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Abstract: The bio-brain presents robustness function to external stimulus through its self-adaptive
regulation and neural information processing. Drawing from the advantages of the bio-brain to
investigate the robustness function of a spiking neural network (SNN) is conducive to the advance of
brain-like intelligence. However, the current brain-like model is insufficient in biological rationality.
In addition, its evaluation method for anti-disturbance performance is inadequate. To explore the
self-adaptive regulation performance of a brain-like model with more biological rationality under
external noise, a scale-free spiking neural network(SFSNN) is constructed in this study. Then, the
anti-disturbance ability of the SFSNN against impulse noise is investigated, and the anti-disturbance
mechanism is further discussed. Our simulation results indicate that: (i) our SFSNN has anti-
disturbance ability against impulse noise, and the high-clustering SFSNN outperforms the low-
clustering SFSNN in terms of anti-disturbance performance. (ii) The neural information processing in
the SFSNN under external noise is clarified, which is a dynamic chain effect of the neuron firing, the
synaptic weight, and the topological characteristic. (iii) Our discussion hints that an intrinsic factor of
the anti-disturbance ability is the synaptic plasticity, and the network topology is a factor that affects
the anti-disturbance ability at the level of performance.

Keywords: brain-like model; spiking neural network; scale-free network; synaptic plasticity;
anti-disturbance

1. Introduction

The integration of brain science and brain-like intelligence will accelerate the devel-
opment of information science and artificial intelligence [1]. Brain science provides the
biological theoretical basis in the structure, function, and mechanism for brain-like intel-
ligence [2]. The bio-brain presents a robustness function to external stimulus through its
self-adaptive regulation and neural information processing [3]. Drawing from the advan-
tages of the bio-brain to investigate the robustness function of a spiking neural network
(SNN) is conducive to the advancement of brain-like intelligence. An SNN with neuron
dynamics and synaptic weight dynamics has a strong ability to process nonlinear spatiotem-
poral information, which means the SNN is widely applied in the field of computational
neuroscience [4–6]. The three basic elements of SNN construction are the neuron model,
the synaptic plasticity model, and the network topology.

The neuron model with a dynamic process of spiking firing is the basic unit of in-
formation processing in an SNN. The Hodgkin–Huxley neuron model, as a fourth-order
partial differential equation, can conform well to the neuro electrophysiological charac-
teristics of bio-neurons [7]. However, its intrinsic computational complexity leads to high
computing costs. In contrast, the Leaky Integrate-and-Fire neuron model, as a first-order
partial differential equation, has low computational complexity but is inadequate when it
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comes to reflecting the neuroelectrophysiological characteristics of bio-neurons [8]. The
Izhikevich neuron model, as a second-order partial differential equation, can reflect the
neuroelectrophysiological characteristics of bio-neurons well. Additionally, due to the
low computational complexity, the Izhikevich neuron model facilitates construction of
large-scale networks [9]. Therefore, the Izhikevich neuron model is widely applied to
construct SNNs [10–13].

The synaptic plasticity model is the regulatory rule of neural information transmission
between neuron nodes in an SNN. Biological experiments have shown that excitatory
synapses can strengthen the efficiency of neural information transmission [14,15]. The con-
struction of SNNs based on the excitatory synaptic plasticity model has attracted the focus
of scholars. For example, Mannan et al. constructed a neural circuit based on excitatory
synaptic plasticity and demonstrated the biological effects through the efficient simulation
of short-term facilitation and long-term potentiation [16]. The inhibitory synaptic plasticity
can dynamically regulate information transmission in the aspects of speed, sensitivity, and
stability, and forms the basis of information transmission together with excitatory synaptic
plasticity [17,18]. A study by Pena et al. demonstrated that inhibitory synaptic plasticity
is conducive to intermittent conversion between quiescent states and oscillatory states of
neuron population in the SNN, which is similar to the asynchronous and synchronous
cortical states [19]. Therefore, the synaptic plasticity model, in which excitatory synapses
and inhibitory synapses co-regulate, has more biological rationality.

