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Abstract: Habituation, the simplest form of learning preserved across species and evolution, is
characterized by a response decrease as a stimulus is repeated. This adaptive function has been
shown to be altered in some psychiatric and neurodevelopmental disorders such as autism spectrum
disorder (ASD), attention-deficit/hyperactivity disorder (ADHD) or schizophrenia. At the brain level,
habituation is characterized by a decrease in neural activity as a stimulation is repeated, referred to as
neural adaptation. This phenomenon influences the ability to make predictions and to detect change,
two processes altered in some neurodevelopmental and psychiatric disorders. In this comprehensive
review, the objectives are to characterize habituation, neural adaptation, and prediction throughout
typical development and in neurodevelopmental disorders; and to evaluate their implication in
symptomatology, specifically in sensitivity to change or need for sameness. A summary of the
different approaches to investigate adaptation will be proposed, in which we report the contribution
of animal studies as well as electrophysiological studies in humans to understanding of underlying
neuronal mechanisms.
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1. Introduction

Habituation is an essential behavioral process found in all individuals. It allows
individuals to adapt to their environment, by being less focused on an irrelevant repeated
stimulus, and to detect and respond more quickly to change. This process requires the
construction and constant updating of a sensory memory trace following the presentation
of a stimulus, through which a repeated stimulus will be considered as regular [1]. A
possible processing link to habituation has been described at the neural level, neural
adaptation, which results in a decrease in neuronal activity upon repeated presentation
of the same stimulus, usually referred to as repetition suppression (RS). Studies on RS
were first conducted on animals, revealing this phenomenon at the level of the individual
neuron, and then in humans, through function magnetic resonance imagery (fMRI) [2,3],
and electroencephalography (EEG) [4,5]. Another phenomenon complementary to RS has
been described at the neural level, repetition enhancement (RE), defined as an increase in
the neural response with an increase in the number of repetitions, reflecting the anticipation
and the expectation of the stimulus appearance [6]. RS and RE, together with prediction
error (i.e., difference between the expectancy and the sensory stimuli [7]), are involved in
prediction processes. Individuals with neurodevelopmental or psychiatric disorders such
as autism spectrum disorder (ASD) or schizophrenia have previously been observed to
exhibit atypical behavioral habituation [8,9], and, several studies have also shown atypical
adaptation at the neural level [10] and possible atypical prediction processes [11].

The purpose of this comprehensive review is to describe the processes of behavioral
habituation, neural adaptation, and prediction and how they have been studied throughout
typical development. Adaptation and habituation have been studied extensively, but we
will present and discuss these processes in this review more specifically in light of the more
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recent theory of predictive coding. Then, we will discuss their maturation and how they
are impacted in three neurodevelopmental and psychiatric disorders: autism spectrum
disorder (ASD), schizophrenia, and attention-deficit/hyperactivity disorder (ADHD).

2. From Behavioral Habituation to Neural Adaptation and Prediction Processes
2.1. Behavioral Habituation

Habituation is a behavioral process that has been studied for at least 50 years [12,13]
and considered as a simple form of learning [13–15]. It is defined as a decrease in the
behavioral response to a repeated stimulus [15]. In animals, habituation has been widely
studied in C. elegans [16], in rat [17], in Aplysia [18] and in many other species (see Rankin
et al., 2009 for a review [15]). In humans, habituation has been described in several
modalities such as auditory [19,20] and smell [21]. Habituation has been extensively
studied in children, but not as many studies have specifically investigated it in adults. A
description of the processes during typical development will be given in Section 3.1.

The study of the neural mechanism underlying behavioral habituation are essential to
describe the link between habituation and neural adaptation.

2.2. Repetition Suppression (RS)

RS is a cerebral phenomenon reflecting neural adaptation upon presentation of a
repeated stimulus. It is defined as a decrease in neural response as the number of repetitions
of the same stimulus increases [6,22,23]. Three explanatory models of RS have been
proposed in the literature (see Grill-Spector et al. 2006, for an overview [23]).

(1) The fatigue model, according to which each neuron that initially responds to
the repeated stimulus sees its response decrease in proportion to its initial involvement.
Thus, the stronger the initial response of a neuron, the more its response decreases with
repetition. This results in a general decrease in response without modification of its latency
or organization (Figure 1a) [24,25].

(2) The sharpening model, in which only the neurons responding to the stimulus and
coding for irrelevant features see their response decrease with the repeated presentation of
the same stimulus. Therefore, neurons that do not decrease their response at all, or soon after
the presentation of a stimulus, will be more responsive to that stimulus (Figure 1b) [22,26].

(3) The facilitation (or accumulation) model where the repetition of a stimulus would
lead to faster processing of that stimulus by the neurons involved, resulting in a shorter
latency or response time (Figure 1c) [27].

RS has been studied in both animals, using single-cell recording, and humans, using
fMRI, magnetoencephalography (MEG) and EEG.

2.2.1. In Animals

Initially, studies revealed RS in animals at the individual neuron level. This phe-
nomenon, called stimulus-specific adaptation (SSA), corresponds to a decrease in the
response of a single neuron with an increase in the number of repetitions of the same
stimulus (standard) without a decrease in the response to rare stimuli (deviant) [28]. RS
was first described in the inferior temporal cortex (IT) of macaque [29–39] and was also
found in the rat primary visual cortex [40]. Another study conducted in the IT of macaques
also revealed a modulation of the RS by GABAA-mediated inhibition [41].

In the auditory modality, the first study observing SSA was conducted in the primary
auditory cortex (AC1) and the medial geniculate body (MGB) of cats [42]. A decrease in the
response of some neurons during repetition and a larger response to deviant non-impacted
by repetition were found only in the AC1. Subsequently, other studies have shown SSA
in the AC in other species [43–47]. At the subcortical level, several auditory studies
highlighted SSA both in the inferior colliculus (IC) [48–51] and in the medial geniculate
body (MGB) [52–55]. Some of these studies were interested in the involvement of AC in
the generation of subcortical SSA and reported remaining SSA even after AC deactivation,
although some of the subcortical neurons displayed reduced SSA [48,54], reflecting the
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involvement of AC in the modulation of subcortical SSA. Some of the studies in rodents
highlighted the involvement of GABAA-mediated inhibition on the SSA, showing especially
a reduced SSA after application of an antagonist of GABAA receptors [51,55] or an increased
SSA after application on an agonist of GABAA receptors [55] suggesting the modulation of
SSA by GABAA-mediated inhibition.
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tuning bandwidth, resulting in a more focused response centered on the preferred stimulus, (c) The 
Facilitation model: does not offer specific or definitive predictions for changes in tuning curves. 
(Reprinted from “Repetition and the brain: Neural models of stimulus-specific effects”. Trends in 
Cognitive Sciences, 10(1), 14–23, Grill-Spector, K., Henson, R., and Martin, A. (2006), with permis-
sion from Elsevier) [23]. 
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Figure 1. Representation of the three models that explain repetition suppression according to the
review of Grill-Spector et al. (a) the Fatigue model: with repetition, the overall response will decrease
in proportion to the initial response, but there will be no change in the preferred stimulus and
tuning width., (b) the Sharpening model: Repeating the stimulus will lead to a reduction in the
tuning bandwidth, resulting in a more focused response centered on the preferred stimulus, (c) The
Facilitation model: does not offer specific or definitive predictions for changes in tuning curves.
(Reprinted from “Repetition and the brain: Neural models of stimulus-specific effects”. Trends in
Cognitive Sciences, 10(1), 14–23, Grill-Spector, K., Henson, R., and Martin, A. (2006), with permission
from Elsevier) [23].

