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Abstract: Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder that is
caused by the abnormal expansion of non-coding trinucleotide GGC repeats in NOTCH2NLC. NIID
is clinically characterized by a broad spectrum of clinical presentations. To date, the relationship
between expanded repeat lengths and clinical phenotype in patients with NIID remains unclear.
Thus, we aimed to clarify the genetic and clinical spectrum and their association in patients with
NIID. For this purpose, we genetically analyzed Japanese patients with adult-onset NIID with
characteristic clinical and neuroimaging findings. Trinucleotide repeat expansions of NOTCH2NLC
were examined by repeat-primed and amplicon-length PCR. In addition, long-read sequencing was
performed to determine repeat size and sequence. The expanded GGC repeats ranging from 94 to
361 in NOTCH2NLC were found in all 15 patients. Two patients carried biallelic repeat expansions.
There were marked heterogenous clinical and imaging features in NIID patients. Patients presenting
with cerebellar ataxia or urinary dysfunction had a significantly larger GGC repeat size than those
without. This significant association disappeared when these parameters were compared with the
total trinucleotide repeat number. ARWMC score was significantly higher in patients who had
a non-glycine-type trinucleotide interruption within expanded poly-glycine motifs than in those
with a pure poly-glycine expansion. These results suggested that the repeat length and sequence in
NOTCH2NLC may partly modify some clinical and imaging features of NIID.

Keywords: neuronal intranuclear inclusion disease; GGC repeat expansion; NOTCH2NLC; clinical
presentations; neuroimaging; genotype–phenotype correlation
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1. Introduction

Neuronal intranuclear inclusion disease (NIID) is a progressive neurodegenerative
disease, which is clinically characterized by a broad spectrum of clinical presentations [1].
The formation of eosinophilic intranuclear inclusions in the central and peripheral nervous
system as well as other organs is a pathological hallmark of NIID [2,3]. Depending on
familial occurrence, NIID is classified into the sporadic and autosomal dominant forms [1].
Sporadic occurrence was reported to be approximately 67% in NIID [1]. The average age at
onset in patients with NIID was reported to be 56 years (range: 16–76 years) [1]. Among its
variable clinical presentations are cognitive decline, encephalitic episodes, parkinsonism,
cerebellar ataxia, autonomic dysfunction, and muscle weakness [1,2]. Clinical diagnosis of
NIID has been difficult because of substantial heterogenous clinical presentations. Brain
MRI typically shows extensive white matter lesions on fluid-attenuated inversion recovery
(FLAIR) and T2-weighed (T2-WI) images and a high-intensity lesion along the U-fiber on
diffusion-weighed images (DWI) [1]. These MRI signs often alert clinicians to a possible
diagnosis of NIID. Despite this knowledge, the pathogenesis underlying NIID has not yet
been resolved in detail; thus, NIID remains incurable.

A GGC repeat expansion in the 5’ untranslated region (UTR) of NOTCH2NLC has
been identified as a causative mutation in patients with NIID [4–6]. Although the exact
prevalence of genetically confirmed NIID has not been documented, over 400 patients
have been reported in the literature. Patients with NIID carrying the GGC expansion
of NOTCH2NLC have been predominantly reported among Asian populations [4–6] but
rarely in European ones [7]. NIID due to the GGC repeat expansion of NOTCH2NLC
accounted for 13% and 20% of patients with genetically undetermined adult-onset leukoen-
cephalopathies in Japanese and Taiwanese cohorts, respectively [8,9]. NIID is one of
major causes underlying adult-onset leukoencephalopathies in Asians. Expanded GGC
repeats are relatively stable between generations [10]. Based on large series of genetically
confirmed NIID patients, Tian et al. reported that NIID can be divided into four sub-
groups: dementia-dominant, movement-disorder-dominant, muscle-weakness-dominant,
and paroxysmal-symptom-dominant [10]. As the GGC repeat length was significantly
higher in the muscle-weakness-dominant subgroup than in the other subgroups, the GGC
repeat size may differently affect the various clinical subtypes of NIID [8].

Despite the increased number of reported patients with genetically confirmed NIID,
the relationship between repeat length and sequence in NOTCH2NLC and the diverse
phenotypes of NIID remains unclear. Thus, we aimed to demonstrate a broad spectrum of
genetic, clinical, and imaging features as well as their possible associations in 15 Japanese
patients with NIID carrying a NOTCH2NLC repeat expansion. By this analysis, we report
heterogenous genetic, clinical, and imaging findings in patients with NIID. Furthermore,
our results suggested that repeat length and sequence in NOTCH2NLC may modify the
phenotype of NIID.

