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Abstract: Spaceflight associated neuro-ocular syndrome (SANS) is a unique phenomenon that has
been observed in astronauts who have undergone long-duration spaceflight (LDSF). The syndrome
is characterized by distinct imaging and clinical findings including optic disc edema, hyperopic
refractive shift, posterior globe flattening, and choroidal folds. SANS serves a large barrier to
planetary spaceflight such as a mission to Mars and has been noted by the National Aeronautics and
Space Administration (NASA) as a high risk based on its likelihood to occur and its severity to human
health and mission performance. While it is a large barrier to future spaceflight, the underlying
etiology of SANS is not well understood. Current ophthalmic imaging onboard the International
Space Station (ISS) has provided further insights into SANS. However, the spaceflight environment
presents with unique challenges and limitations to further understand this microgravity-induced
phenomenon. The advent of artificial intelligence (AI) has revolutionized the field of imaging in
ophthalmology, particularly in detection and monitoring. In this manuscript, we describe the current
hypothesized pathophysiology of SANS and the medical diagnostic limitations during spaceflight
to further understand its pathogenesis. We then introduce and describe various AI frameworks
that can be applied to ophthalmic imaging onboard the ISS to further understand SANS including
supervised/unsupervised learning, generative adversarial networks, and transfer learning. We
conclude by describing current research in this area to further understand SANS with the goal of
enabling deeper insights into SANS and safer spaceflight for future missions.

Keywords: spaceflight associated neuro-ocular syndrome; artificial intelligence; machine learning;
microgravity
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1. Introduction

Spaceflight-associated neuro-ocular syndrome (SANS) describes a specific collection
of neuro-ophthalmic changes that are observed in astronauts in long-duration spaceflight
(LDSF) missions [1]. These findings include optic disc edema (ODE), globe flattening,
choroidal folds, and hyperopic shift. SANS is one of the largest physiological barriers for
planetary spaceflight with the National Aeronautics and Space Administration (NASA)
designating it as a “red” risk based on occurrence likelihood and impact on astronaut health
and mission performance [2]. With this designation, there is a high priority to further un-
derstand SANS pathogenesis and development of countermeasures for future spaceflight.
While it is a top priority for mitigation development and a large barrier to future spaceflight,
the pathogenesis of SANS is not well understood [1]. The spaceflight environment holds a
myriad of limitations, including limited medical and diagnostic capabilities. This austere
environment holds various constraints to investigating SANS pathophysiology and subse-
quent insights into effective countermeasure research. The advent of artificial intelligence
(AI) has revolutionized the field of medicine in diverse aspects including disease detection
and management [3,4]. The utilization of AI has potential to address several limitations
in the spaceflight environment. In this manuscript, we discuss advances in artificial in-
telligence applications that can be utilized to detect and study the pathophysiology of
SANS during spaceflight. To provide context for how AI architectures can conduct these
tasks, we first review SANS findings and proposed hypotheses of pathogenesis including
cephalad fluid shifts, ocular glymphatic system dysfunction, and genetic factors. Following
this overview, we discuss the current limitations in the spaceflight environment to further
characterize SANS and its pathogenesis. Subsequently, we provide an overview of key AI
techniques that have the potential to address these barriers, including supervised learning,
unsupervised learning, generative adversarial networks, and transfer learning. We also
provide architectures designed for the further understanding of SANS with the current
imaging modalities available on the International Space Station (ISS).

2. Spaceflight-Associated Neuro-Ocular Syndrome (SANS)

Vision is of the utmost importance in astronaut health and mission performance during
spaceflight missions. Beginning in 1989, astronauts were asked about visual changes fol-
lowing spaceflight missions, which led to multiple reports of visual changes [5]. Persistent
anecdotes of visual changes led to further investigation by NASA, including ophthalmic
imaging. These investigations led to the first description of SANS by Mader et al., which
examined the various ophthalmic changes recorded in astronauts following spaceflight [5].
Employing a combination of modalities and procedures including optical coherence to-
mography (OCT), fundus examination, magnetic resonance imaging (MRI), and lumbar
puncture, this report identified several core changes, including optic disc edema, poste-
rior globe flattening, retinal nerve fiber layer thickening, cotton wool spots (CWS), and
hyperopic refractive shifts following LDSF [5]. Mader et al. explored several etiologies
to explain their findings, including localized fluid shifts as the pathogenesis, citing the
delicately balanced pathways of flow through the intracranial subarachnoid space (SAS)
and the optic nerve SAS. If microgravity altered the flow in these routes, it could impede
outflow and cause a buildup of CSF in the optic nerve sheath (ONS). This hypothesis for
SANS pathogenesis has since been explored in-depth and will be discussed at length in the
subsequent section.