The SSA is thus a reliable neural phenomenon across species that has been observed,
at both the cortical and the subcortical lever, in both auditory and visual modalities.

2.2.2. In Humans

In humans, many studies have first examined the effects of repetition indirectly
through the study of change detection [56,57]. For that, studies were conducted using
oddball paradigms (see Figure 2) in which a repeated stimulus, called standard, is occasion-
ally replaced by a new and different stimulus, called deviant. Results from these studies
have focused on the response to the deviant stimulus, which reflect violation detection. In
fMRI studies, change detection is reflected by an increase in brain activity in response to
the deviant compared to the standard stimulus [58,59]. In EEG studies it is reflected by
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mismatch negativity (MMN), a negative component between 150 and 200 ms obtained by
subtracting the response following the repetition of a standard stimulus to the response
evoked by a changing deviant stimulus [60]. MMN thus appears to occur when a stimulus
is incongruent with the memory representation of the preceding repeated stimuli [61,62],
making it an indirect index of neuronal adaptation. However, recent studies have focused
directly on the process reflecting the encoding of the repeated stimulus, the RS [57,58,63].
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Figure 2. Representation of the different types of paradigms evoked in this review to study neural
adaptation (repetition suppression). (1) Classic oddball sequence, in blue: standard, in orange:
deviant. (2) Roving sequence: a stimulus is repeated several times followed by another stimulus; the
first stimulus of each train (darker in the schema) corresponds to the deviant stimulus.

Although oddball paradigms are still used in some EEG studies [57], another type
of paradigm more suitable for studying RS has been created, the roving paradigm, in
which a stimulus is repeated n times and then followed by a new stimulus, which is also
repeated n times (Figure 2). This type of paradigm leads to a continuous update of the
memory trace that is suppressed at the end of each stimulus train [4,5,64–66]. Using this
type of paradigm in the auditory modality, electrophysiological studies have highlighted
that neuronal adaptation, in response to repeated sounds, appears to result in a combined
decrease in the negative N1 component (a negative deflection of the response around
100 ms) and an increase in the positive P1 and P2 components (positive deflections of the
response, respectively, around 100 and 200 ms), reflecting the adaptation of the response
following the repeated presentation of a stimulus. By comparing the responses to a small
number of repetitions of a new stimulus to the same stimulus after several repetitions,
it was possible to isolate an electrophysiological index of auditory regularity encoding,
repetition positivity (RP), which corresponds to a positive deflection between 50 and 250 ms,
which increases as the number of repetitions increases [4,5,66,67]. Roving paradigms have
also shown an “MMN memory trace effect”, i.e., an increase in MMN amplitude with an
increase in the number of repetitions [4,5,66,68,69], reinforcing the idea that MMN would
be an indirect index of adaptation. Moreover, it has been suggested that RP could be linked
to SSA observed in animals [5,42,67].

RP has been observed for sounds of different natures: pure tones [4,56,67,68,70], or
more complex acoustic sounds such as vocal sounds [71,72]. However, the complexity
and the quantity of information to encode appears to influence the dynamic to reach a
stable neural adaptation: to human voice adaptation would require more repetitions for the
stabilization of P1 amplitude compared to their equivalent non-vocal sounds [71]. Another
study did not draw the same conclusion with no RP for vocal sounds by only compared
a few number of repetitions [73]. Using a roving paradigm with vocalizations varying in
prosody, an enhanced effect of positive emotional content on the RP compared to angry
and neutral vocalizations was observed [72]. Neural adaptation occurs in typical adults
for sounds of different natures, but the natures of the sound could influence the pattern to
reach a stable adaptation.

In fMRI studies, RS results in a decrease in brain activity with an increase in the
number of repetitions of a standard and is referred to as fMRI adaptation [25]. To inves-
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tigate fMRI adaptation, some studies have used pairs of images, with some of the pairs
composed of the same two images and some consisting of two different images [74] and
other studies have used classical oddball paradigms as in EEG [75–77]. In 2006, Sayres and
Grill-Spector studied the implication of the duration of repetition of the same images [58].
In case of short presentation, the RS was significant, but with a smaller amplitude than
for long presentations, suggesting as in other studies the involvement of attention in the
adaptation process [24,78,79].

As in EEG, several fMRI studies have been conducted on deviance detection, showing
an increase in the cerebral activity in response to the deviant compared to the standard
stimulus [75]. Using oddball paradigms, a difference in brain activation in response to a
deviant and to a standard stimulus was observed, that could be assimilated to the MMN
and P3a (i.e., an index of attention orientation) in EEG studies [75–77,80–82]. In these
studies, beside the expected Superior Temporal Gyrus (STG) activation, an involvement of
the Inferior Frontal Gyrus (IFG) has repeatedly been reported [75,76,80–82].

More recently, studies using roving protocol have also been done in fMRI to study
deviance detection, regularity encoding and prediction. Using a roving protocol with
nine pure tones and four train lengths (4, 12, 24 and 36 repetitions) to localize the effect
of adaptation, a variation in the intensity of the response to a deviant tone according
the number of standards previously presented has been showed, which is consistent
with prediction theory, and a dissociation between the regularity encoding and deviance
detection in cortical subfields has been demonstrated [83].

