Lumped PE Anesthesia 2 EEG channels 16

During general anesthesia, subjects
were administered propofol
continuously and its plasma

concentration was measured at
preset intervals. The EEG states of

awake, sedative, and deep
anesthesia were identified and the
loss and regain of consciousness
were determined through verbal

commands. As the propofol infusion
ended, the plasma concentration

decreased gradually, leading to the
subject regaining consciousness.

The study investigated the complexity of EEG signals
during propofol-induced general anesthesia using three
different entropy measures. The authors found that local

pattern entropy (LPE) was the best measure to track
changes in EEG complexity during anesthesia, showing a

stronger and more robust correlation with propofol
concentration. The study suggests that LPE could be used

for real-time monitoring of anesthesia.

[35]

Composite
multi-scale

permutation entropy
(CMSPE)

Anesthesia 3 EEG channels 18
EEG data were collected from

patients under
sevoflurane anesthesia.

Composite multi-scale permutation entropy (CMSPE) was
able to track minor transitions between light and deep

anesthesia. The results indicate that CMSPE is superior to
the raw single-scale PE in demonstrating the effects of

sevoflurane on the central nervous system.

[36] CD Sleep 16 EEG channels 32: male = 16,
female = 16

Participants’ EEG was recorded after
8 h of nighttime sleep at 7:00 AM.

Participants were then subjected to
24 h of sleep deprivation, and their
EEGs were re-recorded at 7:00 AM.

CDs measured under sleep deprivation conditions were
lower than those measured under normal sleep conditions.

The decrease in the dimensionality of EEGs in
sleep-deprived states indicated decreased chaotic behavior.

[37]

REn, LZC, multi-scale
entropy, SpEn,
SampEn, fuzzy

entropy

Sleep 2 EEG channels Sleep-EDF database
(8 subjects)

Each recording in the database is
typically 8 h long and contains

information about the sleep stages
of the individual. The recordings are
divided into 30-s epochs, and each

epoch is labeled with the
corresponding sleep stage. The sleep
stages are Wake, Non-REM (NREM)

Stage 1, NREM Stage 2, NREM
Stage 3, and REM (Rapid Eye

Movement) sleep.

The study aimed to develop an accurate and efficient
method for sleep stage classification using single-channel
EEG signals. The proposed method used a cascaded SVM

model that improved the overall average classification
accuracy, and the study analyzed different nonlinear

dynamics features and found that fuzzy entropy, LZC,
SampEn, and multi-scale entropy contributed significantly

to the improvement of accuracy. However, these factors
required more time to be calculated than other features.

[38]
Flexible analytic

wavelet transform
(FAWT)

Sleep (Drowsiness) 32 EEG channels 16: male = 16,
female = 0

Collected from MIT/BIH dataset of
physiobank—no explanation of the

experiment.

This study proposes a flexible analytic wavelet transform
(FAWT)-based method for detecting drowsiness using EEG

signals, which achieved high accuracy, sensitivity, and
specificity in distinguishing between alert and drowsy

states. The developed FAWT-extreme learning
machine-based system was shown to be effective, robust,
and accurate, and it could be used to model a real-time

drowsiness detection system.
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Table 1. Cont.

Article Chaos Metric Domain Number of EEG
Channels

Number of
Participants Summary of Experiments Summary of Findings

[39] Recurrence
network-based Sleep (fatigue) 40 EEG channels 10: male = 8, female = 2 Simulated driving experiment

The study aimed to develop a method for detecting driver
fatigue using EEG signals. They collected EEG signals

during a simulated driving experiment and used a
recurrence network and a convolutional neural network to

extract features and classify the data as alert or fatigued.
The results demonstrated high accuracy with an average

accuracy of 92.95%, and the proposed method
outperformed existing methods, indicating that it was

effective in detecting driver fatigue.

[40]

FD, circular
complexity,

longitudinal
complexity,
intersecting
complexity

Sleep (Drowsiness) 14 EEG channels 10: male = 7, female = 3 No task, eyes closed in a dark room

This study looked at the patterns of brain activity,
specifically alpha waves, in people when they were awake
and drowsy. They found that the patterns of brain activity

were more complex when the person was drowsy
compared to when he or she was awake, and the traditional
way of measuring complexity, called FD, was not able to

detect these differences. Instead, the researchers used three
new measures of complexity that they developed and were
able to show that the differences in brain activity patterns

were statistically significant.

[41] ApEn, Kolmogorov
complexity (Kc) Sleep (fatigue) 32 EEG channels 50

Three experimental tasks:
Vigilance task—participants had to
click the right mouse when an odd

number appeared on the screen.
Addition and subtraction arithmetic

calculation of four one-digit
numbers

Simple switch task

ApEn and Kolmogorov complexity (Kc) are useful
measures of the dynamic complexity of EEG and have a

strong association with mental fatigue. Complexity
measures decrease as mental fatigue increases.

Additionally, KPCA (kernel principal component
analysis)-HMM (hidden Markov model) was proven to be a
potentially effective model for estimating mental fatigue.

[42] RQA Emotion 32 EEG channels 10

A total of 40 videos were presented
to the participants in each trial, and

self-assessment tests were
performed

Feature extraction and detection of the emotion through
recurrence plot analysis and k-NN classification had
accuracy of 64.56%, 58.05%, and 67.42% in all three
categories of scaling—values much higher than the

accuracy achieved with linear (spectral analysis) methods.

[43] RQA Emotion 32 EEG channels Group 1: 19;
Group 2: 10

Participants scored each video that
they were shown on a scale of 0 to 9
in four dimensions: arousal, valence,

liking, and dominance.

With RQA, better classification performance was achieved
over feature extraction works based on spectral analysis
methods in emotion recognition. The proposed method

with selected RQA feature extraction resulted in test
accuracy of 75.7%. The findings may be used to identify the

neurophysiology of human emotions.
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Table 1. Cont.

Article Chaos Metric Domain Number of EEG
Channels

Number of
Participants Summary of Experiments Summary of Findings

[44]

Multi-order
detrended fluctuation

analysis
(MODFA), fuzzy

entropy

Emotion 9 EEG channels 87: male = 31,
female = 56

The study involved a baseline
period during which participants

had their eyes open and closed
while gazing at a white cross
displayed on a black screen.

Participants then watched six video
clips with different emotional

themes, including neutral, fear,
sadness, happiness, anger, and

disgust. The videos were used to
elicit emotional responses and were
entitled “World Heritage in China”,

“The Conjuring”, “Nuan Chun”,
“Top Funny Comedian”, “Never
Talk to Strangers”, and “The Fly”.

The study proposed a novel algorithm called multi-order
detrended fluctuation analysis (MODFA), which improved

the accuracy of EEG-based emotion recognition by
measuring the homeostasis of prefrontal cortex neural

activity. The results showed that MODFA outperformed
conventional measures, such as fuzzy entropy and power
spectral density with the best binary classification accuracy
of 96.81%, the best ternary classification accuracy of 76.39%,

and the best six-classification accuracy of 42.17%. The
findings also suggested that arousal had a far greater

impact than valence on emotion recognition.

[45] Fuzzy entropy Emotion 32 EEG channels 32

EEG and peripheral physiological
signals were recorded after

participants watched 40 1-min
music video clips.

The results of the experiment demonstrated that combining
multiple features extracted from emotional EEG signals
through multi-feature fusion produced better outcomes

than using a single-feature extraction method. Using a long
short-term memory neural network, the proposed method

achieved high classification accuracy in emotion
recognition. The method’s performance was better than
other traditional artificial design feature-based methods

that utilized SVM or DBM.

[46]
SampEn, transfer
entropy, mutual

information
Emotion 64 EEG channels 24: male = 10,

female = 14

20 neutral, 20 happy, and 20 sad
movie clips were displayed for

subjects in three sessions according
to the emotions portrayed. During

each session, the subjects performed
15 grip strength trials and five
no-grip strength trials while

watching the video clips.

Researchers investigated the relationship between
emotions and movement in the brain using various

analysis methods, such as SampEn, transfer entropy, and
mutual information. The study found that different

emotions cause changes in the SampEn of the frontal lobe,
and happiness and sadness can promote the transmission

of information between the cerebral cortex and muscle
nerves. Additionally, mutual information analysis showed

that different emotions can promote the exchange of
information in specific brain regions.
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Table 1. Cont.

Article Chaos Metric Domain Number of EEG
Channels

Number of
Participants Summary of Experiments Summary of Findings

[47]

Fractal Firat pattern
(FFP), tunable

Q-factor wavelet
transform (TQWT)

Emotion 14 EEG channels 28

The experiment involved four
different types of games: funny,

boring, horror, and calm. Each game
was recorded for 5 min, resulting in
a total recording time of 20 min for

all four games combined.

The study proposed an automated EEG-based emotion
recognition method using fractal Firat pattern (FFP) and

tunable Q-factor wavelet transform (TQWT) signal
decomposition technique. A multilevel feature generator
was developed using FFP and TQWT, and an improved
iterative selector was utilized for feature selection. The

proposed framework achieved 99.82% accuracy with the
SVM classifier, indicating that FFP and TQWT-based

feature generation can be successful in emotion recognition
using EEG signals.

[48]
Poincaré map

function, recurrence
plots (RPs)

Emotion 32 EEG channels 32

Participants watched 40 one-minute
videos and rated each video on

arousal, valence, liking, dominance,
and familiarity.

The study compared the effectiveness of recurrence plot
(RP) features and Poincaré map function in analyzing EEG
data and identifying emotional states. The results showed

that RP features were more statistically significant in
distinguishing emotional ratings, particularly in identifying

levels of dominance, in more EEG electrodes. The study
also found that nonlinear analysis using an RP-based

approach was more effective in identifying emotional states
and showed significant correlations over a wider area of
the cortex compared to the analysis of EEG power bands.