2. Materials and Methods
2.1. Patients

Fifteen patients who met the inclusion and exclusion criteria were recruited from
6 medical institutes between April 2018 and November 2022. All the patients underwent a
neurological examination, routine blood testing, and neuroimaging evaluation. In a recruit-
ment process, the patients were recruited regardless of gender. As a result, we recruited
10 female and 5 male subjects. Inclusion criteria included (1) age at onset ≥ 20 years,
(2) presence of the white matter lesions shown in MRI or CT scans, and (3) the presence of
neurological, cognitive, or psychiatric symptoms. To increase the specificity, subjects with
the following conditions were excluded: (1) white matter lesions secondary to demyelinat-
ing disease, infection, toxins, or neoplasm; (2) past history of cerebral ischemic infarctions
or intracranial hemorrhage; and (3) the presence of known mutations of white matter
diseases such as CSF1R, NOTCH3, or HTRA1. Skin biopsy was performed in 12 out of
15 patients prior to genetic testing. Details of clinical presentations in Pt 6 were previously
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reported [11] and those of Pt 15 will be published elsewhere. This study was approved
by the Ethics Committee of Niigata University (G2015-0849, 2019-0239). Written informed
consent was obtained from the patients or their caregivers.

2.2. Repeat-Primed and Amplicon-Length PCR Analyses

Genomic DNA was extracted from peripheral blood using an automated DNA extrac-
tion system (QuickGene-Auto240L, Kurabo, Japan). Repeat expansion in NOTCH2NLC was
examined by repeat-primed PCR, followed by electrophoresis on a 3500xl Genetic analyzer
(ThermoFisher Scientific, Waltham, MA, USA), as described previously [6]. Briefly, PCR was
performed in a total volume of 10 µL of reaction solution containing 0.25U PrimeSTAR GXL
DNA Polymerase; 1 × PrimeSTAR GXL Buffer; 200 µM of dATP, dTTP, dCTP (Takara Bio,
Shiga, Japan), and 7-Deaza-2′-deoxy-guanosine-5′- triphosphate (Sigma-Aldrich, St. Louis,
MO, USA); 5% dimethyl sulfoxide (Sigma-Aldrich); 1 M betaine (Sigma-Aldrich); 0.3 µM of
each primer mix; and 100 ng of genomic DNA. The presence of a sawtooth pattern in the
electropherogram was regarded as an abnormal repeat expansion. NOTCH2NLC repeat size
was further determined by fluorescence amplicon-length PCR as described previously [6].
GeneMapper software (ThermoFisher Scientific) was used to determine GGC repeat length.

2.3. Long-Read Sequencing

Sequencing libraries were prepared from 1.5 µg of genomic DNA using the Ligation
Sequencing Kit SQK-LSK109 (Oxford Nanopore Technologies, Oxford, UK) according to the
manufacturer’s instructions. Each library was sequenced on a PromethION R9.4.1 flow cell
(Oxford Nanopore Technologies) with pore washing and library reloading to increase the
sequencing yield. Base-calling was performed in real time using the MinKNOW software
installed on a PromethION 24 device (Oxford Nanopore Technologies). This genetic analysis
yielded an average of 96.1 gigabases of sequence data from each sample.

To determine the number of GGC tandem repeats in NOTCH2NLC, we used the
CharONT v1.1.0 pipeline [12]. First, we ran the Extract_Xdrop_alignments.sh script to
map the sequenced reads to the human reference genome hg38 using minimap2 [13]. We
collected the reads mapped around the NOTCH2NLC repetitive region defined in a bed
file (chr1:149,390,402–149,391,242). Next, we ran the CharONT.R script to make consensus
sequences for both alleles. Finally, the polished consensus sequences were analyzed by
Tandem Repeats Finder to identify repeat length [14].

2.4. Clinical Assessments

Clinical histories of the patients, including demographic information, family history,
age at onset and examination, disease duration, and clinical symptoms, were obtained
using standardized case report forms. We examined the presence and absence of muscle
weakness, parkinsonism, tremors, episodic encephalopathy, ataxia, sensory disturbances,
headaches, visual disturbances, psychiatric symptoms, bladder dysfunction, and cognitive
impairments. Neurological examinations were performed by board-certified neurologists.
Family history was defined on the presence of clinical symptoms related to NIID in first or
second relatives. The Mini-Mental State Examination (MMSE), which is a screening cogni-
tive battery with maximum score of 30, was used to evaluate general cognitive function.