2.3. Repetition Enhancement (RE)

The RE phenomenon has not been as well studied and described as RS but it is
assumed that it corresponds to the expectation of stimulus appearance. It thus rather reflects
prediction, i.e., the ability to anticipate a stimulus on the basis of previous experience [84].
RE is defined as an increase in the neural response with an increase in the number of
repetitions [6,85]. Some studies observed RE with repetition, instead of RS, but only in
response to degraded stimuli and concluded that RE could be a consequence of lack of
access to memory representations through poor stimuli quality, preventing attenuation
through the increasing perceptual performance. For example, Turk-Browne et al. [74]
found RS when a scene with high visibility was repeated but reported RE when the same
low-visibility scene was repeated. Thus, the nature of the stimulus could impact on the
presence of either RS or RE. The difference could also reflect the features of the repeated
stimulus, with RS related to the form and RE related to the size of the presented object in
the same subjects [86].

Several models have proposed explanation for RE [6], among which are the accumula-
tion model [27] and the novel network formation [87].

(1) The accumulation model proposes that the cumulative effect of repeated exposures
leads to an enhanced or amplified response to the stimulus compared to its initial presenta-
tion, especially in case of qualitatively degraded stimulus (e.g., with low visibility) [27,87].

(2) In the novel network formation model, the presentation of a new stimulus leads to
the creation of a new neural network coding for that stimulus. RE would thus reflect the
creation of a new representation [6].

Studies intend to determine the difference between RE and RS in the brain regions
implicated and in the timing of the setting up, by manipulating the nature of the stimulus
or the paradigm. Comparing predictability of conditions, the RP occurs earlier in the more
predictable condition, which is consistent with the idea of the novel network formation for
RE [5]. In roving paradigms, RS was observed early with a decrease in N100 amplitude in
response to pure sounds and then the RE occurs with an increase in P2 amplitude [5].

Neural adaptation has also been studied with magnetoencephalography (MEG), in
visual [88] and auditory [67,89] modalities. Trying to localize the source of RS and RE,
Recasens et al. demonstrated that the RS was generated in the Superior Temporal Gyrus
(STG), the Middle Temporal Gyrus (MTG) and in insular regions whereas the RE sources
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were located in supratemporal and non-auditory regions (anterior region of the Insula and
the Rolandic operculum) [67]. At the temporal level the two phenomena display different
dynamic. Indeed, the RS has been identified as an early component (modulation of the
early N1m, approximately at 90–150 ms) and the RE as a later component (sustained field,
approximately at 230–270 ms) [67], confirming results of Costa-Faidella [5]. Moreover,
these two components occur to have different implications. RS would correspond to
the phenomenon of adaptation, whereas RE would rather correspond to anticipation
of an expected event. Additionally, the dissociation between RS and RE has also been
raised in fMRI studies demonstrating activation of different brain areas corresponding
to the encoding of a new representation, and of brain regions involved in the retrieval
of information [83,90,91]. Finally, the nature of the task and the required engagement of
selective attention might influence the RS/RE balance [92]. Considering this modulation,
RE would reflect selective attention in case of active oddball for example, whereas RS
would be more likely observed in passive paradigms.

2.4. RS and RE Explained by Predictive Coding

Another model that can explain RS and RE is the predictive coding model [93]. The
predictive coding hypothesis is a perceptual inference hypothesis describing the brain as a
hierarchically organized cortical system that constantly attempts to anticipate future events.
For this, the brain would constantly learn the regularities in the sensory environment to
build predictions about future sensory inputs. Comparisons between information provided
by sensory inputs (bottom-up) and generated predictions (top-down) of futures sensory
inputs are thus performed at each level of the system [93–95]. The predictive coding theory
takes up the main concept of the Bayes’ theory in which the percept (posterior) is based on
belief and knowledge (prior) and on sensory input (likelihood). According to the strength of
the prior and of the likelihood, the accuracy of the percept will be modified.

According to this hypothesis, perception will be biased by the quality of sensory
inputs and predictions. Indeed, the stronger these two parameters are, the stronger will
be their influence on perception. In a stable environment, the brain can extract strong
regularities, which results in a robust prediction and thus, to a heavy influence of this
parameter on perception. However, in an unstable environment, extraction of regularities
will become more difficult, resulting in low predictions and thus in a weak influence of this
parameter on perception. In parallel, if the sensory input comes from a clear environment,
the precision of the incoming information will be high and thus the influence on perception
would be stronger. However, if the sensory input comes from a noisy environment, the
precision of the information contained will be low and thus the influence of this parameter
will be weak [96,97].

Moreover, sometimes sensory input and prediction are incongruent, resulting in the
generation of a prediction error that leads to updating of the prediction, depending on the
precision of this prediction error. Indeed, through the precision of the prediction error it
can be determined if the system needs an update or if the prediction error is merely the
result of low-quality sensory inputs or prediction, in which case it can be ignored [98,99].
The stronger the prediction (reflecting a strong regularity) is, the higher the precision of
the prediction error will be, inducing prediction updating, which is, in turn, transmitted to
lower areas [98,100] (Figure 3).

According to the predictive coding framework, RS, which reflects regularity encoding,
would index a decrease in demand that occurs when expected and observed sensory
information coincide (lower prediction error) and would thus reflect the increasing precision
of the prediction [93]. Conversely, RE would index an increase in the prediction strength
when expected and observed sensory information are the same [3,93,99]. MMN, previously
described as an electrophysiological index of change detection, is considered to be a marker
of prediction error and of updating of the prediction [101–103].

To conclude, the different explanations and models for adaptation and prediction to a
repeated stimulus are summarized in Table 1.
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Table 1. Summary of the processes underlying repetition suppression (RS) and repetition enhance-
ment (RE) according to the different theories/models.

Repetition Suppression Repetition Enhancement

Decrease in neural activity to repeated
presentation of the same stimulus
→ Reflects novelty preference

Increase in the response as the number of
repetitions of a stimulus increases. More
marked for degraded stimuli, reflecting

missing access to memory representation
and construction of this representation.
→ Reflects familiarity preference

Grill-Spector et al.’s Models
Grill-Spector et al., 2006 [23]

The fatigue model: decrease in the
amplitude of firing of neurons

responding to the stimulus, proportional
to the initial response

The novel network formation:
presentation of a novel stimulus that is

learned and its representation is
established with the creation of a new

neural network coded for this stimulus.
The sharpening model: decrease in the
number of neurons that respond to the

stimulus with repeated presentation

The facilitation (or accumulation)
model

James and Gauthier, 2006 [27]

Faster processing of the stimulus by the
neurons involved, resulting in shorter

latency or reaction time

Repeated exposure to stimulus with low
visibility generally leads to increased

perceptual performance.