[49] CD,
KolmEn, ShEn Emotion 32 EEG channels, 62

EEG channels
Group 1: 32,
Group 2: 15

The experiment utilized two
publicly available datasets, DEAP

and SEED, to analyze EEG data from
human subjects. DEAP consisted of
data from 32 subjects who watched
one-minute-long music video clips

and rated their emotional
experiences on a two-dimensional
scale of arousal and valence. SEED
included data from 15 subjects who

watched 15 film clips to induce
emotions with three classes of

emotions (positive, neutral,
negative) evaluated, and each class
had five corresponding film clips.

The individual beta rhythm achieved the best performance,
and the higher-frequency beta rhythm and gamma rhythm

bands performed better than the lower-frequency theta
rhythm and alpha rhythm bands. Using linear features

outperformed the use of non-linear features in each
frequency band.
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Table 1. Cont.

Article Chaos Metric Domain Number of EEG
Channels

Number of
Participants Summary of Experiments Summary of Findings

[50] RQA Emotion 40 EEG channels 5

This experiment involved
participants watching eight movie

clips while their emotions were
recorded. Each clip was preceded by

guiding words displayed on the
screen for 5 s, after which the clip
was played, and participants were

asked to concentrate on it. After
each clip, participants were asked to
report their true emotional state and
rate the intensity of their emotions

on a 10-point scale.

The study aimed to design an emotion-classification system
for affective computing that could improve communication
between humans and machines. The researchers induced
three emotions in participants, measured corresponding

EEG signals, and proposed an RQA-based
channel-frequency convolutional neural network (CFCNN)
recognition system for distinguishing emotion states. They
found that the system achieved high accuracy and stability,
outperforming traditional methods, and they observed a

strong correlation between emotional processing and
gamma frequency band activities, suggesting potential for
research in affective human-machine interaction systems

and EEG signal identification in other areas.

[51] Wavelet transform,
WEn, ApEn, SampEn Emotion 32 EEG channels 32 Subjects watched 40 clips from

music videos as emotional stimuli.

The authors compared two cases using wavelet transform
and entropy measures for feature extraction to improve the

accuracy of emotion classification. They found that
considering baseline data features improved the accuracy

of classification, with nonlinear dynamic features leading to
higher accuracy than wavelet-derived features. The most
salient features were found to be a combination of ApEn

and SampEn, with EEG gamma-band features being more
important than other frequency bands.

[52]

Wavelet transform,
multifractal

detrended fluctuation
analysis (MFDFA),

and HE

Emotion 19 EEG channels 10: male = 6, female = 4
Subjects listened to the sound of a

tempura drone generated by
software.

This study investigated the effect of a simple acoustical
drone stimulus on the human brain using EEG data.

Nonlinear dynamical analysis techniques, such as empirical
mode decomposition and multifractal detrended

fluctuation analysis (MFDFA), were used to analyze the
EEG data. The findings suggest that the input of drones

enhances the complexity of alpha and theta waves, and this
study has potential applications in cognitive music therapy.

[53] HE MI, cognition 14 EEG channels

Group 1 (pilots):
male = 10 female = 2;

group 2 (dancers):
male = 3 female = 7

Dancers mentally visualized and
imagined a series of steps and

choreographed moves. Pilots were
asked to solve a short version of

Ravens’ test.

When a skill is learned through repeated practice and
specialization or during memory consolidation,

professionals within that specialized field may share a
structure of ordered trends or “fingerprints”.

[54] CD MI 29 EEG channels 18: male = 10,
female = 8

Participants visualized the grasping
of a specific object. Six objects were
selected for this experiment: a can, a
box, a cup, a ball, a lid, and an egg.

The grasp pattern of a cylindrical or spherical object was
identified, and the combination of CD and a SVM achieved

80.6% accuracy in classifying the grasp pattern.
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Table 1. Cont.

Article Chaos Metric Domain Number of EEG
Channels

Number of
Participants Summary of Experiments Summary of Findings

[55] HE MI 14 EEG channels 20: male = 20,
female = 0

Nine professional dancers imagined
performing a choreographed dance,

and EEG data were recorded for
2 min

The long-term timescales in the resting state demonstrated
anti-persistence and similar HEs. This finding suggests that
the brain modulated its active tasks differently between the

two timescales.

[56] Wavelet transform MI 3 EEG channels 1: male = 0, female = 1
Subjects were seated on a chair with
armrests while imagining left- and

right-hand motions.

The maximum accuracy achieved was 90.7%, and the
maximum mutual information was 0.76 bits, with the

distance series features outperforming other
state-of-the-art algorithms.

[57]

Spectrum symmetry
of chaotic system
(SSCS), based on

chaos

MI 8 EEG channels 32: male = 16,
female = 16 Visual stimulation was performed.

Conventional methods for analyzing EEG data tend to filter
out noise, which can result in the loss of valuable

information. However, a new approach based on chaos
theory, called the spectrum symmetry of a chaotic system,
was used to analyze SSVEP data frequencies. This method

is particularly advantageous for detecting target
frequencies in BCI-illiterate participants since it is sensitive

to weak signals and immune to noise

[58] ShEn MI 64 EEG channels 87

The experiment consists of a
one-minute baseline run with eyes

open and another one-minute
baseline run with eyes closed. This

step is followed by three 2-min runs
of four different tasks. Two pairs of

tasks, one run performing the
physical task and the next run

imagining performing the
same task.

The authors were able to distinguish between motor
movements and imagined movements. The authors note
that the entropy measures and complexity measures are

concepts that complement each other. The
entropy-complexity plane provides a global metric that

illustrates a variety of characteristics typically associated
with the dynamical behavior of motor and

envisioned movements.

[59] REn MI
Group 1: 3; group 2: 64;
group 3: 118; group 4:

118; group 5: 22

Group 1: 1, group 2: 1,
group 3: 5, group 4: 1,

group 5: 9

Participants were given visual cues
and stimuli for each dataset and

asked to perform a specific MI task

Among the chaotic feature extraction methods used in this
study, REn had the highest classification accuracy.

Furthermore, the accuracy and convenience of REn make it
a suitable tool for feature extraction in MI systems.

[60] RQA MI 13 EEG channels 6

Subjects had two sessions in which
EEG data were recorded for MI
tasks and periods of rest. Each

session had three runs, with each
run consisting of 40 trials of either

MI or rest, based on visual cues on a
screen. The MI task required

participants to imagine moving their
left or right hand, and each trial

lasted for 10 s, followed by a
rest period.

The study investigated the use of graph-based RQA and
complex network theory to analyze the nonlinear

recurrence patterns in the mu and beta spectral bands of
EEG signals during MI tasks. The graph-based features

outperformed traditional linear spectral features, achieving
an average accuracy of approximately 80%. The study
concluded that the proposed nonlinear features could

potentially improve MI-based brain-computer interface
performance by exploiting the nonlinear neural dynamics

embedded in MI neural responses beyond the classical
linear spectral characteristics.
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Table 1. Cont.

Article Chaos Metric Domain Number of EEG
Channels

Number of
Participants Summary of Experiments Summary of Findings

[61] TQWT MI 118 EEG channels 5
Subjects performed MI tasks with

their right foot (RF) and right hand
(RH).

The study proposes a new method for accurately
classifying different mental tasks using EEG signals and a
brain-computer interface. The method involves using the

TQWT technique with automatically selected tuning
parameters and then selecting important features from the
resulting signals using a least squares SVM classifier. The

proposed method achieved high accuracy of 99.78%, which
is superior to other state-of-the-art techniques using the

same database.

[62] Multifractal analysis,
wavelet transform Motor movement, MI 19 EEG channels 12: male = 9, female = 8

Participants were instructed to
perform two types of tasks, lift their

right hand slowly in the shoulder
joint, and imagine such a movement

during a given time interval. The
experiment lasted approximately

30 min and was split into
10 sessions, with each session

containing 20 identical events. There
were five sessions of real

movements followed by five
sessions of imaginary movements.

Researchers have identified specific frequency bands in
EEG signals that can be used to extract features of brain

activity associated with motor execution and imagination
in untrained individuals. During motor execution, there

was a decrease in mu/alpha-band and an increase in
delta-band activity in different areas of the brain. During

motor imagination, there was an increase in
mu/alpha-band activity and a significant decrease in
delta-band activity in certain areas of the brain. The

researchers developed a real-time algorithm to extract
motor execution or motor imaginary events from EEG

signals, which demonstrated high accuracy in detecting
these events in experimental sessions with subjects.

[63] KolmEn Motor movement 9 EEG channels 12 Participants performed thumb
movements.

Supplementary motor and motor cortex areas exhibit
activation approximately 2 s after the initial movement is
executed. The EEG patterns in the supplementary motor,

premotor, and motor areas of the brain are synchronized in
a nonlinear, chaotic manner and are associated with the

stages of preparation, intention, decision-making, and the
initiation of voluntary movements.

[64] CD,
KolmEn, and LE Motor movement 9 EEG channels 19

A screen with targets was presented
to the participants. To reach the

target, participants maneuvered a
control device and pressed a switch

after reaching the target.

According to the results of this study, EEG signals analyzed
with chaos metrics show three distinct periods of high

complexity that can be interpreted as phases of movement
organization.

[65] CD Motor movement 10 EEG channels 11: male = 3, female = 8

Rifle shooting experts and amateur
shooters fired 40 shots in the

standard standing position while
EEGs were recorded.

Experts showed less reliance on complex brain activities
during shooting, owing to a refinement of cognitive

processes, whereas greater complexity due to higher CD
was associated with better performance in amateurs.
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Table 1. Cont.