The network topology determines the connection forms between neuron nodes. Cog-
nitive neuroscience demonstrates that bio-brain networks are complex networks with
scale-free property [20,21]. According to complex network theory, the distribution of de-
gree in a scale-free network conforms to power law distribution, which means the scale-free
network has strong fault tolerance due to the non-uniformity of the degree distribution.
With synthetic consideration of biological experimental results and topology characteristic
analysis, computational neuroscientists have researched the SNNs with scale-free prop-
erty. Research on the firing modes of bistable neurons coupled with electrical synapses
and chemical synapses in a scale-free spiking neural network(SFSNN) has shown that
the average firing rate of the neuron population presents non-monotonic behavior [22].
Zeraati et al. [23] investigated the self-organized criticality of an SFSNN regulated by the
spike-timing-dependent plasticity (STDP) rule and found that dynamics of the SFSNN
self-organized to the critical state of synchronization is achieved through the changes in
degree distribution of the SFSNN. The brain-like networks with scale-free properties have
biological rationality and theoretical basis. Furthermore, based on the complex network
theory, the high-clustering networks have strong local information transmission ability
due to the high aggregation degree. Combining the topological advantages of scale-free
property and clustering characteristics, an SFSNN with a high-clustering characteristic can
improve the information processing ability under the external stimulus.

Biological neuroscience has shown that the bio-brain has the ability to adaptively
regulate external stimulus [24,25]. Drawing from the results of biological neuroscience,
researchers have focused on the effect of the external stimulus on the firing characteristics of
a brain-like network. Zhao et al. [26] investigated the firing characteristics of an SNN based
on the Izhikevich neuron model under the external stimulus, and found that the white
noise can induce stochastic resonance phenomena in the SNN. Etémé et al. [27] studied
the firing activity and synchronization of an SNN stimulated by an external magnetic field,
and found that electromagnetic induction can induce not only inerratic neuronal spiking
firing, but also a synchronous firing mode of neurons. Research on energy coding under
continuous stimulus in a fully connected SNN demonstrated that the energy distribution
was positively and negatively correlated with the synaptic coupling strength and time
delay in signal transmission, respectively [28]. Most studies have focused on the resonance,
synchronization and neural coding of SNNs under external stimulus. Recently, researchers
initiate to investigate the robustness function of the SNN under the external disturbance.
For example, Guo et al. [29] studied the robustness function of the SNN under additive
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Gaussian white noise to classify digit images based on phase coding. Compared with the
SNN without noise, the results show that the SNN under additive Gaussian white noise can
maintain relatively high classification accuracy. This indicates that the SNN has the ability
to suppress external disturbance. However, this kind of study is an indirect way to indicate
the anti-disturbance of SNN. It is a challenge to establish a direct method to evaluate the
anti-disturbance ability of a brain-like network and explore its anti-disturbance mechanism.

For synthetic consideration from the perspective of neuron, synapse and network
topology, we construct a high-clustering SFSNN in this study. Then, we investigate the
anti-disturbance ability of the high-clustering SFSNN against impulse noise. Finally, we
discuss the anti-disturbance mechanism through the neural information dynamic evolution.
The main contributions of our work are as follows.

(1) To improve the biological rationality of a brain-like model, a high-clustering SFSNN
is constructed, which combines the topological advantages of scale-free property and a
clustering characteristic.

(2) To evaluate the robustness function of the brain-like model, based on the two anti-
disturbance indexes of the relative change rate of the firing rate and the correlation between
membrane potential, we coherently verify that the SFSNN has an anti-disturbance ability
against impulse noise, and the high-clustering SFSNN outperforms the low-clustering
SFSNN in terms of anti-disturbance performance.

(3) Our discussion clarifies the neural information processing in the SFSNN under
external noise and hints that an intrinsic factor of the anti-disturbance ability is the synaptic
plasticity, and the network topology is a factor that affects the anti-disturbance ability at
the level of performance.