Predictive coding
Friston, 2005 [93]

Regularity encoding, displaying a
decrease in the demand that occurs when

expected and observed sensory
information coincide. Reflects the

increasing precision of prediction, the
correct prediction of the

upcoming stimulus

Increase in the prediction weight when
expected and observed sensory

information are the same.

Before discussing the possible implication of these neurophysiological processes in
neurodevelopmental and psychiatric disorders, we summarize current knowledge regard-
ing habituation, neural adaptation (RS and RE) and prediction in visual and auditory
modalities with different methods (EEG, MEG, fMRI) through typical development.
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3. Adaptation and Prediction through Typical Development
3.1. Behavioral Habituation and Familiarization

In children, habituation is an essential process for the creation of routine in infancy
that improve health and wellbeing in families [104,105]. Several studies have shown that
habituation is already present from infants (3 to 6 months old) [106,107], children (8 to
9 years) [108] to adults [15]. Some of these studies used fixation time, also referred as
familiarization paradigm, with for example a visual pairs comparison paradigm, consisting
of the presentation of pairs of similar and different images [109]. With this type of paradigm,
it has been possible to observe preference for novelty, reflected by an increase in fixation time
for a novel stimulus relative to the previously repeated stimulus [107,110,111]. However,
using this procedure it makes it unclear whether the observed novelty preference indirectly
reflects habituation, or not.

Nevertheless, some studies in infants using familiarization paradigms (in which an
initial habituation phase composed of a repeated presentation of a stimulus is followed
by a test phase with the presentation of a new stimulus [112]) have shown no preference
for novelty but a preference for familiarity during the test phase, reflected by an increase
in looking toward the familiar stimulus [113]. This result would be dependent on dura-
tion of habituation phase. Indeed, if a familiar stimulus has not been well encoded and
represented, then it will be preferred during the test phase. The quality of the internal
representation of a repeated stimulus, the complexity of the task and the age of the partic-
ipants, would therefore influence the number of repetitions needed to reach a complete
habituation [74,107,113]. Difference in habituation between adults and children could be
the consequence of the effect of familiarity with the sentences used in this study [114].
The complexity of the stimulus to be encoded could also have an impact on the observed
response [115]. In keeping with the idea that the RE is in place during the familiarization
phase with a stimulation, in children a required number of repetitions was mandatory to
eventually model a robust representation of it and produce a decrease in response, neural
adaptation [63]. The familiarization phase with a new stimulus may be associated with RE
and then the recognition of the familiar stimulus may be related to RS.

3.2. Neural Adaptation in Typical Development

In children, although behavioral habituation is present and efficient since the first
months of life [106] and a need of routine is observed early in development [104,105], the un-
derlying neural adaptation remains poorly explored. A description of the electrophysiology
studies in this population is proposed in the current section.

There is no consensus on neural adaptation in children. Martineau et al. [116] observed
RS in response to pure tones in children in an oddball. However, more recently, in a
study comparing neural adaptation to electronic and human sounds, a decrease in the P1
amplitude was observed corresponding to RE, but only two repetitions were compared,
suggesting that adaptation could take longer to implement [57]. Nevertheless, the presence
of RE in children’s response is consistent with the idea presented earlier that RE instigates
formation of the memory trace and after it is well established, RS is observed. These
observations make sense in the predictive coding framework, in which RE could reflect
prediction after a first step corresponding to familiarization [117].

To our knowledge, no studies have focused on adaptation in children using fMRI.
Studies did not yet focus on the process of neural adaptation in response to different
category of sounds. Additionally, no study using a properly designed paradigm to measure
cortical adaptation in children has been conducted. The developmental trajectory of the
ability of neural adaptation thus remains to be characterized.

The studies on neural adaptation in typically developing children and adults are
summarized in Table 2.
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Table 2. Neural adaptation in typically developing adults and children. SOA: Stimulus Onset Asynchrony.

Study Cortical/
Subcortical Modality Population Paradigm Protocol Stimuli Duration

and SOA (ms) Results

Baldeweg
et al., 2004 [4] Cortical Auditory

(pure tones) 20 adults
Roving

(2, 6, 18 and
38 repetitions)

1 sequence
Stimuli: 25 for

standard and 50 for
deviant

‚ ↗MMN with ↗ number of
repetitions

‚ Detection of RP

Haenschel
et al.,

2005 [66]
Cortical Auditory

(pure tones) 40 adults
Roving

(trains of 2, 6 and
36 repetitions)

2 blocks with passive listening
2 blocks with active discrimination

Stimuli: 200
SOA: 500

‚ ↗MMN with ↗ number of
repetitions

‚ Detection of RP (36—2 repetitions)

Ylinen and
Huotilainen,

2007 [73]
Cortical

Auditory
(synthetized
vowels and
vowels-like
equivalents)

9 adults
Roving

(3–4 repetitions
5–6 repetitions)

1 sequence of familiar stimuli
(vowels)

1 sequence of unfamiliar stimuli
(vowels-like)

Stimuli: 400
SOA: 700

‚ Ø RP for both conditions
‚ ↗ N1 amplitude for familiar stim-

uli only

Garrido et al.,
2009 [118] Cortical Auditory

(pure tones) 10 adults Roving 1 sequence Stimuli: 70
SOA: 570

‚ ↗MMN with ↗ number of
repetitions

Costa-
Faidella et al.,

2011 [56]
Cortical Auditory

(pure tones) 17 adults
Roving

(trains of 3, 6 and
12 repetitions)

Predictable condition and
unpredictable condition

Stimuli: 50
SOA: 708

(predictable) or
364–1062

(unpredictable)

‚ Detection of RP for predictable
condition

Only later part of RP (>200 ms)
observed in unpredictable condition

Costa-
Faidella et al.,

2011 [5]
Cortical Auditory

(pure tones) 20 adults
Oddball
(2, 6 and

12 repetitions)

1 sequence composed of 2 runs. Run
1: S1 repeated 2, 6 or 12 times,

followed by deviant S2. Run 2: S2
repeated 2, 6 or 12 times, followed

by deviant S1

Stimuli: 40

‚ ↗ P2 amplitude with repetition
‚ ↗ MMN amplitude with

repetition
‚ ↘N100 amplitude with repetition

Cooper et al.,
2013 [68] Cortical Auditory

(pure tones) 24 adults Roving and oddball
(4, 8 or 16 standards)

1 roving sequence
1 oddball sequence

Stimuli: 50 for
standard and 100 for

deviant

‚ RP observed only for roving
condition

‚ Ø increase in MMN amplitude
with repetition for both condition
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Table 2. Cont.