Article Chaos Metric Domain Number of EEG
Channels

Number of
Participants Summary of Experiments Summary of Findings

[66] Coherence analysis Motor movement 64 EEG channels 11

Participants used a power handle to
track a target force by applying
varying forces. The participants

were provided with ongoing force
output feedback on a screen. The

participants were required to
continuously adjust their exerted

force to meet the target force level.

Motor performance learning and advancement are coupled
with different coherence patterns in different stages of

motor performance.

[67] RQA Motor movement,
attention, and memory 19 EEG channels 32: male = 32,

female = 0

The tasks that followed involved
ideomotor responses, hallucinations,

motor challenges, memory recall,
and post-hypnotic suggestion.
Therefore, the experiment was

designed to assess the participants’
hypnotic susceptibility and how it

affected different
cognitive processes.

This study found that certain brain regions, particularly
those on the left side of the brain, were more efficient at

distinguishing between hypnotizability levels. Finally, the
researchers found that brain wave patterns in people
performing the same type of task were similar across
different brain regions, suggesting that there may be

common patterns of brain activity associated with specific
types of tasks.

[68] Variance fractal
dimension (VFD) Motor movement 64 EEG channels 1: male = 1, female = 0

Three tasks:
Right foot up
Lip pursing

Combination of the first two tasks

The results of the experiments and performance tests
demonstrate that the suggested modeling approach is
efficient in the context of movement-related potentials,

particularly for binary brain-computer interfaces intended
to aid severely disabled individuals, such as those with

amyotrophic lateral sclerosis, in communicating or
controlling devices.

[69] FD, phase-space, and
LE Resting state 62 EEG channels 12 Resting state EEG was examined.

The traditional view of microstate analysis was
investigated. The notions that microstate regions compete
and the simple view in which one microstate is active while
the others are at rest are incorrect. The complex dynamics

in the phase space, the high FD, and the positive LE
support this finding.

[70] ApEn, LE, CD Resting state 1 EEG channel 10: male = 6, female = 4
Data were collected when

participants had their eyes closed
and their heads still.

The accuracy of classification reached 97.29% using linear
features, whereas it is only 44.14% with nonlinear dynamic
features. Based on the experiment’s results, it appears that
the linear features of EEG, such as center frequency, max

power, power ratio, average peak-to-peak value, and
coefficients of the autoregressive model, may perform
better in individual identification than the nonlinear

dynamic parameters of EEG.
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2.6. Data Extraction and Synthesis

The selected articles were classified into the following six categories: (1) cognitive
functions; (2) sleep, anesthesia, and fatigue; (3) emotion; (4) motor imagery (MI); (5) motor
movement; and (6) resting state.

3. Results
3.1. Literature Search

This review followed the PRISMA guidelines [14]. In Figure 1, an outline of the
identification, screening, and selection of studies for inclusion in this review is presented.
The first stage of the process resulted in the identification of 532 articles. After the removal
of duplicates, 469 articles remained. A formal abstract screening process incorporating
predefined inclusion and exclusion criteria was used to select relevant scientific articles from
the remaining 469 articles. For inclusion at this stage, we used predefined inclusion and
exclusion criteria. This step resulted in 141 articles being considered eligible for inclusion.
A detailed examination of the full texts of these 141 articles was conducted during the
selection step to ensure that they were compliant with the third step of the inclusion criteria.
Ultimately, 55 publications met the criteria to be reviewed.

Figure 1. Flow diagram of the methods and selection processes used in this review, according to the
PRISMA guidelines [14].
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The sections below provide answers to RQ1 and RQ2.

3.2. Chaos Theory: Applications for EEG Analysis of Mental Processes

The sample size across studies ranged from 1 to 110 participants. The mean, mode,
median, and standard deviation for the participants in all study samples were 24.85, 32, 17,
and 25.27, respectively.

The included studies were published from 2000 to 2023; Figure 2 depicts a representa-
tion of studies in the past decade and earlier, including 17 that were conducted before 2011
and 38 conducted after 2011. These studies were organized into six categories (Figure 3).
A total of 33% of the studies focused on cognitive functions (cognition, attention, and
memory); 20% focused on sleep, anesthesia, and fatigue; 17% focused on emotion, 16%
focused on MI; 11% focused on motor movement; and 3% focused on resting state. Overall,
cognitive function (32%) was more frequently addressed than other brain functions. Thus,
these categories correspond to the mental processes that we sought to investigate in RQ1.
Each category is explored in more depth in the discussion section.
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3.3. Chaotic Measures of Various Brain Functions

In all studies included in this analysis, the CD was the most frequently used nonlinear
method to assess chaos (Figure 4). It was found that CD and fractal analysis techniques
made the most significant contributions to chaos analysis. The major chaotic measures
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used to characterize different brain functions (RQ2) are shown in Figure 4. These methods
are chaotic measures used to analyze EEG signals.

Figure 4. Frequency of methods utilized to analyze chaotic signals.

In studies that employed entropy metrics to examine chaos, ApEn, KolmEn, and
SampEn algorithms accounted for the largest proportion of entropy methods used in these
studies (Figure 5).

For the co-occurrence of keyword analysis, we set a minimum threshold of five occur-
rences for a keyword. Out of 1180 keywords, only 95 met this threshold and were used to
create a network visualization graph using VOSviewer software (Version 1.6.19) (Figure 6).
General keywords, such as human, male, female, adult, and diseases, were excluded from
the analysis. The graph shows that the keywords related to electroencephalography, non-
linear dynamics, and algorithms had the highest occurrence frequency and were closely
related to other relevant keywords. The strength of the links between keywords was repre-
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sented by a numerical value calculated by counting the number of publications in which
two keywords appear together.

Figure 5. Frequency of the entropy measures among the included studies.

Figure 6. Network of keywords co-occurrence. (*) A consolidated representation of different varia-
tions of that keyword.

4. Discussion

This section discusses the findings of EEG studies using chaos theory measures for
analysis (RQ3). There are eight main domains: cognition, MI, motor movement, anesthe-
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sia/sleep, memory, emotion, attention, and resting state. Few studies have investigated
two or more aspects of human brain functioning; hence, some overlap among studies
was observed.

4.1. Nonlinear Dynamical Studies on Cognitive Functions

The cognitive functions of the brain refer to mental processes that enable us to receive,
choose, store, modify, create, decide, and retrieve information obtained from external
sources. These functions help us to better comprehend and interact with the world around
us [71]. Cognitive functions are essentially brain-based abilities that are essential for
performing any task, from the easiest to the most difficult. They involve the processes by
which we acquire knowledge, recall information, solve problems, and pay attention [72].
As a result, this section delves into the application of chaos theory techniques in exploring
these cognitive functions.

4.1.1. Cognition

Cognitive processes cannot be directly measured; therefore, studies of cognitive pro-
cesses usually consider some measurable activity in the brain or behavior during cognitive
tasks that can connect them to cognitive processes in the brain [73].

Use of a computational approach can provide insights into how an individual neuron’s
behavior and specific functions are transferred to networks and how these networks are
finally merged to form complex behaviors. By analysis of nonlinear EEG signals, Ramanand
et al. investigated the dynamic nature of the brain associated with mental states [21]. In
their experiment, quantification of complexity by chaotic measures served as an indicator
to identify active brain regions (prefrontal, frontal-temporal, central-parietal, or occipital)
in specific conditions/tasks. SampEn was lower during an arithmetic task in prefrontal
and occipital areas than the recorded baseline relaxed state, thereby suggesting decreased
chaotic behavior of neurons in these regions while solving mathematical problems, as well
as the involvement of visual areas in remembering numbers and creating a mental image of
a mathematical question in the mind. The onset of the fatigue factor via physical exertion
and measuring of EEG signals in participants performing the same mental calculations
resulted in a diminished SampEn in the central, temporal, and parietal regions associated
with performing motor actions. This evidence suggests that the onset of fatigue persists
in the system by subtly changing the dynamics of the brain in the motor cortex areas and
consequently influencing cognitive ability.

Synchronous oscillations in the brain are a major process for organizing and trans-
mitting information. Local cortical activity is reflected in changes in different spectral
bands and scalp locations. An increase in theta band power has been documented when
working memory is loaded [28]. With attention tasks, the alpha band power decreases,
thereby causing local circuits to receive more demands, particularly those in the lower alpha
band and those explicitly recalling learned information in the upper alpha band [74,75].
Micheloyannis et al. reported EEG results of an arithmetic task. The CD values for all
right hemisphere sites were higher, thus indicating that the right hemisphere was more
active than the left hemisphere [20]. According to the study, the CD method confirmed that
KolmoEn accounted for the largest proportion of entropy algorithms.

Extensive experience in applying nonlinear methods to different signals and com-
parisons with surrogate data to demonstrate validity have indicated that the right side
of the brain exhibits more prominent engagement during arithmetic tasks. This finding
would have been overlooked and missed by the spectral analysis method. Stankova et al.
found that the degree of CD and intelligence level are positively correlated [17], and they
concluded that the magnitude of CD is a measure of intelligence. Recorded EEG data
suggested that participants with highly oscillating EEG have higher intelligence test scores
than those with more periodic oscillations. This finding indicates that more intelligent
individuals have a more complex and chaotic EEG structure.
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The amount of order in the chaotic EEG signal is an indicator of the organization of
cerebral resources in different situations [16]. The rate of chaos arising from functional
processing in the brain fluctuates according to the difficulty of the cognitive task/problem.
In alpha bands, the HE has a lower observed value, thus indicating greater unpredictability.
The higher the delta frequencies associated with cognitive mental processing, the higher
the HE values, thus suggesting that fundamental processes attract the system to more
organized, self-similar, less chaotic, and more predictable conditions.