This paper is organized as follows: A method to construct the SFSNN is proposed
in Section 2. The anti-disturbance ability of the SFSNN is investigated and compared in
Section 3. The anti-disturbance mechanism is discussed in Section 4. Finally, the conclusion
is presented in Section 5.

2. Construction of SFSNN

A high-clustering SFSNN is constructed, in which the network topology is a scale-free
network with a high clustering coefficient, the network node is presented by Izhikevich
neuron model and the network edge is presented by the synaptic plasticity model regulated
by excitatory and inhibitory synapses.

2.1. Generation of a Scale-Free Network

The Barrat Barthelemy Vespignani (BBV) algorithm models the dynamic growth of
the local edge weights caused by adding new nodes in the generation process of a scale-
free network [30]. The improved BBV algorithm has the characteristic of the original
BBV algorithm. Meanwhile, it can adjust the clustering coefficients in a larger range [31].
Therefore, the improved BBV algorithm is employed to generate a scale-free network in
this study. According to the improved BBV algorithm, the topology characteristics of the
scale-free network can be changed by adjusting the connection probability p of new nodes,
where p ∈ (0,1]. The probability p rely on the total weight of the connected edges. The
larger the total weight of connected edge, the higher the connection probability p.

We generate a scale-free network topology considering the scale-free property and the
clustering coefficient by adjusting p.

(1) Scale-free property

The distribution of degree in a scale-free network conforms to a power law distribution,
and the power law index γ is within the scope of [2, 3]. Node k connected to the other
nodes conform to the following probability:

P(k) ∼ k−γ (1)



Brain Sci. 2023, 13, 837 4 of 14

(2) Clustering coefficient

The average clustering coefficient C can reflect the degree of network aggregation,
which is defined as follows:

C =
1
N

N

∑
i=1

2ui
ei(ei − 1)

(2)

where ui is the actual number of edges between nodes directly connected to node i, ei is the
degree of node i, and N is the number of network nodes.

When p increases from 0.1 to 1.0 with the step length of 0.1, the power law index γ
and the average clustering coefficients C are shown in Table 1.

Table 1. Topological property of the scale-free network with different p.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

γ 1.55 1.82 2.15 2.41 2.51 2.76 2.86 2.87 2.98 3.18
C 0.7028 0.6236 0.5001 0.4707 0.4180 0.3884 0.3133 0.2524 0.1889 0.1643

According to the definition of scale-free property, the γ should be within the scope of
[2, 3]. Furthermore, bio-brain functional networks are complex networks with scale-free
properties, and the γ of the human functional brain network is about 2 [32]. According
to Table 1, when p is within the scope of [0.3, 0.9], the generated networks have scale-free
properties. Therefore, p = 0.1, p = 0.2 and p = 1.0 are excluded, since their γ are out of
the scope [2, 3]. Moreover, when p is 0.3, the γ of the network is 2.15, which conforms
the most closely to the results of the biological experiment. In addition, when p is 0.3, the
clustering coefficient of the network is 0.5001, which is the highest in the generated network
with scale-free property. Therefore, p = 0.3 is chosen to generate a scale-free network with
high clustering characteristics. Its topology and power law distribution are illustrated in
Figure 1.
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Figure 1. (a) Topology of the scale-free network with high clustering coefficient. The red points on
the ellipse represent the network nodes. The blue lines inside the ellipse represent the network edges.
(b) Distribution of degree. The x-coordinate is the degree of node, the y-coordinate is the probability
of correspondence degree.