Study Cortical/
Subcortical Modality Population Paradigm Protocol Stimuli Duration

and SOA (ms) Results

Recasens
et al.,

2015 [67]
Cortical Auditory

(pure tones) 13 adults
Roving
(3, 12 or

24 repetitions)
2 runs: 198 trains of each length Stimuli: 50

SOA: 500

‚ Early N1m: RS from initial to late
repetitions in supratemporal re-
gions and in non-auditory regions
as the precuneus

‚ Late SF interval: RE from initial to
late repetitions in the HG, the STG,
the MTG and insular regions

Gorina-
Careta et al.,
2016 [119]

Subcortical
Auditory

(consonant-
vowel)

30 adults Sequence of repeated
stimuli

Predictable timing condition and
unpredictable timing condition (8

blocks of 1001 repetitions per
condition)

Stimuli: 170
SOA: 366

(predictable) or 183–
549 (unpredictable)

‚ ↘ FFR with repetition for both
conditions

‚ stronger ↘ FFR for predictable
condition

Pinheiro et al.,
2017 [72] Cortical

Auditory
(human

vocalizations)
23 adults Oddball

4 blocks of 1050 standards and 150
deviants. Three different stimuli,

standard or deviant, depending on
the block: neutral, angry and happy

Stimuli 700
SOA: 1200

‚ RP amplitude higher for happy vo-
calizations than angry and neutral
and increased with repetitions

McCleery
et al.,

2019 [70]
Cortical Auditory

(pure tones) 29 adults Roving
(3, 8 or 33 repetitions)

1 sequence composed of 5 blocks at
two different times (2 weeks apart)

Stimuli vary in pitch + duration
Stimuli: 50 or 100

‚ ↗MMN with repetition
‚ ↗ amplitude of the last standard

of a train (3, 8, 33) with repetition
(called RP)

Fryer et al.,
2020 [120] Cortical Auditory

(pure tones) 241 adults Oddball

3 blocks consisting of a standard
(85%), a deviant in duration (5%), a

deviant in frequency (5%), and a
deviant in duration and in

frequency (5%)

SOA: 500
Stimuli standard in

duration: 50
Deviant in duration:

100

‚ RP amplitude linearly increased
with the repetition of the standard

Jamal et al.,
2020 [121] Cortical

Auditory
(pure tones)
and visual

(radial
checkerboard)

22 children
7.1–12.8

years

Sequences of
repeated stimulus

2 sequences (1 visual and 1 auditive)
with 300 repetitions of the same

stimulus

SOA: 1,116
Stimuli duration: 116

‚ Decrease in the ERP amplitude
with repetitions for both type
of stimuli
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Table 2. Cont.

Study Cortical/
Subcortical Modality Population Paradigm Protocol Stimuli Duration

and SOA (ms) Results

Ruiz-
Martínez

et al.,
2020 [57]

Cortical

Auditory
(Electronic
and human

sounds)

15 children
5–11 years Oddball

8 blocks (4/sound type) (deviant
separated by at least 2 standards;

each block begins with 10
standards)

Stimuli: 85
SOA: 685–885

‚ ↘ P1 response (only two repeti-
tions tested)

Feuerriegel
et al.,

2021 [122]
Cortical Visual

(faces) 43 adults Oddball

34 sequences: 6 faces presented,
then oddball face identity (different
identity than the base face). Blocks

of 6 consecutive sequences were
used with two oddball face

identities possible, the proportion of
both is known

Images were
presented at a rate of

6 Hz

‚ Surprising compared to neutral:
VMR amplitude is more negative
in early and late time windows

No VMR amplitude difference between
expected and neutral conditions in early

and late time windows

Heurteloup
et al.,

2022 [71]
Cortical

Auditory
(complex
tones and

human voice)

20 adults
(18 to

30 years)

Roving (4, 8 or
16 repetitions)

2 roving sequences: one for vocal
sounds and one for complex

non-vocal sounds

SOA: 646
Stimuli duration: 300

‚ RP for both categories of sounds
‚ Decrease in the ERP amplitude

with repetitions for both type of
stimuli, but faster for complex
sounds compared to vocal sounds
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3.3. Prediction in Typical Development

Prediction in childhood and during development has not been as widely studied as
in adulthood in the framework of the predictive coding theory. To obtain an idea of the
prediction processes in this context during typical development, we will focus on the study
of the prediction error electrophysiological correlate, i.e., the MMN [101–103]. Automatic
detection of deviancy in a repetitive sequence has been studied in newborns [123,124], even
in pre terms [125], in toddlers [126] and in children [127,128]. In these studies, a response to
change has been observed in response to pitch or phonetic changes [123,124]. Additionally,
the brain sources of this mismatch response reflecting the prediction appears to be different
between 4 and 6 years old showing that the predictive brain is maturing during this
time period [126]. In older children a mismatch response close to that of adults has been
observed, with classic age-related differences in amplitudes and/or latencies [126,127].
However, although the characteristics of the response to sounds changes are not yet mature,
the organization of the cortical response is already functional at the age of five [126–128].
The presence of prediction error since birth thus demonstrates that predictions are present
early and effectively very early in development.

Additionally, as previously presented, RE is observed in children in familiarization
and learning phases [63,117], which could reflect prediction and anticipation.

4. Adaptation and Prediction Are Altered in Neurodevelopmental and Psychiatric Disorders

What is known about adaptation and prediction in autism spectrum disorder (ASD),
schizophrenia and attention-deficit/hyperactivity disorder (ADHD)? In these neurodevel-
opmental and psychiatric disorders, automatic detection of change has been widely studied
through the measure of the MMN. This is true for ASD [129–135], for ADHD [136–139] and
for schizophrenia [4,140–143]. In most of these studies, discrepancies in MMN amplitude
and/or latency have been demonstrated in the clinical group compared to typically devel-
oping, but description of the underlying adaptation process is lacking. From a predictive
coding point of view, description and thorough investigation of the prior adaptation process
is essential to draw conclusions about difficulties in detection of change. As previously
indicated, deficits in deviance detection could be explained by difficulties in underly-
ing neural adaptation; understanding of these two phenomena in neurodevelopmental
disorders is therefore important. In these disorders, in which difficulties in adaptation,
prediction, and reaction to change have been demonstrated as a part of the symptomatology,
a comprehension of the underlying neurophysiology is essential.