Chaos theory analysis also provides insights into EEG dynamics, which can help
specialized professionals to distinguish brain activity behaviors in specialized tasks [53]. In
one study, characteristics associated with individuality and professional skill were assessed
with HE estimation to determine trends indicating order and chaos in time series obtained
from participants’ EEG recordings. The participants engaged in tasks related to their
professions while also learning a skill through consistent and repeated practice for the
purpose of specialization and memory consolidation. Consequently, an ordered trend or
“fingerprint” in the brains of those professionals was detected. In a sample population of
pilots, the most notable functional brain characteristic was consistently higher HE in the
beta band than that in another specialized population (dancers).

In comparison, dancers’ most prominent functional brain characteristic was higher HE
in gamma frequencies. According to consensus, some elements of gamma-band oscillation
(30–64 Hz) relate to states of attention of a spiritual nature [76,77], involving an absence
of the sense of location and time. In contrast, beta-band oscillations (13–30 Hz) refer to
everyday activities that require active attention and many types of cognitive demands.

One or more aspects of behavior and brain activity are usually used to study cognitive
processes. In many studies, response times (RTs) have been measured as a behavioral
characteristic of participants’ cognitive task performance. In the context of RTs with
fractal or chaotic characteristics, determining whether brain activity (which has direct
connections with cognition) can also exhibit fractal and chaotic features is relevant [78,79].
Popivanov et al. [19] sought to determine whether different output variables associated
with cognition during the performance of a cognitive task might be dynamically similar.
The nonlinear properties of EEG and RTs were studied for nonlinear characteristics. RTs
are considered integral measures of cognitive processes in the brain, although in contrast to
EEG, they do not directly represent brain activity. In that study, the participants visualized a
series of MI tasks, and analysis of their RTs and EEG records revealed a clear self-similarity
and chaotic behavior pattern, thus providing an understanding of how the nervous system
is a self-organizing mechanism. The authors suggested that MI and phrase understanding
are distinct types of cognitive processes characterized by dynamic cooperation.

Computer technology and the internet have changed how people learn and think.
Currently, the use of the internet and its adverse effects on people’s behavior pose major
challenges, particularly for people with internet addiction [80]. Nonlinear dynamical meth-
ods can also address the cognitive consequences of internet addiction. According to the
CD and KolmEn, the EEG signals of students with internet addiction show chaotic charac-
teristics [81]. Internet addiction in students has been associated with impaired prefrontal
cortex function and a diminished ability to make decisions. Shan et al. investigated the
pathological abnormalities in the prefrontal cortices of students with internet addiction to
help people recover from internet addiction more effectively [18]. Analysis of the results of
the chaotic features of internet-addicted students and control groups indicated that, com-
pared with typical students, those with internet addiction have higher neuronal activity
and chaotic behavior of EEG signals in the prefrontal cortex at rest. These results have led
to the identification of effective treatment strategies, including counseling, and various
methods of replacing interests, blocking, incentivization, and developing new habits.

4.1.2. Attention

In event-associated potential studies, the oddball paradigm is a standard task for
assessing cognitive ability and attention [82]. Participants perform an “oddball” task and
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respond to target stimuli that occur infrequently and irregularly among a series of standard
stimuli [83]. Muller et al. used EEG to assess age-associated differences in nonlinear
dynamical features of the brain during rest and oddball auditory performance [23]. With
their eyes closed, participants listened to two types of tones: a constant 1000-Hz tone as the
standard stimulus and an intermittent 800-Hz tone as the deviant stimulus. The experiment
was conducted under two experimental conditions: passive listening (unsupervised) and
active counting (supervised). The first condition did not require responses, whereas the
second condition required the participants to count the number of deviant tones during the
trial and provide feedback at the end. During the eyes closed condition, nonlinear coupling
decreased with age, whereas CD increased. However, when focusing on deviant stimuli,
CD (thus complexity) decreased with age, and nonlinear coupling increased.

The findings of a study by Ke et al. indicated that SampEn did very well among
the dynamical parameters (ApEn, SampEn, and multi-scale entropy), with accuracies of
76.19% and 85.24% in recognizing the three levels of attention for the two experiments,
respectively. SampEn also outperformed the theta/beta power ratio. These results suggest
that nonlinear dynamical parameters may be essential for developing a reliable system for
attention recognition [24].

Another study used a new method to measure how long people can focus their
attention. The study found that people can focus their attention for longer periods of time
when they receive feedback, but the level of their attention is lower in this case. The authors
discovered that these results are evidence that the brain has limited cognitive resources and
that these results could be useful for the development of brain-computer interfaces that can
control human mental processes [25].

The continuous performance task (CPT) algorithm-based task, also known as “Sus-
tained Attention Dots”, was the experimental task in Azarnoosh et al.’s study. Participants
were asked to respond in a certain way where there was a 4-dot pattern in which there
were a total of 600 patterns and 4 trials. The authors found that, using nonlinear analysis
of reaction time, as well as EEG signals from the frontal and central lobes of the brain, it
was possible to distinguish between attention and the onset of mental fatigue during trials.
Furthermore, the changes in entropy over time demonstrated a decrease in the complexity
of mental activity as fatigue set in [26].

4.1.3. Memory

Continuous measurement of working memory load via noninvasive methods in partic-
ipants performing a cognitive task would aid in evaluating cognitive function, thus helping
people to maintain productivity and efficiency in task completion and prevent cognitive
overload [84]. A nonlinear analysis of mental arithmetic tasks with varying difficulty levels
performed by Zarjam et al. revealed that the frontal and occipital lobes are the regions most
affected by the cognitive load of questions asked in the experiment [29]. When the questions
become more challenging and frequent, the activated areas in these regions expand. The
complexity in the brain increases with increasing task load, in agreement with findings from
previous studies showing that the dimensionality of the brain dynamic decreases in states
in which there is no overt task or the individual is in a resting state [85,86]. The decrease in
HE suggests that the random behavior of the brain signals vanishes, and a more structured
oscillation forms in response to the difficulty of the arithmetic task. These findings were
also observed in a study by Stam [28], which evaluated a hypothesis that would help to
explain the controversies among scientists regarding conclusions derived from the CD and
thus the complexity of EEG data in different brain functions. Stam discussed differences
among previous researchers’ findings; instead of testing the CD on the broad bandpass
filter of EEG (0.5–30 Hz), he subdivided the EEG data into separate theta and lower and
upper alpha bands. Working memory conditions increase the lower alpha band’s dimen-
sion. A linear analysis revealed the desynchronization of the lower alpha band. In women,
compared with men, more desynchronization occurred in the theta band and the lower
alpha band, and a higher CD in the theta frequency was observed. The chaotic nature of
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signals makes them resistant to synchronization. A correlation between working memory
capacity and a smaller theta band dimension in women was observed during the no-task
condition. Lower band alpha complexity can be understood as increased resynchronization
associated with attention functions. The study concluded that the higher chaotic behavior
and desynchronization in women than in men are closely tied to task performance.

Most studies have adopted the same approach in evaluating activity in the brain
relating to memory, by selecting one or several baselines and comparing them to tasks
that involve a higher level of cognitive demand or working memory demands. Ramanand
et al. observed that the brain is divided into four regions: prefrontal, frontal-temporal,
central-parietal, and occipital [21]. In their experiment, quantification of complexity by
chaotic measures served as an indicator to identify the brain regions involved in specific
conditions/tasks. The authors found that the SampEn is lower during the arithmetic task
in the prefrontal and occipital regions than the during the recorded baseline relaxed state,
thus suggesting decreased chaotic behavior of neurons in these regions during solving
of a mathematical problem, as well as the involvement of visual regions in remembering
numbers and creating a mental image of a mathematical question in the mind. When
participants performed mental calculations after physical exertion, and their EEG signals
were measured, there was a decrease in SampEn in the central, temporal, and parietal re-
gions, which are involved in motor actions. This evidence suggests that the onset of fatigue
persists in the system by subtly changing the dynamics of the brain in the motor cortex
areas. Behzadfar et al. concluded that cortical activity during short-term memory tasks can
be used to test the effectiveness of linear and nonlinear methods for feature detection [27].
The authors found that the Pen increases significantly in the frontal and occipital lobes
and therefore would improve the effectiveness of memory-based neurological systems in
assessing feedback.

Limitations: One of the limitations of studying cognitive processes is the inability to
directly measure them. Consequently, researchers often rely on observable brain activity
or behavior during cognitive tasks to establish connections with underlying cognitive
processes. However, the analysis of brain activity using nonlinear methods can pose
challenges in interpretation, with subjectivity potentially affecting the process.

In cognitive neuroscience, many studies have utilized chaos theory techniques, but
they often encountered limitations due to small sample sizes, restricting the generalizability
of their findings. Furthermore, a lack of standardization in the methods used to analyze EEG
signals and quantify chaos makes it challenging to compare results across different studies.

Moreover, EEG signals have limited spatial resolution, complicating the precise identi-
fication of brain activity locations. Pinpointing specific brain regions involved in cognitive
processes becomes challenging as a result.

Additionally, cognitive tasks are influenced by numerous extraneous variables, such
as emotional state, fatigue, and motivation. Controlling these variables poses a challenge,
and it can be difficult to isolate their effects on chaos measures.