2.5. Laboratory Tests

The cerebrospinal fluid (CSF) examination and nerve conduction velocity test were
performed in a subset of the patients. CSF was obtained by standard lumber puncture.
The initial tube for CSF collection was examined for routine cellular and biochemistry
examination. The subsequent CSF samples were collected into polypropylene tubes, fol-
lowed by freezing, and then shipped to Niigata University. CSF was aliquoted at a volume
of 0.5 mL and stored at −80 ◦C until the measurement. All CSF analyses were con-
ducted in duplicate by experienced laboratory personnel blinded to the clinical diagnosis.
CSF biomarkers including amyloid-β 40 (Aβ40), Aβ42, total tau (t-tau), phosphorylated
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tau at threonine 181 (p-tau181), and neurofilament light chain (NfL) were examined as
previously described [15]. AT(N) classification was performed as previously described
according to the abnormal CSF values of Aβ42 (>359.6 pg/mL), Aβ42/40 ratio (>0.072),
p-tau (>30.6 pg/mL), ant t-tau (>105.3 pg/mL), and NfL (>2650 pg/mL) [15,16].

2.6. MRI Evaluation

All participants underwent MRI scans using a 1.5 or 3 tesla scanner at clinical institutes
visited by the patients. The T1-weighted, T2-weighted, fluid-attenuated inversion recovery
(FLAIR), and diffusion-weighted image (DWI) were performed. DICOM images were sent
anonymously to Niigata University, where two board-certified neurologists independently
reviewed the imaging findings. An age-related white matter change (ARWMC) score was
determined according to a previous study [17].

2.7. Statistical Analysis

For descriptive statistics, the mean and standard deviation (SD) were used for contin-
uous variables. The Mann–Whitney U test for comparing two groups were applied if there
was any non-normally distributed data. Correlation analysis between two data sets was
performed using Spearman’s rank test. The statistical significance level was set at p < 0.05.
The GraphPad PRISM 9 software was used for all statistical analyses (GraphPad Software
Inc., San Diego, CA, USA).

3. Results
3.1. Genetic Findings

Repeat-primed PCR analysis revealed a sawtooth pattern in 15 patients clinically
suspected as having NIID, suggesting the presence of expanded repeats in NOTCH2NLC.
Representative positive and negative results of repeat-primed PCR are shown in Sup-
plementary Figure S1. To determine the repeat size, we performed amplicon-length PCR
(Supplementary Figure S1). The repeat length of the normal allele was 8.5± 1.5 (mean± SD;
range: 7–10) and that of the expanded repeat size was 92 ± 13 (range: 71–110). Expanded
repeats were undetectable in four patients by amplicon-length PCR even though repeat-
primed PCR revealed a sawtooth pattern. In Pt 7, the analysis of the amplicon-length PCR
showed a biallelic repeat expansion (Supplementary Figure S1).

To determine the repeat length and sequence, we performed long-read sequence using a
Nanopore sequencer. The expanded repeat size of any trinucleotide sequence was 138 ± 69
(range: 94–361) (Table 1). The expanded GGC repeat size was 114 ± 36 (range: 44–193).
The poly-glycine repeat encoded by GGC, GGA, or GGG was 116 ± 36 (range: 47–197).
Pt 2 showed a pure GGC repeat expansion and other patients carried other trinucleotide
sequences including GGA, AGC, and GAC in addition to expanded GGC repeats (Table 1,
Supplementary Figure S2). The most frequent trinucleotide insertion was GGA at the 3′ end
of GGC repeats (12/15, 80%), as observed in the normal allele (Supplementary Figure S2).
Expanded poly-glycine repeats were interrupted by the non-glycine-type trinucleotide
sequence in 47% of patients (7/15; Table 1, Figure 1, Supplementary Figure S1). We
identified biallelic repeat expansions in Pt 7 (109 and 117 repeats) and Pt 14 (135 and
361 repeats) (Figure 1). The expanded allele with 361 repeat units in Pt 14 showed
the unique trinucleotide sequence: (TTA)76(CTA)22(TCA)12(TTT)8(ATA)8(AAT)6(GAT)125
(GAC)20(GAG)1(ATC)1(ACC)4(CCA)15(CAC)3(ACA)2(TAC)2(TCA)2(GGA)1(GGG)2(GGC)44
(GCT)1(CCT)1(CAG)1(ACT)1(TGC)1CTG)1(ATG)2 (Figure 1).
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Table 1. Characteristics of NOTCH2NLC repeat expansions in patients with NIID.