4.1. Autism Spectrum Disorder (ASD)

ASD is a neurodevelopmental disorder characterized by both social impairments and
restrictive, repetitive interests reflecting a need of immutability [144]. One of the main
characteristics of the ASD symptomatology is therefore resistance to change [145–147]. Two
mechanisms could be involved: an habituation deficit [131] and/or an atypical change
detection [133,134]. These adaptative difficulties in autistic people could be a consequence
of their difficulties in predicting future events [148]. This idea has been developed in
the theories of the Bayesian brain and predictive coding theory of ASD that postulate
difficulties in predicting future items and in continually updating internal representations
based on what has previously occurred [11,149,150]. According to Pellicano and Burr [11],
the prior beliefs of autistic individuals are very different from those of a non-autistic group.

In autistic children a need for repetition and routine is observed, and has a positive influence
on children leading to a facilitated adaptation [110,151]. Considering behavioral habituation,
a reduction in response to repeated stimuli such as pure tones or vestibular stimulation has
been observed in autistic children compared to neurotypical children [9,152]. This reduction
of habituation could lead, as previously discussed, to resistance to change and could
be the consequence of atypical neural adaptation. In 1992, Martineau et al. showed a
lack of neural adaptation to pure tones through electrophysiological measurements [116].
Other electrophysiological studies have reached similar conclusions with no adaptation
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or less adaptation in autistic patients than in typically developing children [57,153–155].
However, all these studies draw conclusions on neural adaptation via oddball paradigms
that are not specifically designed to study this process and by comparing only a restricted
number of repetitions [153]. Not much research has used roving paradigms to study the
implementation of the encoding of regularity and its associated cue, the RP, to determine
whether it is affected in autism. Font-Alaminos et al. [156], using a roving paradigm to
study the subcortical adaptation in autism, observed an increase in the amplitude of the
frequency-following response (FFR), corresponding to RE. This is consistent with the idea
of a neural adaptation deficit in individuals with ASD who do not adapt to a repeated
stimulus but remain in a familiarization phase. Same conclusion has been reached by
Latinus et al. [157] in an fMRI on cognitive flexibility. The results of EEG studies on neural
adaptation are reported in Table 3.

In ASD, a disruption of the Excitatory/Inhibitory (E/I) balance in brain has been hypoth-
esized [158]. In view of the above presented results in animals about the implication of the
GABAA-mediated inhibition in SSA, the possible imbalance of the E/I in autism [159,160] could
partly explain the differences observed in neural adaptation. The level of GABA/Glu also
correlates with the ability to make correct prediction in the framework of Bayesian learning,
especially in a frontal region in which autistic adults have lower levels of glutamate [161].

Atypicalities reported in adaptation could reflect (or presume) the prediction deficit
observed in autism and therefore hypersensitivity to the environment and intolerance
to change [148].
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Table 3. Neural adaptation in autism. SOA: Stimulus Onset Asynchrony.

Study Cortical/
Subcortical Modality Population Paradigm Protocol Stimuli Duration

and SOA (ms) Results

Martineau
et al.,

1992 [116]
Cortical Auditory

(pure tones)
30 children
3–11 years Oddball 1 sequence of 60 tones Stimuli: 100

‚ No decrease in the AER with the
increase in repetitions

Guiraud et al.,
2011 [155] Cortical Auditory

(Pure tones)

35 infants
with high

risk for
ASD and
21 infants
with low

risk for ASD
9 months

old

Oddball 1 sequence (deviant always
followed by two standards)

Stimuli: 100
SOA: 800

High risk: less marked↘ (less
habituation) and less↗ response to

deviant (reduced discrimination)
Low risk:

‚ ↘ in P150 amplitude with stan-
dards repetition (habituation)

‚ ↗ in response amplitude to
deviant (discrimination)

High risk:
‚ No ↘ in P150 amplitude with

standards repetition
‚ No ↗ in response amplitude to

deviant

Gonzalez-
Gadea et al.,
2015 [154]

Cortical Auditory
(pure tones)

16 children
8–15 years Oddball

2 blocks of 220 sequences, 3 types of
sequence:

‚ Standard: 5 repetitions of the
same tone

‚ Expected deviant: repetition
of 4 identical tones, the fifth
deviant tone is monaural

Unexpected deviant: repetition of
4 identical tones, the fifth, deviant,

tone is interaural

Stimuli: 50
SOA: 200

Inter sequence
interval: between 700

and 1000

‚ No difference in MMN amplitude
compared to typically developing
participants

‚ P3 larger for expected deviant
compared to standard

‚ No difference in P3 in unexpected
deviant compared to typically de-
veloping participants

‚ Higher P3 amplitude in expected
than in unexpected condition
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Table 3. Cont.

Study Cortical/
Subcortical Modality Population Paradigm Protocol Stimuli Duration

and SOA (ms) Results

Kolesnik
et al.,

2019 [162]
Cortical

Auditory
(standard:
pure tones
Deviants:

1 white noise
and 1 pure

tone)

116 children
with high

risk of
autism (9.03
+/− 1.1 m—

39.05 +/−
3.47 m)

Oddball

1 sequence with standard and
deviants (paradigm designed by

Guiraud et al., 2011) [155]
Measure the standard response after

1, 2 or 3 presentations

Stimuli: 100
Inter-trial interval:

700

‚ Reduced repetition suppression
‚ Increased phase locking

Font-
Alaminos

et al.,
2020 [156]

Subcortical Auditory
(pure tones)

17 children
9.1 +/−
1.7 years

Roving
(8, 10 and

12 repetitions)

1 sequence composed of 9 blocks,
each block is composed of 30 trains

of either 8, 10 and 12 repetitions

Stimuli: 100
SOA: 333

‚ ↗ FFR amplitude with repetition
compared to typically developing
participants

Ruiz-
Martínez

et al.,
2020 [57]

Cortical

Auditory
(Electronic
and human

sounds)

16 ASD
children

7–10 years
Oddball

8 blocks (4/sound type) (deviant
separated by at least 2 standards;

each block begins with 10 standard)

Stimuli: 85
SOA: 685–885

‚ Reduced↘ P1 response (reduced
habituation)

‚ Reduced MMN amplitude (re-
duced discrimination)

Jamal et al.,
2020 [121] Cortical

Auditory
(pure tones)
and visual

(radial
checker-
board)

13 children
7.4–12.8

years

Sequences of
repeated stimulus

2 sequences (1 visual and 1
auditory) with 300 repetitions of the

same stimulus

SOA: 1116
Stimuli duration: 116

‚ Reduced adaptation for both type
of stimulus

‚ increase in the amplitude of the
response

Cary et al.,
2023 [153] Cortical Auditory

(pure tones)

13 children
12.81 +/−
2.63 years

Oddball 1 sequence of 1000 trials (80%
standard)