4.2. Nonlinear Dynamical Studies on Sleep, Anesthesia, and Fatigue

The depth of anesthesia (DOA) during surgery must be monitored to prevent pa-
tients from becoming aware during the procedure. Complying with this requirement is
essential to ensure proper DOA and to avoid accidental overdoses of potentially harmful
drugs [87,88]. EEG is preferred as a modern method for assessing DOA over traditional
methods based on subjective measurements, such as heart rate and pupil size [89]. Because
EEG is nonlinear, chaotic parameters are appropriate to identify DOA [90]. Bai et al. devel-
oped an accurate and practical anesthesia monitoring index that can be used for sedation
procedures. In that study, the dynamic features of an EEG signal were characterized using
an improved version of LZC, defined by the number of distinct substrings and the rate
at which they recurred in a given sequence; greater values indicated more complex data.
Through the measurement of LZC, the diversity of the patterns in a signal was deter-
mined. These results were then compared with traditional LZC with entropy measures:
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PE, composite PE index, responsive entropy, and state entropy, which indicate the DOA.
A combination of permutation and the Lempel–Ziv complexity test (PLZC) surpassed all
other metrics in differentiating between awake and deep anesthesia and predicting the
anesthetic drug’s effect. Because PLZC is based on the LZC algorithm and is a permutation
procedure, it combines symbolic dynamic theory, probability theory, and nonlinear systems
theory. This novel complexity metric is a nonparametric, easy-to-calculate index that does
not require long data segments to be computed. Moreover, this metric is not based on an
assumption that the time series are stationary. Thus, these features make PLZC an excellent
method for analyzing EEG signals in real time [31]. Joo et al. investigated the changes
in the complexity of EEG signals during general anesthesia induced by propofol. They
used three different entropy measures, namely pattern entropy, local pattern entropy, and
ApEn, to quantify the complexity of EEG signals. The authors found that local pattern
entropy is the best measure to track the changes in the complexity of EEG signals during
anesthesia, compared to pattern entropy and ApEn. Local pattern entropy showed a more
robust correlation with the propofol concentration, indicating a gradual loss of complexity
in the EEG signals as the subject moves from an awake to a sedated state. Overall, the
study suggests that local pattern entropy is a better measure of EEG signal complexity
during general anesthesia, and it has the potential to be used for real-time monitoring of
anesthesia [34].

Liang et al. described a novel method called maximal overlap discrete wavelet trans-
formation (MODWT), based on HE analysis and involving the effects of sevoflurane on
the brain [32]. MODWT decomposes EEG signals into multiple time series at varying
frequencies. Studied conditions included awake state, induction, deep anesthesia, and light
anesthesia. Raw EEG data were divided into seven sub-bands; however, the frequency
range of 0.5–12.5 Hz was found to have the greatest relevance. Increasing doses of many
inhalation anesthetics tend to affect this band most strongly. HE of low-frequency bands
can be used to estimate the precise moment of unconsciousness. A comparison between HE
of low-frequency bands and HE of raw EEG revealed that both can distinguish an awake
state from an anesthetized state. For HE of low-frequency bands, however, the reaction
time for the transition from a wakeful to a moderately anesthetized state is shorter than
that for HE of raw EEG. The EEG in anesthesia has been found to have an HE of <0.5,
indicating non-persistent behavior. These results are consistent with those of sleep state
analysis, in which HE indices decreased for all low-frequency bands as anesthesia deep-
ened. Overall, the HE of low-frequency bands performed best in tracking sevoflurane
concentrations because of their lower susceptibility to artifacts. Therefore, this method is
viable for evaluating how anesthetic drugs affect brain activity.

In many DOA studies, chaotic feature extraction and neural network classifiers have
been combined to achieve high accuracy in detecting anesthetic levels. By combining
nonlinear chaotic measures and neural network classifiers, Lalitha et al. proposed a method
for the automatic identification of anesthetic depth levels on the basis of EEG signals [30].
In the training and testing of neural network classifiers, one or several chaos measures were
extracted from chaotic parameters, and the performance of the classifiers was measured
for sensitivity, specificity, and overall accuracy. The results of the experiment showed that
using the LE with Elman networks (feedback model) detected the optimum DOA with
99% accuracy.

Bolaños et al. monitored sedation-analgesia levels using phase diagrams or Poincaré
plots [33]. The authors identified chaotic behavior in phase diagrams or Poincaré plots
and distinguished it from true randomness. Thus, the Poincaré plot model is adequate for
estimating sedation–analgesia levels. Poincaré plots are typically quantified using SD1 and
SD2, obtained by fitting an ellipse. SD1 is the standard deviation of points perpendicular to
the line of the ellipse’s identity, and the ellipse’s width is measured. Simultaneously, SD2 is
the standard deviation calculated along the line of identity and is the length of the ellipse.
The ratio of SD1 to SD2 in a band frequency of 30–110 Hz has shown promising results for
determining sedation levels, owing to its high predictive probability. In Li et al.’s study, the
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method of composite multi-scale permutation entropy (CMSPE) was able to track minor
transitions between light and deep anesthesia. The authors’ findings indicate that CMSPE
is superior to the raw single-scale PE in demonstrating the effects of sevoflurane on the
central nervous system [35].

Because of the loss of senses and movement during general anesthesia, experimental
operation conditions are similar to those during sleep [91,92]. Previous research has consis-
tently demonstrated that sleep and anesthesia share a biological mechanism, particularly
the gamma-aminobutyric acid pathway [93–95]. Furthermore, common regions of the
brain are activated during sleep and anesthesia. Because of the overlap between sleep and
anesthesia studies, these studies are discussed together. According to Jeong et al. [15], CDs
measured in sleep deprivation conditions are lower than those measured in normal sleep
conditions [36]. The decrease in the dimensionality of EEGs in sleep-deprived states indi-
cates decreased chaotic behavior. Biological systems have less complexity and diminished
degrees of freedom when they are functionally compromised. A loss of dynamical brain
responsiveness to external stimulation or inactivation of previously active networks may
explain the observed dimensionality reduction, which is most apparent in the brain’s left
central, right parietal, and right occipital areas.

Li et al. aimed to develop an accurate and efficient method for sleep stage classification
using single-channel EEG signals. The proposed method used a cascaded SVM model
that improved the overall average classification accuracy, and the study analyzed different
nonlinear dynamics features and found that fuzzy entropy, LZC, SampEn, and multi-scale
entropy contributed significantly to the improvement of accuracy. However, they required
more time to be calculated than other features [37].

Sharma et al. proposed a flexible analytic wavelet transform (FAWT)-based method
for detecting drowsiness using EEG signals, which achieved high accuracy, sensitivity, and
specificity in distinguishing between alert and drowsy states. The developed FAWT-ELM-
based system was shown to be effective, robust, and accurate, and it could be used to model
a real-time drowsiness-detection system [38]. Additionally, Gao et al. aimed to develop
a method for detecting fatigue in drivers using EEG signals. They collected EEG signals
from subjects in alert and fatigue states during a simulated driving experiment. They then
used a recurrence network (RN) to combine information from the EEG signals and fed the
resulting data into a convolutional neural network (CNN) to extract features and classify
the data as either alert or fatigued. The results showed that their proposed RN-CNN
method was highly accurate, with average accuracy of 92.95%. They also compared their
method with existing methods and found that it outperformed them, indicating that their
method was effective in detecting fatigue in drivers [39]. Kalauzi et al. examined the
patterns of brain activity, specifically alpha waves, in people when they were awake and
drowsy. They found that the patterns of brain activity were more complex when people
were drowsy compared to when they were awake. They also found that the traditional way
of measuring complexity, namely FD, was not able to detect these differences. Instead, the
authors used three new measures of complexity that they developed and were able to show
that the differences in brain activity patterns were statistically significant [40]. ApEn and
Kolmogorov complexity are useful measures of the dynamic complexity of EEG and have a
strong association with mental fatigue. Complexity measures decrease as mental fatigue
increases. In addition, kernel principal component analysis-hidden Markov modeling was
proven to provide a potentially effective model for estimating mental fatigue [41].

Limitations: The studies that rely on EEG signals to monitor the DOA have encoun-
tered certain challenges. These challenges include the susceptibility of EEG signals to
external factors, such as muscle movement or electrical interference, which can introduce
artifacts in the signal and potentially lead to inaccurate measurements of the DOA. More-
over, some of these studies have limitations, such as small sample sizes or being conducted
in a single center, restricting the generalizability of their findings.

It is worth noting that these studies primarily focused on monitoring DOA during
anesthesia induction and maintenance, neglecting other crucial aspects of anesthesia,
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such as emergence from anesthesia or recovery time. Additionally, the complexity of
mathematical and statistical analyses employed in these studies may pose difficulties in
terms of replication or comprehension for clinicians without specialized training.

Another concern is that these studies may not adequately account for individual
patient variability in response to anesthesia or other medications. As a result, their ability
to accurately predict or prevent adverse events, such as awareness or overdose, may be
compromised. These limitations underscore the need for further research and a more
comprehensive approach to anesthesia monitoring and management.

4.3. Nonlinear Dynamical Studies on Emotion

With the increasing use of human-computer interfaces, accurate automatic emotion-
detection algorithms based on EEG data have become commonplace. EEG data have been
used in studies of emotion recognition because emotions and their associated responses are
processed primarily in the brain [96–99]. Using machine learning techniques to identify
individual emotional states enhances understanding of human emotions [43]. The number
of occasions on which a human agent is replaced by an automatic emotion recognition
algorithm is increasing, including lie detection, treatments for obsessive-compulsive disor-
der and attention-deficit hyperactivity disorder, and e-learning [42]. To distinguish among
different affective states, classification techniques have been widely used. Studies using
RQA with the arousal-valence model have achieved high-performance rates and accuracy.