2.2. Izhikevich Neuron Model

Due to the advantages of conforming to biological neuron firing characteristics and
low computational complexity, the Izhikevich neuron model is introduced as network node
of the SFSNN. The model is described as follows:

dv
dt

= 0.04v2 + 5v + 140− u + Iext + Isyn

du
dt

= a(bv− u)

i f v ≥ 30, then

{
v← c
u← u + d

(3)
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where v is the membrane potential of neuron, u is the recuperative variate of v, Iext is the
external input current, Isyn is the sum of synaptic currents. a, b, c, and d are dimensionless
parameters, and different firing modes of neurons can be obtained by adjusting their values.
Regular spiking (RS) and low-threshold spiking (LTS) firing modes are taken as the excitatory
and inhibitory neurons in this study. The parameter settings are as follows [9]: for excitatory
neurons, a = 0.02, b = 0.2, c = −65, and d = 8; for inhibitory neurons, a = 0.02, b = 0.25, c = −65,
and d = 2. The firing modes of the Izhikevich neuron model are illustrated in Figure 2.

0 200 400 600 800 1000

Time (ms)

-80

-60

-40

-20

0

20

40

V
o
lt

ag
e 

(m
V

)

(a)

0 200 400 600 800 1 000

Time (ms)

-80

-60

-40

-20

0

20

40

V
o

lt
ag

e 
(m

V
)

(b)

Figure 2. The firing modes of the Izhikevich neuron model. (a) Excitatory neurons. (b) Inhibitory
neurons.

2.3. Synaptic Plasticity Model

Combining excitatory synapses and inhibitory synapses, a synaptic plasticity model is
introduced as the network edge. The model is described as follows:

Isyn = gsyn(t)(E−Vj(t)) (4)

where Isyn s the synaptic current, gsyn s the synaptic conductance, Vj(t) is the membrane
potential of a postsynaptic neuron and E is the reversal potential, including excitatory
reversal potential Eex and inhibitory reversal potential Ein. Through synaptic conductance,
the excitatory and inhibitory synaptic plasticity regulates the information transmission
between presynaptic neurons and postsynaptic neurons. This regulation can be described
as follows:

(1) When action potential from the presynaptic neuron i is not transmitted to the post-
synaptic neuron j, the excitatory and inhibitory synaptic conductance decay exponentially,
as follows:

τex
dgex

dt
= −gex, (5)

τin
dgin
dt

= −gin (6)

where gex and gin are the excitatory synaptic conductance and inhibitory synaptic conduc-
tance, respectively; τex and τin are the decay constants of gex and gin, respectively.

(2) When the action potential from the presynaptic neuron i is transmitted to the post-
synaptic neuron j, then gex and gin are regulated by the spike-timing-dependent plasticity
rule, as follows:{

gex(t)→ gex(t) + ḡex(t)
ḡex → wij ∗ gmax

, wij =

{
A+ exp(∆t/τ+),∆t < 0
−A− exp(−∆t/τ−),∆t ≥ 0

(7)

{
gin(t)→ gin(t) + ḡin(t)
ḡin → mij ∗ gmax

, mij =

{
−B+ exp(∆t/τ+),∆t < 0
B− exp(−∆t/τ−),∆t ≥ 0

(8)
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where ḡex and ḡin are the increments of gex and gin, respectively. gmax is the upper limit
on the synaptic weight. wij and mij are the excitatory synaptic correction functions and
inhibitory synaptic correction functions, respectively. A+ and A− are the maximum cor-
rection values and minimum correction values of the gex, respectively. B+ and B− are the
maximum correction values and minimum correction values of the gin, respectively. τ+
and τ− represent the neuronal firing interval when the gsyn is strengthened and weakened,
respectively. ∆t is the neuronal firing interval between the firing moment of presynaptic
neuron and postsynaptic neuron.

In this study, the parameter settings are as follows [33]: Eex = 0 mV, Ein = −70 mV, τex
= τin = 5 ms, gmax = 0.015, A+ = 0.1, A− = 0.105, B+ = 0.02, B− = 0.03, and τ+ = τ− = 20 ms.