Pt 1 Pt 2 Pt 3 Pt 4 Pt 5 Pt 6 Pt 7 Pt 8 Pt 9 Pt 10 Pt 11 Pt 12 Pt 13 Pt 14 Pt 15

Sex M F M F F F F F M F M F F F M

Age at onset 70 53 74 66 68 53 50 74 59 66 60 63 72 60 74

Age at examination 77 66 78 68 72 55 78 78 69 72 74 71 78 63 84

Disease duration 7 13 4 2 4 2 28 4 10 6 14 8 6 3 10

Family history – – – – – – + – – – – + – – –

NOTCH2NLC repeat length

Trinucleotide repeat
size (Short allele) 19 23 20 30 20 20 N/A 21 15 20 20 22 20 N/A 15

GGC repeat size
(Short allele) 18 18 18 29 18 18 N/A 19 12 18 18 20 18 N/A 12

Poly-glycine repeat
size (Short allele) 19 20 20 30 20 20 N/A 21 15 20 20 22 20 N/A 15

Trinucleotide repeat
size (Expanded allele) 198 104 158 102 101 107 109/117 101 109 113 175 141 94 135/361 97

GGC repeat size
(Expanded allele) 193 104 156 101 99 106 105/112 90 101 110 168 140 92 109/44 95

Poly-glycine repeat
size (Expanded allele) 196 104 156 102 101 107 108/114 92 103 113 169 141 94 131/47 97

GGC (%) 97.5 100.0 98.7 99.0 98.0 99.1 96.4/95.7 89.0 93.7 97.3 96.0 99.3 97.9 80.0/12.2 97.9

GGA (%) 1.0 0.0 0.0 1.0 2.0 0.0 1.8/1.7 2.0 1.8 1.8 0.6 0.7 2.1 0.0/0.3 2.1

GGG (%) 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.9 0.0 0.0 0.0 16.3/0.6 0.0

AGC (%) 1.5 0.0 1.3 0.0 0.0 0.0 0.0/2.6 6.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0

GAC (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0/3.6 0.0

GAT (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/34.6 0.0

TTA (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0/21.1 0.0

Others (%) 0.0 0.0 0.0 0.0 0.0 0.0 1.8/0.0 2.0 5.5 0.0 2.3 0.0 0.0 3.7/27.5 0.0

F, Female; M, Male; N/A, not available

3.2. Clinical Findings

The clinical characteristics of the 15 patients are summarized in Table 2. The age at
onset was 64.1 ± 8.1 years (range: 50–74 years). The disease duration was 8.1 ± 6.7 years
(range: 2–28 years). Two (13.3%) of 15 patients with NIID had a family history. We classified
the patients into four subtypes according to a previous report [10]. The most frequent
subtypes were dementia-dominant (6/15, 40%) and paroxysmal-symptom-dominant (6/15,
40%) followed by movement-disorder-dominant (2/15, 13%). The clinical phenotype
of Pt 12, who exhibited an autonomic-dysfunction-dominant presentation, could not be
classified into any particular subtype. The skin biopsy results were positive for p-62-positive
intranuclear inclusions in all patients (n = 12).

The most frequent initial symptom was encephalitic episodes (4/15, 27%), followed by
movement disorders (tremor and gait disturbance; 3/15, 20%) and dementia (3/15, 20%).
Encephalitic episodes included stroke-like episodes, epileptic seizures, and consciousness
disturbances. During the disease course, diverse clinical presentations were observed,
with cognitive decline being the most frequent symptom (11/15, 73%). The MMSE score
was 20.4 ± 7.2 (range: 7–28). Other frequent clinical features were hyporeflexia (10/14,
71%), consciousness disturbance (9/15, 60%), cerebellar ataxia (9/15, 60%), dysarthria
(8/15, 53%), gait disturbance (8/15, 53%), and urinary disturbances (7/15, 47%) such as
incontinence and urinary retention.