Bahari et al. defined the arousal spectrum spanning from no arousal (bored) to
excitement (alert), a valence spectrum ranging from negative (sad) to positive (happy), and
liking (taste/favor) as the third and final factor incorporated into participants’ tastes [42].
Feature extraction and detection of emotions by RQA and their classification with a k-
NN classifier achieved accuracy of 64.56%, 58.05%, and 67.42%, respectively, in the three
categories of scaling—values much higher than the accuracy achieved by linear (spectral
analysis) methods. Their findings suggest the reliability of chaotic measures in detecting
emotions using EEG signals.

Fan et al. used RQA and logistic regression to classify human emotional states us-
ing nonlinear feature extraction [43]. The authors suggested that RQA achieves better
classification performance than conventional power spectral features in EEG-based emo-
tion recognition. The proposed method with selected RQA feature extraction showed a
test accuracy of 75.7%. These findings may be used to identify the neurophysiology of
human emotions.

Gao et al. proposed a novel algorithm called Multi-order detrended fluctuation
analysis (MODFA), which improved the accuracy of EEG-based emotion recognition by
measuring the homeostasis of prefrontal cortex neural activity. The results showed that
MODFA outperformed conventional measures, such as fuzzy entropy and power spectral
decomposition, with the best binary classification accuracy of 96.81%, the best ternary
classification accuracy of 76.39%, and the best six-classification accuracy of 42.17%. Their
findings also suggested that arousal had a far greater impact than valence on emotion
recognition [44]. In the study by Guodong et al., the results of the experiment demonstrated
that combining multiple features extracted from emotional EEG signals through multi-
feature fusion produced better outcomes than using a single-feature extraction method.
Using a long short-term memory neural network, the proposed method achieved high
classification accuracy in emotion recognition. The method’s performance was better
than that of other traditional artificial design feature-based methods that utilized SVM or
DBM [45].

In another study, researchers analyzed the relationship between emotions and move-
ment in the brain using various analysis methods, such as SampEn, transfer entropy, and
mutual information. The SampEn analysis revealed changes in the EEG complex dynamic
system, where different emotions caused changes in the SampEn of the frontal lobe. The
transfer entropy analysis measured the strength of corticomuscular coupling, showing that
happiness and sadness can promote the two-way transmission of information between the
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cerebral cortex and the muscle nerves and that the primary transmission of information
occurs from the cortex to the muscle nerves. Last, mutual information analysis calculated
the correlation between EEG signals, showing that different emotions could promote the
exchange of information in specific brain regions, and grip strength could produce some
long-distance exchange of information in the brain regions [46].

Tuncer et al. presented an automated EEG-based emotion recognition method using a
novel fractal pattern feature extraction approach called fractal Firat pattern (FFP) and the
tunable Q-factor wavelet transform (TQWT) signal decomposition technique. A multilevel
feature generator was developed using FFP and TQWT. An improved iterative selector was
utilized for feature selection. The model was tested on emotional EEG signals with 14 chan-
nels using linear discriminant (LDA), k-NN, and SVM classifiers. The proposed framework
achieved 99.82% accuracy with the SVM classifier, indicating that FFP and TQWT-based
feature generation can be successful in emotion recognition using EEG signals [47].

Khodabakhshi et al. found that the results obtained from the recurrence plot (RP)
features were more statistically significant in distinguishing emotional ratings than those
produced by the Poincaré map function. The RP-based approach was particularly successful
in identifying levels of dominance, and of the 32 EEG electrodes analyzed, it was able
to distinguish dominance levels in 23 electrodes, while the Poincaré map function only
identified dominance levels in 5 electrodes. In addition, their study found that significant
correlations were observed over a larger area of the cortex for all affective states when
using nonlinear analysis, compared to the analysis of EEG power bands. Overall, these
findings suggest that the RP-based approach is a more effective method for analyzing EEG
data and identifying emotional states [48].

Yang et al. study aimed to design a reliable emotion classification system for affective
computing that could enhance communication between humans and machines. The re-
searchers conducted an emotional arousal experiment to induce three emotions—happiness,
sadness, and fear—and measured the corresponding EEG signals of each subject. They
proposed an RQA-based channel-frequency convolutional neural network (CFCNN) recog-
nition system for distinguishing emotion states and found that it can achieve effective
emotion classification with high accuracy and good stability, outperforming two tradi-
tional methods. Additionally, they observed that the performance of the gamma frequency
band in classifying emotions shows a strong correlation between emotional processes and
gamma frequency band activities. The findings suggest that the proposed recognition
system has great potential for research in affective human–machine interaction systems
and EEG signal identification in other areas [50]. Additionally, in the Chen et al. study, the
authors compared two cases of using wavelet transform and entropy measures for feature
extraction to improve the accuracy of emotion classification. They found that considering
baseline data features improved the accuracy of classification, with nonlinear dynamic
features leading to higher accuracy than wavelet-derived features. The most salient features
were found to be a combination of ApEn and SampEn, with EEG gamma-band features
being more important than other frequency bands [51].

Maity et al. investigated the effect of a simple acoustical drone stimulus on the human
brain using EEG data. Nonlinear dynamical analysis techniques, such as empirical mode
decomposition and multifractal detrended fluctuation analysis, were used to analyze the
EEG data. The findings suggest that the input of drones enhances the complexity of alpha
and theta waves, and this study has potential applications in cognitive music therapy [52].

Contrary to previous studies, Li et al. found that linear features outperformed the use
of nonlinear features in each frequency band [49].

Limitations: While studies employing EEG for emotion recognition have yielded valu-
able insights, their applicability to real-life situations may be limited due to the controlled
laboratory conditions in which the data have typically been collected. It is important to
consider that the accuracy of automatic emotion-recognition algorithms varies depending
on the specific method and dataset utilized. Another challenge is the presence of noise and
artifacts within EEG data, which can have a detrimental effect on the accuracy of emotion
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recognition. Furthermore, certain emotion states may prove difficult to distinguish solely
based on EEG data, necessitating the incorporation of additional physiological measures to
enhance accuracy.

The use of automatic emotion recognition algorithms across different fields gives
rise to ethical concerns, including privacy considerations and the potential for misuse.
Since these algorithms rely on analyzing personal and intimate information, safeguarding
individuals’ privacy becomes paramount. There is also a need to address the potential
misinterpretation or misapplication of the emotion recognition outcomes, as well as the
implications of such algorithms on personal autonomy and decision-making.

4.4. Nonlinear Dynamical Studies on Motor-Imagery

When visualizing an object, the brain’s cognitive function selects the appropriate grasp
pattern for holding the object and then sends this decision to the neuromuscular pathway
involved in executing the grasp. People with lesions in neuromuscular pathways, such as
those with amyotrophic lateral sclerosis, spinal muscular atrophy, or stroke, are unable to
move their limbs and perform daily activities. Nevertheless, they can visualize specific
movements. Using a brain-computer interface (BCI), the human brain can communicate
with the external environment. Hence, brain activity can be acquired from the brain
and translated into commands to control external devices [100]. BCI has been extensively
studied to create a direct communication link between the brain and prosthetic devices, thus
allowing people with disabilities to live independently. MI is a passive modality involving
capturing signals during the imagining of physical activities to achieve rehabilitation [54].
Functional imaging has revealed that, even in the presence of lesions, the motor system
is activated during the imagining of motion [101]. The motor network can be activated
even with neuromuscular impairment because MI is unaffected [102,103]. MI performance
can be assessed with EEG-based MI BCI [104–107], which interprets commands from MI.
Imagined hand movements may modulate brain signals, thus providing an opportunity to
communicate simple messages with MI. Diaz et al. found that the brain modulates active
tasks differently for MI mental processes on different timescales [55]. The study considered
short-term (1 s) and long-term (2 min) time ranges. High HE in the short term indicated
the modulation of the brain in response to the ongoing mental process and the long-range
persistence in the active underlying structure. In contrast, the long-term timescales were
non-persistent with similar HEs and were usually present in resting states.

Elbaz et al. aimed to improve the performance of BCIs by extracting different features
from EEG signals and using various preprocessing, feature selection, and classification
schemes. The maximum accuracy that they achieved was 90.7%, and the maximum mutual
information was 0.76 bits, with the distance series features outperforming other state-of-
the-art algorithms. The study’s findings suggest that nonlinear dynamical systems-based
features can improve the accuracy and mutual information of BCI systems [56].

Brain signals recognize imagined hand movements and therefore can convey simple
messages using imagery of hand motions [108]. To help patients with neuromuscular
disorders, identifying the particular cortical region associated with a specific grasp pattern
is imperative to implement BCI. Roy et al. compared different grasp patterns from EEGs
and provided a robust algorithm to decode participants’ MI EEGs [54]. Their findings have
suggested that the grasp pattern of a cylindrical or spherical object can be identified; the
combination of CD and SVM achieved 80.6% accuracy in classifying the grasp pattern of
the object of interest; therefore, the modality could be implemented to detect and classify
other random items.