SOA: 600
Stimuli duration: 360

‚ Reduced P1 adaptation (between
the first and the second standard)

‚ No difference between MMN am-
plitude with typically developing
participants
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In the predictive coding framework in ASD, the difficulties observed in response to
deviance could reflect the lack of power of priors [11] or impaired encoding of sensory
information [149,163,164]. Destabilization of the balance between the weight of sensory
inputs and the weight of priors would lead to a high rates of prediction error and thus
to impairment in deviance detection [165]. In autism there is a reduced ability to predict
events and this could lead to deficits in understanding surroundings, which could explain
difficulties in coping and may explain the emphasis on sameness, sensory hypersensitivities,
difficulties in interacting with dynamic objects as well as difficulties in social cognition [166].
These different theories and assumptions were presented in a recent literature review on
prediction in autistic people [167]. However, they do not cover all the major symptoms
of autism, such as hyposensitivity, which would benefit further exploration and refined
conceptualization. Randeniya et al. suggested that the processes of sensory learning and
adaptation are important to interpret prediction error atypicalities in autism [168] and
should also be further investigated.

Neural adaptation deficits, manifest in EEG and in fMRI, appear to be correlated with
behavioral symptoms in ASD. High social impairment and sensory processing difficulties
are indeed associated with reduced brain adaptation [121,169]. Differences related to
the nature of the stimulus to be encoded have also been observed, with reduced fMRI
adaptation for faces, but not for objects, in autistic adults, associated with challenges in
social communication [170]. In response to sounds, fMRI adaptation in autistic adults also
appears reduced in comparison to a group of typically developing adults [171].

In conclusion, in ASD the process of habituation/adaptation appeared to be impaired,
and this may partially explain hypersensitivity to change, and difficulties observed in
detecting change. Further studies of these phenomena in autism, with more ecological
stimuli, social for example, could make it possible to determine the possible implication
of the context, and of the nature of the repeated stimuli in resistance to change. A few
studies have compared adaptation to social and non-social information in autism and have
revealed differences according to the nature of the stimuli, with less (or an absence of)
adaptation for social stimuli in comparison to non-social stimuli [10,172]. In other words,
reduced sensory adaptation in autism could contribute to hypersensitivities but also to
difficulties in social communication and adaptation to the environment.

4.2. Schizophrenia

Schizophrenia is a psychiatric disorder characterized by several symptoms such as dis-
turbances in thought, perception and behavior, according to the DSM-5 [144]. Habituation
also seems to be impacted in this disorder. It has been proposed that in schizophrenia there
is an atypical interpretation of incoming input due to inappropriate creation and use of
stored regularities [173–175]. We propose here a review of the current state of knowledge
about habituation and adaptation in this disorder.

Regarding behavioral habituation in schizophrenia, impairment has been observed,
with less marked habituation to repeated events (i.e., sounds, images) compared to typically
developing [8,176,177]. The habituation deficit in schizophrenia may be related to the
memory impairment observed in this disorder. fMRI studies have shown that the lack of
habituation was associated with a lack of activation of the hippocampus, a brain region
involved in memory, in response to repeated stimuli [178,179].

There is no consensus on neural adaptation in schizophrenia based on EEG stud-
ies. Atypical deviance detection has repeatedly been observed in schizophrenia patients
compared to neurotypical, with reduced MMN [4,70,71,180–182]. Studies using the rov-
ing paradigm to explore regularity encoding and neural adaptation by measuring the
RP have reached divergent conclusions. In some studies, a reduced RP was observed
in schizophrenic patients compared to typically developing participants [4,121], while
another study reported no difference in the RP between patients and neurotypical [70]. In
an oddball study, RS on several electrophysiological components (N100, P50 and P2) was
observed [181]. As presented above, neural adaptation can be established in patients with
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schizophrenia, but not as efficiently as in controls, which could partially explain the deficit
in habituation observed in schizophrenia. A summary of these different electrophysiologi-
cal studies and their conclusions are reported in Table 4.
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Table 4. Neural adaptation in schizophrenia. SOA: Stimulus Onset Asynchrony.

Study Cortical/
Subcortical Modality Population Paradigm Protocol Stimuli Duration

and SOA (ms) Results

Baldeweg
et al., 2004 [4] Cortical Auditory

(pure tones) 28 adults
Roving

(2, 6, 18 and
38 repetitions)

1 sequence
Stimuli: 25 for

standard and 50 for
deviant

‚ Reduced MMN compared to typi-
cally developing participants

‚ Ø increase RP with repetition
‚ Reduced RP compared to controls

Rentzsch
et al.,

2015 [183]
Cortical

Auditory
(pure tones

and click
sound)

25 adults Oddball and paired
click paradigm

Oddball: standard and deviant
stimuli differed in frequency

Click: pair of identical
stimuli repeated

Oddball:
Pure tone duration:

80
Inter-stimulus

interval: between 350
and 650 ms
Click sound:

SOA: 500 and
inter-trial interval of

3400

‚ Reduced MMN compared to typi-
cally developing participants

‚ No effect on RS for P50
‚ N100 and P200 RS reduced

Coffman et al.,
2017 [181] Cortical Auditory

(pure tones) 26 adults Oddball

2 tasks:
‚ RS task: 5 repeated similar

tones
MMN task: 5 repeated tones and

pitch or duration mismatch

Stimuli: 50
SOA: 330

Inter-group: 750
Stimuli duration
mismatch: 100

‚ RS in P50, N100 and P200 re-
sponses

‚ Reduced MMN compared to con-
trol

McCleery
et al.,

2019 [70]
Cortical Auditory

(pure tones) 43 adults Roving
(3, 8 or 33 repetitions)

1 sequence composed of 5 blocks at
two different times (2 weeks apart).
Pitch + duration stimuli variation

Stimuli: 50 or 100

‚ ↗ MMN with repetition but re-
duced MMN compared to controls

‚ ↗ amplitude of the last standard
of a train (3, 8, 33) with repetition
(called RP) as in typically develop-
ing participants
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Table 4. Cont.