The clinical presentation of Pt 7 and 14 who had biallelic repeat expansions were
comparable to those of other NIID patients heterozygous for repeat expansions. The age at
onset was 50 years in Pt 7 and 60 years in Pt 14, and the clinical subtype in both biallelic
patients was the paroxysmal-symptom-dominant-type. Pt 7 had a family history and a
slow progression with a disease duration of 28 years.
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interrupted by three AGC motifs, followed by two GGA sequences. In Pt 14, GGG, GCA, CGC, 
and GCG sequences were inserted within the expanded GGC repeats (n = 109) in allele 1. In allele 
2, a unique trinucleotide sequence containing expanded TTA (n = 76), GAT (n = 125), and GGC 
repeats (n = 44) was observed. 
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Figure 1. Expanded repeat sequences in NOTCH2NLC. Repeat length and sequence were determined
by Nanopore long-read sequencer. In Pt 7, the expanded GGC repeats (n = 107) were followed by two
GGA sequences in allele 1. In allele 2, the expanded GGC repeats (n = 112) were interrupted by three
AGC motifs, followed by two GGA sequences. In Pt 14, GGG, GCA, CGC, and GCG sequences were
inserted within the expanded GGC repeats (n = 109) in allele 1. In allele 2, a unique trinucleotide
sequence containing expanded TTA (n = 76), GAT (n = 125), and GGC repeats (n = 44) was observed.

CSF biomarkers were analyzed in three patients with a dementia-dominant subtype
(Table 3). Although Aβ42 and Aβ42/40 levels were within the normal range, those of p-tau,
t-tau, and NfL were increased. Based on the AT(N) classification, three patients with NIID
were assigned to the A–T+(N)+ profile [15].
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Table 2. Clinical features in patients with NIID.

Pt 1 Pt 2 Pt 3 Pt 4 Pt 5 Pt 6 Pt 7 Pt 8 Pt 9 Pt 10 Pt 11 Pt 12 Pt 13 Pt 14 Pt 15 Frequency
(%)

Clinical subtype D P D M P M P P D D D O P P D -

Cognitive
decline + + + – + - + + + + + – – + + 11/15 (73%)

MMSE 14 28 13 25 12 27 15 22 7 28 21 28 N/A 27 18 -

Psychiatric
symptoms + + + – – – – – + + – – – + + 7/15 (47%)

Consciousness
disturbance – + – – + – + + + - + + + + – 9/15 (60%)

Vomiting – + – – – – – – + + – – + – – 4/15 (27%)

Aphasia – – – + – – + + – – – – – – – 3/15 (20%)

Dysarthria – – + + – + - + – + + + – – + 8/15 (53%)

Tremor – + – + + + + + – + - – – – – 7/15 (47%)

Cerebellar
ataxia + + + + - – – – + + + + – – + 9/15 (60%)

Gait disturbance + + + + - - – – + + + – – – + 8/15 (53%)

Sensory
disturbance – – – + – – – – – + - – – – – 2/15 (13%)

Hyporeflexia + + – + – – + + N/A + + + – + + 10/14 (71%)

Urinary
disturbance + + + – – – + – – – + + – – + 7/15 (47%)

Muscle
weakness + – – – – – – + – + – – – + + 5/15 (33%)

Encephalitic
episodes – + – – + – + + + – + – + + – 8/15 (53%)

Dysphagia + – + – + – – – + – – – – – – 4/15 (27%)

Myoclonus – – – – – – – – + – – – – – – 1/15 (7%)

Constipation + + – – – – – – – – + – – – – 3/15 (20%)

D, dementia-dominant; P: paroxysmal symptom-dominant; M, movement disorder-dominant; O: other subtype;
MMSE: Mini-mental state examination; N/A, not available.

Table 3. CSF biomarker profiles in patients with NIID.

Biomarkers Cutoff Value Pt 3 Pt 10 Pt 11

Aβ42 359.6 pg/mL 764.9 757.4 521.2

Aβ42/40 ratio 0.072 0.125 0.106 0.095

p-tau181 30.6 pg/mL 65.4 65.6 69.0

t-tau 105.3 pg/mL 179.5 104.0 116.1

NfL 2650 pg/mL 93251 4430 7253

AT(N) classification A–T+(N)+ A–T+(N)+ A–T+(N)+
Aβ, amyloid-β; NfL, neurofilament light chain; cutoff values were determined in previous study (15).