2.4. Construction Process of the SFSNN

Our simulation is carried out on a PC with a 4.9 GHz Intel(R) Core i7-9700k CPU
and 16 GB RAM. We conducted simulations to observe the anti-disturbance ability of the
SFSNNs with different network sizes of 500, 800 and 1000, and found that there was no
obvious difference among them. In addition, based on the results of mammalian cortical
neuroanatomy [34], we randomly selected 80% of the neurons and set the parameters
to excitatory neurons, while for the remaining 20%, we set the parameters to inhibitory
neurons. The construction process of an SFSNN according to Algorithm 1 is as follows.

Algorithm 1 The construction algorithm of the SFSNN
Input: Adjacency matrix of the scale-free network at P = 0.3
Output: The high-clustering SFSNN
1: Add the Izhikevich neuron model (Equation (3));
2: n← 500 //size of our SFSNN is 500 nodes
3: for i = 1 to n do
4: A← rand(n, 1);
5: if A(i) <= 0.8 then //select 80% of Izhikevich neuron models
6: Set parameters of a, b, c, and d to excitatory neurons (Equation (3));
7: else //for other 20% of Izhikevich neuron models
8: Set parameters of a, b, c, and d to inhibitory neurons (Equation (3));
9: end if

10: end for
11: Add the synaptic plasticity model (Equation (4)); // connect the neuron models
12: if neuron j at the front of the synapse does not receive an action potential from neuron

i behind the synapse then
13: Calculate g using Equations (5) and (6);
14: else
15: Calculate g using Equations (7) and (8);
16: end if
17: if g < gmin then
18: g← gmin;
19: else
20: g← gmax;
21: end if
22: return SFSNN;

3. Anti-Disturbance of the SFSNN

The anti-disturbance ability of the high-clustering SFSNN against impulse noise is in-
vestigated based on two indexes of the relative change rate of firing rate and the correlation
between the membrane potential. Furthermore, the anti-disturbance performance of the
high-clustering SFSNN and the low-clustering SFSNN is compared under impulse noise.
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3.1. External Disturbance and Anti-Disturbance Indexes

1. Impulse noise
Impulse noise is an irregular discontinuous signal composed of pulse spikes, which
is characterized by short duration, large amplitude and burst. It can be described
as follows:

s(t) =

{
As, t ∈ [T0, T0 + T]
0, else

(9)

where As is the intensity of impulse noise, T0 is the start time of the stimulus and T is
the duration of the stimulus. In this study, impulse noise s(t), as current disturbance,
is applied to Iext in Equation (3) of all neurons in the SFSNN.

2. The indexes of anti-disturbance

(1) The relative change rate of the firing rate

The firing rate of a neuron reflects the frequency of action potentials per unit of
time in a neuron. The relative change rate of the firing rate δ can characterize the
change degree of the neuronal firing rate before and after disturbance, which is
defined as follows:

δ =

∣∣ f j − fi
∣∣

fi
∗ 100% (10)

where fi and f j are the mean firing rates of the SFSNN before and after dis-
turbance, respectively. The smaller the value of δ, the smaller the changes in
the neuronal firing rate before and after disturbance, and the better the anti-
disturbance ability of the SFSNN.

(2) The correlation between membrane potential

The correlation between membrane potential ρ reflects the degree of similarity
between the membrane potentials of the neurons before and after disturbance,
which is defined as follows:

ρ(τ) =

t2−τ+1
∑

t=t1

xi(t)xj(t + τ)√
t2−τ+1

∑
t=t1

x2
i (t)

t2−τ+1
∑

t=t1

x2
j (t + τ)

(11)

where xi and xj are the mean membrane potential of neurons in the SFSNN
before and after disturbance, respectively, and [t1, t2] is the simulation time.
The larger the value of ρ, the smaller the changes in the neuronal membrane
potential before and after disturbance, and the better the anti-disturbance ability
of the SFSNN.

3.2. Anti-Disturbance Ability of the SFSNN

To investigate the anti-disturbance ability, impulse noise is applied to all neurons in
the SFSNN. The intensity scope of impulse noise is [0, 11] mA with steps of 1 mA. The
anti-disturbance ability of the SFSNN against impulse noise is evaluated from the two
perspectives of δ and ρ. The results are illustrated in Figure 3.