Hosni et al. investigated the use of graph-based RQA and complex network theory to
analyze the nonlinear recurrence patterns in the mu and beta spectral bands of EEG signals
during imaginary tasks. These graph-based features were called recurrence rate (RR),
determinism (DET), the maximum length of diagonal lines (LMAX), laminarity (LAM),
the maximum length of vertical lines (VMAX), and recurrence time entropy (RTE). These
features were used to capture the nonlinear dynamics of the neural system and improve
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the classification of MI tasks in the study. The study found that the graph-based RQA
features outperformed traditional linear spectral features, achieving an average accuracy of
approximately 80%, compared to 74% for the linear features. The RQA features that were
found to be most indicative of the complexity of the neural system’s dynamics were RR,
DET, LMAX, LAM, VMAX, and RTE. DET and RTE features were found to be sensitive to
MI neural responses, while LMAX, VMAX, LAM, and RR were more frequently selected
across subjects and cross-validation folds. The authors concluded that the proposed nonlin-
ear features could potentially improve MI-BCI performance by exploiting the nonlinear
neural dynamics embedded in MI neural responses beyond the classical linear spectral
characteristics. They also suggested that future works should validate the nonlinearity
in the dataset using a surrogate procedure, conduct a proper statistical evaluation of the
proposed nonlinear features, investigate other variations of graph-based nonlinear dynam-
ics, and explore powerful feature selection and classification algorithms to extract robust
discriminative patterns from high-dimensional nonlinear data [60]. Khare et al. proposed
a new method for accurately classifying different mental tasks using EEG signals and a
BCI. The method involves using the TQWT technique with automatically selected tuning
parameters and then selecting important features from the resulting signals using a least
squares SVM classifier. The proposed method achieved high accuracy of 99.78%, which is
superior to other state-of-the-art techniques using the same database [61]. Maksimenko
et al. found that a combination of delta and mu/alpha frequency bands in EEG signals
can be used to extract features of brain activity associated with motor execution and MI in
untrained individuals. They found that, during motor execution, there was event-related
desynchronization in the mu/alpha-band in the temporal, central, and parietal lobes, and
event-related synchronization in the delta-band was most pronounced in the frontal lobe.
During MI, mu/alpha-band exhibited event-related synchronization, mainly revealed in
the central and parietal lobes and significantly decreased in temporal lobes. MI was char-
acterized by a significant change in frontal lobe delta activity, while motor execution was
associated with event-related synchronization in the delta band. The researchers proposed
a real-time algorithm to extract a single event associated with motor execution or MI from
the background EEG. The algorithm was able to correctly recognize 19 motor execution
events and 16 MI events out of 20 events each in an experimental session. Group analysis
performed for 12 subjects demonstrated 92.9% motor execution events detected with a 5.5%
false alarm rate and 81.6% MI events detected with a 9.1% false alarm rate [62].

In the visual cortex region of the brain, steady-state visual evoked potentials (SSVEP)
reflect electrical activity generated by stimulation frequencies. EEG signals of SSVEP are
weak, and detecting commands in the nonlinear, non-stationary, and noisy signals of EEG is
challenging. A novel method of feature extraction based on chaos theory was introduced by
Kai and colleagues [57]. Nonlinear chaos detection relies on nonlinear dynamics systems
to detect weak signals on the basis of nonlinear chaos theory. SSVEP EEG is periodic
and therefore can be incorporated as an external perturbation into systems with chaotic
behavior. By detecting the change in the chaotic state after the addition of EEG of SSVEP to
the chaotic system, the target frequency of SSVEP can be determined. Chaos theory is a
prominent method for detecting signal features, and it shows good performance in data
accompanied by noise. Traditional methods suppress noise, thus resulting in the loss of
valuable information in EEG data; however, the novel method of spectrum symmetry of
chaotic systems (based on chaos) has been applied to frequency detection of SSVEP data.
Owing to its sensitivity to weak data and immunity to noise, this method is advantageous
for target frequency detection in BCI-illiterate participants.

Another method for mapping human-imagined motor activities was developed by
Baravalle et al., who described a two-dimensional representation entropy-complexity plane,
assessed the dynamic nature of the signals, and deduced the emergent characteristics of the
system [58]. Entropy and complexity measures (introduced by Rosso) are mutually com-
plementary concepts. Stochastic resonance and coherence resonance describe an increase in
order in a nonlinear dynamic system caused by a specific amount of noise. The principle of
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complexity used in this method, introduced by Rosso and Massoller, enables the separation
of stochastic from chaotic time series [109]. In addition to measuring randomness, the
method detects correlational structures. The entropy-complexity plane provides a global
metric that illustrates many characteristics typically associated with the dynamical behavior
of motor and envisioned movements.

Multi-electrode recording acquired at high temporal resolution with MI-based BCI
generates data with high dimensionality. The analysis of multi-channel recordings can be
adjusted to the individual characteristics of many participants; however, classifying large
datasets remains computationally costly. Furthermore, because of the high redundancy of
the raw data, the classification model is at risk of over-fitting. Thus, choosing a method for
extracting task-relevant characteristics from data to simplify the presentation of the dataset
is essential. An algorithm that decreases the dimensionality of features can enhance the
efficacy and efficiency of a classification process in general. Some methods used for MI
feature extraction include band power [110], variants of autoregressive models [111], and
common spatial patterns (CSPs). Because CSPs perform relatively better in distinguishing
among classes of data, it is the most widely used algorithm to enhance the classification
of MI signals [112,113]. The effectiveness of REn (a general version of ShEn for feature
extraction of MI movements to assist BCI technology as a feature extraction method in
multi-class MI systems) has been compared with the CSP method [59] and found to achieve
superior results. REn has also been compared with other chaotic-inspired feature extrac-
tion methods, including Katz and Higuchi, which were used for BCI systems in earlier
studies [59]. Among the three chaotic measures, REn has the highest classification accuracy.
Furthermore, the accuracy and convenience of REn make it a suitable tool for feature
extraction of MI systems.

Beyond the application of chaos theory to BCI technology, another study sought
to identify a potential biomarker to identify the parallel and cross-functional nature of
cognitive phenomena that manifest simultaneously and over time in the brain during
the execution of any challenging task [55]. The authors found recurrent patterns in how
intraindividual and interindividual differences are manifested through EEG signal analysis.
The findings indicated specialization in frontal, temporal, and occipital areas and interhemi-
spheric interaction controlling the chaotic/non-chaotic balance in the brain in participants
imagining a choreographed dance. The dancers were asked to use their imaginations to
design the movement and choreography of a performance. They were required to address
two aspects of the task: the creative component and the technical component. Regarding
the first task, most individuals preferred working in a more fluid environment, wherein a
daydream-like state was entered to optimize the interplay of options and creative purposes.
Meanwhile, another part of the process might require more instantaneous, mid-analytical
decision-making, involving more self-organization, long-term memory, and persistence.
The study suggested that the brain modulates its ongoing processes on two time scales.
Modulation in the EEG signals of the short time scale involves refined, instantaneous super-
vision, as indicated by high HE values, thereby demonstrating the presence of long-term,
continuous processes in the working brain structure. In contrast, on the long time scale, the
modulation has a short memory and non-persistent behavior, as well as similar values for
HE to what were found recently in resting conditions for the EEG alpha band [55].

Limitations: Participants in studies involving people with disabilities may have vary-
ing degrees of impairment, which can affect the accuracy of results and the ability to
generalize findings to broader populations. Although BCIs have shown promise in im-
proving the quality of life of people with disabilities, they still have limitations in terms of
accuracy and reliability. The accuracy of BCIs may be affected by factors such as the quality
of the EEG signal, the type of signal processing algorithms used, and the ability of the user
to consistently produce the desired brain signals.
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4.5. Nonlinear Dynamical Studies on Motor Movement

Voluntary movements are preceded by complex brain processes, which emerge earlier
in the supplementary and primary motor areas and later in other brain regions. Pre-
movement neuronal activity correlates with movement planning and initiation, which
are cognitive processes. Approximately 2 s after the initial movement is executed, sup-
plementary motor and motor cortex areas exhibit activation. KolmEn has revealed that
the EEG patterns in the supplementary motor, premotor, and motor areas of the brain
are synchronized in a nonlinear chaotic manner, and are associated with the stages of
preparation, intention, decision-making, and the initiation of voluntary movements [63].
Dushanova et al. found similar results in participants presented with a target cue. In their
study, to reach the target on a screen display, participants were required to maneuver a
control device as part of the voluntary movement; after reaching the target, they were
required to press a switch. EEG signals analyzed with chaos metrics revealed three distinct
periods of high complexity that may be interpreted as phases of movement organization.
The two periods before the movement onset might indicate that the participants were
modeling the movement as part of the earliest stages of preparation. MI, attentional fo-
cusing, and short-term memory updating may occur during this period. The third-period
dynamics shift from a low level of complexity (when participants are ready to reach the
target and press the switch) to a higher level when participants are close to reaching the
target. The phases in voluntary movement organization are equivalent to these periods.
The regions of high dynamic complexity are followed by areas of high predictability and
low dimensionality, thus suggesting that the distant cortices operate synchronously. The
incremental rise in values that indicate chaos may be attributable to successive phases of
brain movement organization [64].

Continuous motor output adaptation is a function of the integration of frontal, parietal,
and sensorimotor brain activity [114,115]. High-frequency synchronization among the
visual, parietal, and motor cortices indicates that neural coherence or synchronization
across remote brain regions may be part of the mechanism that facilitates visuomotor
integration [116,117]. To determine whether an improvement in task performance affects
activity within the network active during the different stages of a visuomotor integra-
tion, Kranczioch et al. examined the effects of changing network activity during various
stages [66]. The authors evaluated learning-associated changes in EEG and brain activity in
a visually guided, real-time feedback-based task, providing real-time tracking and modifi-
cation of motor performance. A coherence analysis was used to determine high-frequency
synchronization among the visual, parietal, and motor cortexes. A phase coherence analysis
was performed on the signals at different regions to analyze their phase relationships. An
absence of synchronization was represented by a phase coherence value of 0, whereas syn-
chronization was indicated by a value near 1. Their results have demonstrated that motor
performance learning and advancement are coupled with different coherence patterns for
different stages of motor performance. Particularly in the period before movement initia-
tion, the frontal-central and parieto-occipital regions appear to show high coherence and
a concurrent decrease in coherence between frontal-central and parieto-occipital regions,
thus suggesting the strengthening of underlying neural networks. When movement is
initiated, the improvement in complex, continuous movement appears to be due to activity
in an ipsilateral-medial network, despite initially appearing to be more dependent on the
contralateral network. The sensorimotor processing load during hand gripping is placed
on ipsilateral centro-parietal brain regions.