3.3. Neuroimaging Findings

MRI findings are summarized in Table 4. Cerebral white matter lesions were observed
in all patients (Figure 2). In DWI, high-intensity lesions were frequently observed along
the U-fiber (14/15, 93%), even extending to the posterior lobe in some patients (6/15, 44%)
(Figure 2). In FLAIR images, high-intensity lesions in the corpus callosum were observed in
93% (14/15) of patients. In FLAIR images, high-intensity lesions in corpus callosum were
observed in 93% (14/15) of patients. Some patients showed cerebellar abnormalities on
MRI, including cerebellar atrophy (11/15, 73%), middle cerebellar peduncle lesions (3/15,
33%), and paravermal lesions (5/15, 33%) (Figure 2). Then, we semi-quantified the white
matter changes by ARWMC scores, obtaining a score of 17.1 ± 4.4 (range: 8–24; Table 4).
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Figure 2. Characteristic MRI findings. Representative MRI images in Pt 1 (A–C), Pt 2 (D–F), Pt 3 (G–I),
Pt 7 (J–L), and Pt 14 (M–O) were shown. High-intensity lesions of various degrees along with the U-
fibers were observed on DWI (A,D,G,J,M). High-intensity lesions in the middle cerebellar peduncles
(B) and paravermal lesions (E,K) appeared as cerebellar abnormalities on FLAIR. Bilateral white
matter changes of various degrees were detected in all patients (C,F,I,L,O). DWI: diffusion-weighted
image; FLAIR: fluid attenuated inversion recovery.
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Table 4. MRI features of patients with NIID.

Pt 1 Pt 2 Pt 3 Pt 4 Pt 5 Pt 6 Pt 7 Pt 8 Pt 9 Pt 10 Pt 11 Pt 12 Pt 13 Pt 14 Pt 15 Frequency
(%)

White matter
lesions + + + + + + + + + + + + + + + 15/15

(100%)

DWI
high-intensity

lesions in
U-fibers

+ + + + + + + + + + + + – + + 14/15 (93%)

DWI
high-intensity

lesions in
posterior lobe

+ – + – + – + – + – + + – – - 6/15 (44%)

DWI
high-intensity

lesions in
corpus callosum

– + - + + + - + + + + + – – + 10/15 (67%)

FLAIR
high-intensity

lesions in
corpus callosum

+ + + + + - - + + + + – – – + 14/15 (93%)

Cerebellar
atrophy + – – + + – + + + - + + + + + 11/15 (73%)

Middle
cerebellar

peduncle lesions
+ – + – – – – – – + – – – – – 3/15 (3%)

Paravermal
lesions – + – – + – + + – – – + – – + 5/15 (33%)

ARWMC 23 22 24 14 19 13 13 18 19 13 20 8 18 16 17

DWI, diffusion-weighted image; FLAIR, fluid attenuated inversion recovery; ARWMC, age-related white matter changes.

3.4. Genotype–Phenotype Correlations

Next, we investigated correlations between the size of NOTCH2NLC repeat expansions
and clinical/imaging features in patients with NIID. Repeat length was evaluated by the
total repeat size of any trinucleotide sequence, cumulative GGC, or poly-glycine repeat
units. There were no significant correlations between repeat length and age at onset, MMSE
score, or ARWMC score (Supplementary Figure S3). Patients presenting with clinical
symptoms of cerebellar ataxia or urinary dysfunction had a significantly larger GGC repeat
size than those without (Table 5). However, these significant differences disappeared
when these parameters were compared with the total repeat size of any trinucleotide
(Supplementary Table S1). In addition, a significantly higher ARWMC score was observed
in patients who had a non-glycine-type trinucleotide interruption such as AGC, GAC,
CGC, GAA, CAC, CCA, CCC, CCG, ACG, and GCA within expanded poly-glycine motifs
compared to those with a pure poly-glycine expansion encoded by GGC, GGA, and GGG
(Figure 3).

Table 5. Association between expanded GGC repeat number in NOTCH2NLC and clinical/MRI features.

Expanded GGC Repeat Number, Mean ± SD (Range)
p Value

Present Absent

Clinical Symptoms

Cognitive decline 115.7 ± 41.7 (44–194, n = 11) 110.0 ± 20.7 (93–140, n = 4) 0.87

Hyporeflexia 115.8 ± 42.3 (44–194, n = 10) 113.5 ± 28.8 (93–156, n = 4) 0.84

Consciousness disturbance 105.7 ± 34.3 (44–168, n = 9) 127.0 ± 39.4 (95–194, n = 6) 0.29

Cerebellar ataxia 129.9 ± 35.9 (9–194, n = 9) 90.7 ± 24.3 (44–112, n = 6) 0.046 *

Dysarthria 120.8 ± 29.7 (90–168, n = 8) 106.7 ± 44.5 (44–194, n = 7) 0.48

Encephalitic episodes 101.4 ± 33.9 (4–168, n = 8) 128.9 ± 36.3 (95–194, n = 7) 0.13

Gait disturbance 128.6 ± 38.1 (95–194, n = 8) 97.7 ± 28.9 (44–140, n = 7) 0.14
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Table 5. Cont.