According to Figure 3a, δ of the SFSNN presents an upward trend with the increase
in impulse intensity. When impulse intensity is within [0, 4] mA, δ does not exceed 20%.
When impulse intensity is within [5, 11] mA, δ increases from 22.36% to 66.73%. According
to Figure 3b, with the increase in impulse intensity, ρ of the SFSNN presents a downward
trend. When the impulse intensity is within [0, 4] mA, ρ is larger than 0.8. When the impulse
intensity is within [5, 11] mA, ρ decreases gradually from 0.7286 to 0.5261. Combining
δ and ρ, the results demonstrate that the high-clustering SFSNN has an anti-disturbance
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ability against impulse noise, and the anti-disturbance ability decreases gradually as the
impulse intensity increases.
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Figure 3. Anti-disturbance ability of the SFSNN against impulse noise. (a) δ. (b) ρ.

3.3. Comparison of Anti-Disturbance Ability

To comparatively analyze the effect of different clustering coefficients on anti-disturbance
ability, we construct an SFSNN with a low clustering coefficient (low-clustering SFSNN)
by employing the Barabási Albert (BA) algorithm [35], which has the same scale-free
property as the high-clustering SFSNN above. According to Equation (2), the average
clustering coefficient of the scale-free network based on the BA algorithm is 0.0921. The
anti-disturbance ability against impulse noise is evaluated by δ and ρ. The comparison
results of the anti-disturbance ability of the two SFSNNs are illustrated in Figure 4.
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Figure 4. Comparison of the anti-disturbance ability of the two SFSNNs against impulse noise. (a) δ.
(b) ρ.

According to Figure 4a, δ of the two SFSNNs represent similar trends; that is, δ increases
gradually with the increase in the impulse intensity. In addition, δ of the high-clustering
SFSNN is always lower than δ of the low-clustering SFSNN. According to Figure 4b, ρ of
the two SFSNNs represent similar trends; that is, ρ decreases gradually with the increase in
the impulse intensity. In addition, ρ of the high-clustering SFSNN is always higher than ρ of
the low-clustering SFSNN.

To further verify the significant statistical difference between the anti-disturbance
ability of the two SNNs, the Wilcoxon test is employed to conduct a significance test on δ
and ρ of two SNNs under impulse noise. The test steps are as follows.

(1) Calculate the difference w between two samples. If w is a positive number, denote it
as a positive sign; otherwise, w is a negative number, denoted it as a negative sign.

(2) Calculate the corresponding order by sorting the absolute value of w.
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(3) Calculate the sum order of the positive and negative signs w, denoted as w+ and w−,
respectively.

In this study, the significance levels of δ and ρ for two SNNs are 0.0028 and 0.0033,
respectively. Both significance levels are below 0.05. These results indicate that the sig-
nificant statistical difference exist in the anti-disturbance ability of the two SNNs under
impulse noise.

In summary, from two perspectives of δ and ρ, our simulation results coherently verify
that the anti-disturbance ability of the high-clustering SFSNN outperforms that of the
low-clustering SFSNN.

4. Discussion

To explore the anti-disturbance mechanism of the SFSNN, the neural information
processing in SFSNNs under impulse noise is discussed, which involves the evolution
process of the neuronal firing rate, the synaptic weight, and the topological characteristics.

4.1. Firing Rate

Impulse noise with 4 mA as an example is applied to all neurons in the SFSNN. The
firing modes of a single Izhikevich neuron after disturbance are illustrated in Figure 5.
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Figure 5. The firing modes of Izhikevich neuron under impulse noise. (a) excitatory neurons.
(b) inhibitory neurons.