The chaos/order balance in brain processes can be detected from the observed indi-
vidual differences. As the brain develops, it can be expected to be a system that learns
successful correlations between order and chaos and between competition and cooperation.
The human brain will operate progressively until it reaches the lowest energy consumption
and the highest efficiency possible in the given situation. Depending on the infinitely vary-
ing possibilities of the paths (trajectories) followed by the brain during its learning process,
infinitely different strategies are expected to be used for solving problems, requiring the
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same energy and information processing resources, thereby achieving a chaos/order and
cooperation/competition equilibrium [55]. Hung et al. studied rifle shooting experts and
amateur shooters firing 40 shots in the standard standing position while EEG data were
recorded [65]. The experts achieved the tasks using fewer neural resources and exhibited a
greater level of behavioral output despite a continuing cognitive challenge. An essential
aspect of this performance was refining cognitive processes to the point at which the task
was executed automatically. The experts’ lesser reliance on complex brain activities during
target shooting explains why their performance was more precise and less variable than
that of the amateur shooters. The amateur shooters exhibited more unstable and noisy
brain signals owing to inadequate practice and minimal refinement of brain processes, thus
leading to more variable performance. When the brain is in a simplified or refined mental
state, it has fewer options for how to act, which can lead to more consistent performance.
In contrast, when the brain is more complex, it has more options for how to act, which
can lead to less consistent behavior. Among the experts, the CD analysis and target firing
accuracy were inversely correlated such that lower EEG dimensionality was observed with
high shooting performance. Among the amateurs, an opposite relationship was observed.
Hence, greater complexity due to higher CD was associated with better performance by the
amateurs. Research on motor skill learning has generally indicated greater involvement
of structures such as the premotor and motor cortexes, somatosensory areas, and basal
ganglia compared to other brain structures. Therefore, the prefrontal areas of the brain
are more activated in amateurs, and subcortical processes replace the prefrontal area as
skill acquisition progresses, thus substantially decreasing prefrontal involvement. Increas-
ingly complex brain activation might assist amateurs in skill acquisition until a threshold,
beyond which further increases in complexity would probably impair performance. A
refined and efficient cerebral cortex translates into better performance on visuomotor tasks.
Neuromotor noise in the brain may decrease interference with a targeted performance
when complexity is diminished. During an experiment in a study performed by Yargholi
et al., subjects performed tasks that involved ideomotor responses, hallucinations, motor
challenges, memory recall, and post-hypnotic suggestion. Therefore, the experiment was
designed to assess the participants’ hypnotic susceptibility and how it affected different
cognitive processes leading to motor execution. This study found that certain brain regions,
particularly those on the left side of the brain, were more efficient at distinguishing between
hypnotizability levels. The authors found that brain wave patterns in people performing
the same type of task were similar across different brain regions, suggesting that there may
be common patterns of brain activity associated with specific types of tasks [67]. The re-
sults of the experiments and performance tests demonstrated that the suggested modeling
approach is efficient in the context of movement-related potentials (MRPs), particularly for
binary BCIs intended to aid severely disabled individuals, such as those with amyotrophic
lateral sclerosis, in communicating or controlling devices.

Usakli applied nonlinear dynamics and fractal analysis to analyze MRPs in EEG
signals. They used the variance FD method as a feature extraction tool and showed that the
multifractal dimension technique can be used to model MRPs for BCI applications. The
study found that the classification of EEG recordings for different tasks performed in their
experiment can be distinguished using this method, and the output of this classification
process can be used for communication/control. However, the classification performance
was lower than that of the SVM method. They also discovered that the window size and
the number of features of the time series in the EEG signal should be optimized to achieve
effective multidimensional modeling. According to this study, the chaoticity of the EEG
signals depends mainly on two factors: the window size of the signal and the physical
proximity of EEG channels. They found that small time delays (<15 ms) and neighbor
channels yield attractors that are not completely strange, as expected. This study also noted
that the CP4 channel is the most efficient channel for feature extraction of MRPs for the
tasks analyzed [68].
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Limitations: Studies of motor movement have mainly focused on the neural mecha-
nisms underlying motor planning and execution and have not provided information about
other factors that may influence motor learning and performance, such as motivation,
attention, and feedback. The studies mainly involved motor tasks that are simple and
controlled and may not be representative of real-world motor tasks that are complex and
unpredictable. Therefore, the ecological validity of the findings may be limited.

4.6. Nonlinear Dynamical Studies on Resting State

The brain is active even when it is not performing conscious cognitive tasks, and it
frequently engages in involuntary wandering thoughts in a state known as the resting
state [118]. Studies of brain dynamics have extensively used resting state analysis. The
literature has indicated that microstate analysis can be used to investigate resting state brain
activity [119]. According to the principles of microstate analysis, at any given time, only
one microstate is active, and EEG scalp topologies move discontinuously among four quasi-
stable states at peaks in the global field potential (GFP). These microstates are all mediated
by visual, auditory, salience, and attention processes. Microstate analysis relies on several
critical suppositions because it ignores all EEG data outside the GFP peaks and then clusters
EEG scalp topology at the GFP peaks on the basis of the assumption that one microstate is
active at a given time. Shaw et al. investigated this traditional view of microstate analysis
with nonlinear dynamical methods to test the validity of these assumptions [69]. Higher
complexity and chaotic behavior demonstrated that the microstate regions compete with
one another. Therefore, the simple view of one microstate being active and the others being
at rest is incorrect. The complex dynamics in the phase space, the high FD, and the positive
LE does not support the “winner takes all” assumption of microstate analysis.

Surprisingly, the accuracy of classification reached 97.29% using linear features in
the study by Zhao et al., whereas it was only 44.14% with nonlinear dynamic features.
Based on the experiment’s results, it appears that the linear features of EEG, such as center
frequency, max power, power ratio, average peak-to-peak value, and coefficients, although
autoregressive, may perform better in individual identification than the nonlinear dynamic
parameters of EEG [70].

Limitations: Resting state EEG studies may be confounded by factors such as medi-
cation use, sleep quality, and other physiological or environmental factors. These factors
may limit the validity of the results and make it difficult to generalize the findings to other
populations. Additionally, resting state EEG studies have typically measured brain activity
in a limited frequency range, such as the alpha or beta range. This range may not capture
the full range of brain activity, especially in the context of chaos theory analysis, which
involves nonlinear dynamics across multiple frequency bands.

5. Conclusions

This review was aimed at introducing the notion of the brain as a chaotic system
and demonstrating how nonlinear methods have successfully been used in neuroscience
studies. Studies are increasingly using chaos theory, including useful analytical tools based
on chaos theory for describing brain dynamics. We provided an in-depth analysis of the
computational methods proposed to uncover brain dynamics for non-medical applications,
and we explored the use of chaos theory in studying several aspects of the human brain
that can be divided into six primary domains: (1) cognitive functions; (2) sleep, anesthesia,
and fatigue; (3) emotion; (4) motor imagery (MI); (5) motor movement; and (6) resting state.
Many higher-level functions of the brain fall under cognition, and many types of cognitive
processes exist, including attention and memory. Because these psychological functions
are performed by different lobes and regions of the brain, we devoted a separate section to
each domain in this review.

In the studies covered in this review, CD and fractal analysis were the most frequently
used methods for measuring chaos. In addition, in the analysis of results using entropy
methods, researchers have primarily used ApEn, KolmEn, and SampEn.
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The advances in nonlinear dynamics and nonlinear time series analysis have substan-
tially enabled EEG-based applications. Compared with conventional/linear approaches,
which overlook the most valuable data, nonlinear methods provide better results because
many brain experiments are complex and analyze large datasets. A better understanding
of the dynamics of normal and pathological brain states and better tools for nonlinear time
series analysis will be essential for the future of nonlinear EEG analysis.

Although a wide range of classic and novel measures are available for estimating the
chaotic properties of the brain, they all share the step of quantifying distances between
states in phase space. Consequently, time-delay embedding can be described by two
parameters: lag and embedding dimension. In the analysis of nonlinear systems, the proper
selection of these parameters is critical and challenging [13]. Because filtered noise time
series can present a false impression of low-dimensional data, nonlinear measures impose
limitations in interpretation [120]. EEG was the subject of the present review, but a more
general review should address all types of brain measurements. It should be noted that
one limitation of the current study was the lack of studies of neurological diseases, such as
epilepsy, Alzheimer’s disease, etc., which might have provided valuable insights into the
applications of chaos theory analysis in clinical settings.

Over the past few years, new and improved methods for nonlinear time series analysis
have been pursued, and this progress is expected to continue in the future. New methods
are being developed to extract novel features found in nonlinear dynamical systems in EEG
signals. To address the gaps in EEG chaos theory analysis identified in our discussion, it
is necessary to develop novel techniques that can overcome the limitations of the existing
methods. These limitations include the requirement for long and high-quality recordings,
as well as the difficulty of analyzing nonstationary, features of noise and the dimensionality
of EEG signals. A persisting challenge is developing new techniques that can handle
these data and produce reliable results. Moreover, to better interpret the results of chaos
theory analysis in EEG, it is crucial to contextualize them in terms of the underlying neural
processes that govern brain activity. Additionally, enhancing the analysis of psychological
functions through chaos theory analysis would benefit from identifying the sources of
inter-subject variability in EEG signals. By addressing these research gaps, we can advance
our understanding of the brain’s complexity and improve the applicability of EEG chaos
theory analysis to a range of fields. A continuing need exists for studies of brain dynam-
ics. Understanding how brain dynamics are associated with structural and behavioral
properties would particularly enable insights to guide future research directions.
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