Expanded GGC Repeat Number, Mean ± SD (Range)
p Value

Present Absent

Tremor 103.1 ± 7.4 (90–112, n = 7) 123.9 ± 49.1 (44–194, n = 8) 0.63

Urinary dysfunction 138.4 ± 36.6 (95–194, n = 7) 93.0 ± 20.8 (44–110, n = 8) 0.01 *

Psychiatric symptoms 114.9 ± 47.8 (44–194, n = 7) 113.6 ± 26.9 (90–168, n = 8) 0.89

MRI findings

Cerebellar atrophy 109.0 ± 39.8 (44–193, n = 11) 128.0 ± 24.1 (106–156, n = 4) 0.13

DWI high-intensity lesions in
corpus callosum 112.7 ± 40.9 (44–193, n = 10) 116.8 ± 29.7 (90–156, n = 5) 0.93

DWI high-intensity lesions in
posterior lobe 129.5 ± 40.5 (99–193, n = 6) 103.8 ± 31.8 (44–156, n = 9) 0.19

Paravermal lesion 100.0 ± 8.5 (90–112, n = 5) 121.1 ± 43.3 (44–193, n = 10) 0.24

*, statistically significant; DWI, diffusion-weighted image; FLAIR, fluid attenuated inversion recovery.
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Figure 3. Effect of non-glycine type trinucleotide interruption on phenotype. Association of non-
glycine type trinucleotide interruption with age at onset (A), MMSE (B), and ARWMC scores (C)
was examined. Patients with non-glycine type trinucleotide interruption has a significantly larger
ARWMC score than those without (C). *, p < 0.05.

4. Discussion

Using repeat-primed and amplicon-length PCR followed by Nanopore long-read se-
quencing, we identified a GGC repeat expansion of NOTCH2NLC in 15 Japanese patients
clinically suspected as having NIID. The repeat sequence and size varied among patients
with NIID. The expanded repeat size was 94–361. One patient had pure expanded GGC
repeats. In other patients, other trinucleotide repeats such as GGA, AGC, and GAC were
inserted in the expanded GGC repeat motifs as previously reported [4–6]. We character-
ized genetic, clinical, and imaging features in patients with NIID and reported several
noteworthy findings in this study.

We identified two NIID patients (Pt 7 and Pt 14) as compound heterozygotes for the
repeat expansions. One expanded allele in Pt 14 contained a total of 361 repeats containing
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an expanded (TTA)76 (GAT)125 (GGC)44 motif, which was not previously reported. The
age at onset of patients carrying biallelic expansions was 50 years for Pt 7 and 60 years
for Pt 14. Both exhibited a paroxysmal-symptom-dominant phenotype characterized by
consciousness disturbances, encephalitis episodes, and cognitive decline. A previous study
reported that patients with biallelic GGC repeat expansions exhibited a typical dementia-
dominant NIID phenotype [18]. Kameyama et al. argued that biallelic repeat expansions
likely show a dominant effect on the phenotype of NIID. Our findings on compound
heterozygous patients support their notion because the phenotypes of our patients with
biallelic expansions were comparable to those of patients heterozygous for the expansion.

On the basis of large series of genetically confirmed NIID, Tian et al. reported that NIID
can be classified into four subtypes. In their study, the most frequent subtype was dementia-
dominant (38%), followed by movement-disorder-dominant (26%), paroxysmal-symptom-
dominant (25%), and muscle-weakness-dominant (12%) [10]. The clinical presentations
of each subtype may overlap [10]. In this study, the dementia-dominant and paroxysmal-
symptom-dominant subtypes were the most frequent. Pt 12 who exhibited an autonomic-
dysfunction-dominant subtype with urinary dysfunction could not be readily classified
into any subtype. Since autonomic dysfunction is commonly reported [10], an autonomic-
dysfunction-dominant subtype may be another subtype of NIID.

We determined CSF biomarkers in three patients with NIID (Table 3). All three had an
A–T+(N+) profile according to the research framework [16]. We found markedly elevated
NfL levels in CSF, suggesting the presence of neurodegeneration in NIID. Consistent with
our result, Chen et al. reported elevated plasma NfL levels in patients with NIID [19].
Unexpectedly, the p-tau levels are elevated in the CSF of patients with NIID. The p-tau
levels in CSF are elevated in patients with Alzheimer’s disease (AD) spectrum showing Aβ

accumulation in the brain, which accelerates p-tau secretion from damaged neurons [15,20].
However, the Aβ42 level and the Aβ42/40 ratio were not changed in our NIID patients.
Since Aβ and phosphorylated tau depositions in the brain have not been linked to NIID,
the mechanism underlying the increased p-tau level in NIID may differ from that of AD.
Consistent with our results, Kurihara et al. recently demonstrated that 75% (9/12) of
patients with NIID showed A-T+ profiles with increased p-tau and normal Aβ42 levels
in CSF [21]. They speculated that the p-tau increase in CSF of patients with NIID may be
caused by an enhanced secretion of p-tau from neurons through an unknown mechanism,
rather than a nonspecific increase due to acute neurodegeneration.