Compared with Figure 2, we find that the firing rate changes obviously under external
noise, which indicates that external noise can affect the firing activity of neurons. The
average firing rate of the SFSNN at a given moment is characterized by the mean of firing
rate of all neurons in the network during a 100 ms time window. The evolution process of
the average firing rate in the high-clustering SFSNN and the low-clustering SFSNN under
impulse noise is illustrated in Figure 6.
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Figure 6. The evolution process of the average firing rate under impulse noise.
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According to Figure 6, the evolution process of the average firing rate in high-clustering
SFSNN and low-clustering SFSNN under impulse noise is different. However, the two
SFSNNs show similar evolutionary trends: during the first 300 ms, the average firing rate
of SFSNNs with different clustering coefficients decreases sharply; after 300 ms, the average
firing rate decreases tardily and gradually stabilizes.

4.2. Synaptic Weight

According to Equations (6) and (7), the changes in synaptic weight depend on the
firing moment of the presynaptic neurons and postsynaptic neurons. Therefore, changes
in the neuronal firing rate can induce changes in synaptic weight. The average synaptic
weight is the mean of all the synaptic weights in the SFSNNs. The evolution process of the
average synaptic weight in the SFSNNs under impulse noise is illustrated in Figure 7.
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Figure 7. The evolution process of the average synaptic weight under impulse noise.

According to Figure 7, the evolution process of the average synaptic weight in high-
clustering SFSNN and low-clustering SFSNN under impulse noise is different. However,
the two SFSNNs show similar evolutionary trends: during the first 400 ms, the average
synaptic weight of SFSNNs with different clustering coefficients decreases sharply; after
400 ms, the average synaptic weight decreases tardily and gradually stabilizes.

4.3. Relevance between the Synaptic Plasticity and the Anti-Disturbance Ability

To explore the anti-disturbance mechanism of the SFSNNs, we conduct an association
analysis to establish the relevance between the synaptic plasticity and the anti-disturbance
ability based on the Pearson correlation coefficient.

4.3.1. Pearson Correlation Coefficient and t-Test

The Pearson correlation coefficient can characterize a statistical correlation between
two samples X and Y. The correlation coefficient R is defined as follows:

R =

n
∑

i=1
(Xi − X)(Yi −Y)√

n
∑

i=1
(Xi − X)2

√
n
∑

i=1
(Yi −Y)2

(12)

The more adjacent the |R| is to 1, the more significant the correlation is. By contrast, the
more adjacent the |R| is to 0, the less significant the correlation is. A ttest is carried out to
investigate the significance of a sample R to the totality, which is defined as follows:

ttest =
R√

(1− R2)/(n− 2)
(13)
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For the t-test, a significance level of 0.01 is indicated by “**”, and a significance level of 0.05
is indicated by “*”.

4.3.2. Evolution Process of the Anti-Disturbance Ability

To explore the reason for the anti-disturbance ability, the evolution process of the
anti-disturbance ability of the SFSNNs under impulse noise is illustrated in Figure 8.
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Figure 8. The evolution process of the anti-disturbance ability under impulse noise. (a) δ. (b) ρ.

According to Figure 8, δ and ρ of the high-clustering SFSNN and the low-clustering
SFSNN show similar evolutionary trends, respectively. In Figure 8a, at the initial 300 ms, δ
changes sharply and then gradually stabilizes. In Figure 8b, at the initial 400 ms, ρ changes
sharply and then gradually stabilizes.

4.3.3. Relevance Analysis

In this study, according to Equation (12), X is δ or ρ, Y is the average synaptic weight.
The correlation analysis between the anti-disturbance indexes and the average synaptic
weight of the high-clustering SFSNN and the low-clustering SFSNN are shown in Table 2.

Table 2. Pearson correlation coefficients between the average synaptic weight and anti-disturbance
indexes.