Study Cortical/
Subcortical Modality Population Paradigm Protocol Stimuli Duration

and SOA (ms) Results

Fryer et al.,
2020 [120] Cortical Auditory

(pure tones)

54 adults
with

Psychosis
Risk

syndrome—
Conversion

(PRS-C)

Oddball

3 blocks consisting of a standard
(85%), a deviant in duration (5%), a

deviant in frequency (5%), and a
deviant in duration and in

frequency (5%)

SOA: 500
Stimuli standard in

duration: 50
Deviant in duration:

100

‚ RP amplitude smaller than typi-
cally developing participants

‚ Effect of the position in the train
especially in position 3, 8–10 and
11+ in the train

Koshiyama
et al.,

2020 [182]
Cortical Auditory

(pure tones) 25 adults
Oddball and

many-standards
paradigm

Oddball: 2 sequences
‚ Duration: 2 tones with differ-

ent durations
‚ Frequency: 2 tones with differ-

ent frequencies

Many-standards paradigm:
2 sequences

‚ Duration: 10 tones with differ-
ent durations

‚ Frequencies: 10 tones with dif-
ferent frequencies

Stimulus standard:
50

Oddball duration
sequence→ deviants

100
Many-standards

paradigm: between
10 and 225

‚ Reduced MMN compared to typi-
cally developing participants

‚ No difference in adaptation be-
tween patients and typically devel-
oping participants

‚ Reduced deviant detection compo-
nent of the MMN in patients

Mazer et al.,
2021 [184] Cortical

Auditory
(bird song,
voice and
pure tone)

26 adults Roving
7 repetitions for trains for bird song

and voice—target tone appears
between train

Complex sounds
(bird songs and

voice): 200
Inter-stimulus
interval: 1000
Pure tone: 70

‚ No decrease in P2 amplitude for
bird songs

‚ Decrease in P2 amplitude for hu-
man voice

‚ No difference in N1 habituation be-
tween patients and typically devel-
oping participants
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Moreover, as in ASD, it has been argued that the predictive coding theory accounts
for the underlying mechanisms involved in this altered MMN [142] since there is a re-
duced effect of the repetition on the amplitude of the MMN reflecting an impairment
in prediction [185].

It remains complicated to draw conclusions regarding neural adaptation in schizophre-
nia. Indeed, there is still no consensus on fMRI adaptation in these patients. Some studies
have found similar fMRI adaptation for repeated faces between typically developing partic-
ipants and schizophrenic patients in specialized brain areas such as the fusiform face area
(FFA) and occipital face area (OFA) [186,187]. However, in Williams et al.’s study [187], no
RS was found in less specialized brain regions, with no decrease in the response amplitude
with repetition in the primary visual cortex and in the hippocampus in comparison to neu-
rotypical. Authors conclude that adaptation appears to be preserved in ultra-specialized
brain areas in schizophrenia, but not in the more general areas responsible for encoding
basic features of visual stimuli [187]. Furthermore, another study found smaller fMRI
adaptation in patients with schizophrenia compared to typically developing participants in
response to pictures of objects in the lateral occipital cortex (LOC), the brain area responsive
to the category of visual stimuli [188]. This study represents a complementary finding to
what was previously presented; adaptation at the brain level appears to be possible in spe-
cialized areas but appears to be impaired in more generic brain areas responsible for visual
processing, reflecting alteration in the whole brain response but not in ultra-specialized
areas in schizophrenia.

To summarize, in schizophrenia the habituation difficulties observed in behavior are
not necessarily related to basic deficits in neural adaptation as observed in EEG and/or in
fMRI. New theories about predictive coding in schizophrenia may help to draw conclusions
about the mechanisms involved in these difficulties.

4.3. Attention-Deficit/Hyperactivity Disorder (ADHD)

According to the DSM-5, ADHD is a neurodevelopmental disorder characterized by
a persistent pattern of inattention and/or hyperactivity-impulsivity [144]. The deficits in
attention could lead to adaptation and habituation impairment, because of difficulties in
regularity encoding due to early inattention.

At the behavioral level, habituation has been shown to be impaired in ADHD in visual
tasks [189,190]. However, the nature of the measure has an impact on the habituation ability,
with some skin conductance studies revealing enhanced and accelerated habituation to
sounds in startle reflex paradigms compared to typically developing adults [191,192]. This
quicker habituation would induce a less efficient reinforcement of the memory trace and
consequently a less sustainable habituation [194].

In ADHD there is no study focusing on neural regularity encoding. The possible
adaptation and habituation deficit is mostly studied by observing changes in attention,
through the P3, an index of attention orientation. P3 has been shown to be altered in
ADHD, with no difference in amplitude between expected and unexpected conditions for
example [154]. This attentional switch deficit could lead to an adaptation deficit. Indeed,
in case of impairment in the regularity encoding and in adaptation (less expectation) to
standard stimuli, the detection of change and novelty involved in attention switching
become more difficult. Predictive coding theory could provide one explanation: in ADHD
the observed defect in P3 could be related to too much involvement of sensory inputs at
the expense of predictions [154,193].

Other studies have found no difference in MMN amplitude between neurotypical and
individuals with ADHD [138,154], indicating that even if attentional switching is atypical
in ADHD, deviance detection does not seem to be impaired. However, a meta-analysis
on MMN in ADHD patients revealed that in these patients the amplitude of this index is
reduced compared to typically developing children [195]. As in ASD and schizophrenia,
change detection appears to be impaired. The joint action of change detection and atten-
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tional switching deficits could therefore be indicative of a neural adaptation deficit, but to
our knowledge no study has yet addressed this cascade of processes in ADHD.

5. Future Directions

Future study of neural adaptation throughout typical development and in neurodevel-
opmental disorders would be interesting, especially in response to more complex stimuli
than pure tones or basic shapes. Indeed, the study of the combination of social cues on
adaptation, especially in ASD, could allow for better understanding of the effects that
have already been observed regarding change detection, and could provide a link with
the symptomatic dyad, sameness and aloneness, initially described by Kanner [196] and
Soukhareva [197]. Additionally, the study of neural adaptation in neurodevelopmental
disorders will help answer the research question of whether there is a problem in change
detection itself or a problem in subjacent adaptation that is behind the MMN atypical-
ities. The response to this question would have a major impact on targeted behavioral
intervention in these populations.

6. Conclusions

In summary, habituation and adaptation are important phenomena in the encoding of
a steady context and in the detection of changes in the environment. These mechanisms
are studied at different levels, but recently a more adapted electrophysiological cue has
been measured: repetition positivity, which reflects regularity encoding and therefore
neural adaptation in the framework of the roving paradigm. In the neurodevelopmental
disorders discussed in this review, behavioral habituation seems to be impaired, but
specifically designed studies of neural adaptation are not yet widespread. In future studies,
it would be relevant to investigate these adaptation mechanisms using more complex
stimuli that may contain social cues, for example in order to study their involvement
in other components of the symptomatology of neurodevelopmental disorders, such as
socio-communicative difficulties.
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