High-intensity lesions along the U-fiber on DWI and marked cerebral white matter
lesions on FLAIR have been reported as characteristic MRI features in patients with NIID [1].
The white matter lesions are typically confluent and bilateral with a predominance of the
frontal lobe. These MRI features were very frequently (>90%) observed in our patients with
NIID (Table 4). In addition, high-intensity lesions were frequently observed in the corpus
callosum in patients with NIID. NIID should be regarded as one of the important causes for
patients with adult-onset leukoencephalopathies. Imaging abnormalities of the cerebellum
are also frequently detected by MRI in such patients [22]. Sugiyama et al. reported that MRI
showed cerebellar atrophy (8/8 patients), high-intensity lesions in the middle cerebellar
peduncle (4/8), and paravermal abnormal signals (6/8) in patients with NIID [22]. In line
with those results, cerebellar atrophy was observed in 73% (11/15), and middle cerebellar
peduncle and paravermal lesions were observed in 33% (3/15) and 44% (6/15) of patients,
respectively, in this study.

In addition, we showed that patients presenting with ataxia or urinary dysfunction
had a significantly larger GGC repeat length than those without (Table 5). These corre-
lations disappeared if these parameters were compared with the total repeat size of any
trinucleotide (Supplementary Table S1). This finding suggests that GGC or poly-glycine
repeat size may have a stronger impact on some clinical features in NIID than the total
trinucleotide repeat number. This may be supported by a previous report in which the
translation of GGC repeat expansions into a toxic poly-glycine stretch plays a pathological
role in NIID [23]. Moreover, previous research has reported that GGA disruptions may be
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associated with a muscular-weakness-dominant subtype [5] and a younger age at onset [19].
We showed that the presence of a non-glycine-coding-type trinucleotide sequence inter-
ruption may modify the severity of the white matter changes as determined by ARWMC.
These results suggest that repeat length and sequence in NOTCH2NLC may partly modify
the phenotype of NIID.

Our study has several limitations. First, we performed a cross-sectional study involv-
ing a relatively small number of patients with NIID. This may make this study underpow-
ered to perform genotype–phenotype correlations. More studies are needed to validate
our findings. It would be important to collect longitudinal data of patients with NIID to
understand the natural history of NIID. Second, the retrospective design of the study might
not allow us to fully illustrate the clinical characteristics of NIID. Future prospective studies
are required to fully understand the broad phenotypic spectrum of NIID. Third, there may
be recruitment bias in this study, as we recruited patients with white matter lesions on MRI.
Patients with muscle weakness or peripheral neuropathy not showing MRI abnormalities
may be underestimated. Last, although we determined the length and sequence of repeat
expansions using a Nanopore long-read sequencer, we did not examine the methylation
status of NOTCH2NLC. Recent studies have suggested that the methylation status affects
the expression levels of NOTCH2NLC if the repeat sequence is highly expanded [17,24,25].
Thus, analysis of methylation status in our patients warrants further investigation.

5. Conclusions

We identified 15 NIID patients with NOTCH2NLC GGC repeat expansions in whom
genetic, clinical, and imaging features were markedly variable. Our study suggests that
repeat length and sequence in NOTCH2NLC may partly modify the phenotype of NIID.
The present findings demonstrated the potential of repeat-primed and amplicon-length
PCR followed by a long-read sequence for the accurate genetic diagnosis of NIID. Ensuring
a correct diagnosis by genetic analyses is important for the better management of patients
with NIID. A further study with a larger sample size of NIID patients is required to validate
our findings.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/brainsci13060955/s1, Table S1: Association between expanded
NOTCH2NLC repeat size and clinical/MRI features; Figure S1: Representative results of repeat-
primed and amplicon-length PCR of NOTCH2NLC; Figure S2: Repeat sequences in NOTCH2NLC
in patients with NIID; Correlation between trinucleotide repeat length and age at onset, MMSE,
and ARWMC.
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