Types of SFSNN High-Clustering Low-Clustering

δ −0.915 ** −0.988 **
ρ −0.970 ** −0.963 **

According to Table 2, the average synaptic weight and the values of δ and ρ are signifi-
cantly correlated at a 0.01 significant level (two-sided t-test) for both the high-clustering
SFSNN and the low-clustering SFSNN. The correlation results demonstrate that the anti-
disturbance ability is intimately related to the dynamic regulation of synaptic plasticity.
Simulation results hint that an intrinsic factor of the anti-disturbance ability is the synap-
tic plasticity.

4.4. Effect of Network Topology on the Anti-Disturbance Ability

The clustering coefficient can reflect the aggregation degree and affect the information
transmission of a network. We analyze the impact of topology on anti-disturbance ability
using weighted clustering coefficient.

4.4.1. Weighted Clustering Coefficient

The weighted clustering coefficient C̃i in a network is defined as follows [30]:

C̃i =
1

si(ki − 1) ∑
j,k

(gij + gik)

2
aijajkaki (14)
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where gij and gik are the synaptic weights, ki is the degree of node i and si is the strength of
node i, aij is the adjacency matrix.

4.4.2. Evolution Process of the Weighted Clustering Coefficient

In this study, according to Equation (14), the changes in synaptic weight can induce
changes in the clustering coefficient of the SFSNNs. The evolution process of the clustering
coefficient in the high-clustering SFSNN and the low-clustering SFSNN under impulse
noise is illustrated in Figure 9.
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Figure 9. The evolution process of the clustering coefficient under impulse noise.

According to Figure 9, the clustering coefficient of the high-clustering SFSNN invari-
ably remains much higher than that of the low-clustering SFSNN under impulse noise.
During the stimulus, the clustering coefficients of the two SFSNNs decrease slightly, and
then gradually stabilize. It can be seen from the construction process that the node and
edge models of the two SFSNNs are the same. In terms of topology, the topologies of the
two SFSNNs have the same power law index, but quite different clustering coefficients.
This difference leads to the different anti-disturbance performances of the two SFSNNs.
The simulation results hint that the network topology affects the anti-disturbance ability at
the level of performance.

Combining the discussion above, the neural information processing in the SFSNN
under external noise is clarified, which is a dynamic chain effect of the neuron firing,
the synaptic weight, and the topological characteristic. The specific process is as follows:
impulse noise affects the firing activity of neurons, leading to changes in the firing rate,
which induces changes in the synaptic weights according to Equations (4)–(8). Then,
changes in the synaptic weights lead to changes in the clustering coefficient according to
Equation (14), which further affects the anti-disturbance ability at the level of performance.
The chain effect of the neuron firing, the synaptic weight, and the topological characteristic
form neural information processing in the SFSNN under external noise.

5. Conclusions

To explore the self-adaptive regulation performance of a brain-like model with more
biological rationality under external noise, a high-clustering SFSNN is constructed in
this study, in which the network node is presented by the Izhikevich neuron model, the
network edge is presented by a synaptic plasticity model regulated by excitatory synapses
and inhibitory synapses and the network topology is a scale-free network with a high
clustering coefficient. The anti-disturbance ability of the SFSNN is evaluated based on
two anti-disturbance indexes. The anti-disturbance mechanism is discussed through the
neural information dynamic evolution. The simulation results show that: (i) From the two
perspectives of δ and ρ, we coherently verify that the SFSNN has anti-disturbance ability
against impulse noise and the high-clustering SFSNN outperforms the low-clustering
SFSNN in terms of anti-disturbance performance. (ii) The neural information processing in
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the SFSNN under external noise is clarified, which is a dynamic chain effect of the neuron
firing, the synaptic weight and the topological characteristic. Impulse noise induces changes
in neuronal firing activity, which leads to the dynamic regulation of synaptic plasticity,
and then changes the network topology. (iii) Correlation analysis shows that the anti-
disturbance indexes are intimately related to the dynamic regulation of synaptic weight,
which hints that an intrinsic factor of the anti-disturbance ability is synaptic plasticity.
Moreover, topological analysis shows that network topology is a factor that affects the
anti-disturbance ability at the level of performance.
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