Proposed Pathophysiology of SANS

Knowledge of SANS and its pathophysiology is constantly evolving. The mechanisms
underlying the development of SANS continues to be an area of investigation, and, in line with
the multiple manifestations of its presentation, its etiology is likely multifactorial [6–8]. This
section’s review of proposed pathophysiology for SANS is intended to provide context for
subsequent sections reviewing the utilization of AI applications to further understand SANS.
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“Spaceflight-associated neuro-ocular syndrome” was initially termed “Vision Impair-
ment and Intracranial Pressure” (VIIP) because it was thought that elevated intracranial
pressure (ICP) was the driving factor of SANS [1,2]. It has been hypothesized that cephalad
fluid shifts observed during microgravity may lead to elevated ICP [9,10]. Under terrestrial
gravitational conditions in the standing position, fluid at rest in the body (with a particular
focus towards intravascular and cerebrospinal fluid) exerts a hydrostatic pressure down-
wards [9–11]. Weightlessness causes this pressure to decrease (P = ρgh where ρ = density,
g = gravity, h = height, and there is a reduction in g due to the weightless environment),
leading to a fluid shift towards the head. Microgravity has been observed to cause stagna-
tion and even reversal in the internal jugular veins (IJVs) of an LDSF crew [12]. If similar
shifts occur in the ocular veins, their congestion could spur choroidal expansion and CWS
formation. Cephalad fluid shifts are thought to impose similar restrictions on cerebral
spinal fluid (CSF) flow and drainage, a blockage that poses particular risk to the choroid
and optic nerve. In normal physiology, CSF drains from the choroid plexus into the cerebral
vasculature, flowing through the brain and ocular system. A loss in hydrostatic pressure
may slow CSF flow velocity and decrease its resorption [13], overwhelming decompression
mechanisms. The accumulated CSF may cause swelling and elevated pressure in the optic
nerve sheath, which in turn contributes to ODE and globe flattening [5,14]. In the setting
of presumed elevated ICP, VIIP shared similarities with terrestrial idiopathic intracranial
hypertension (IIH), primarily ODE in the setting of elevated ICP. Nevertheless, it is worth
noting that IIH is additionally distinguished by the occurrence of persistent headaches,
double vision (diplopia), and pulsating ringing in the ears (pulsatile tinnitus), which are
clinical aspects that have not been extensively documented/reported among SANS as-
tronauts. Moreover, the SANS condition is characterized by the presence of asymmetric
or unilateral ODE, while IIH typically manifests with bilateral ODE [1,15]. Furthermore,
opening pressures on post-flight lumbar punctures in astronauts with SANS revealed only
mildly elevated postflight ICP of a significant value observed in terrestrial IIH, although no
lumbar punctures have been performed during spaceflight to date. [1,5].

Another discrepancy that has also been noted is that if venous pressures were to cause
elevated ICP is that intraocular pressure (IOP) should be elevated as well [16]. Persistent
IOP elevation during LDSF has not been observed [16]. In addition, central venous pressure
(CVP) has not been elevated following the observations of multiple missions [17]. To help
uncover and explain these observations, the effects of weightlessness on tissue pressures
have been proposed and investigated in its role in SANS pathogenesis [16–18]. An inter-
esting observation is that there is a positive relationship between individuals developing
SANS and pre-flight body weight [19], while in microgravity, there is a reduction in tissue
compressive forces [16]. The effect of the removal of the overall tissue compressive forces
has been observed to be greater than the weight of an individual [19,20]. This reduction of
tissue compression leads to reduced venous pressure, and this effect is more pronounced
in individuals of larger weight. The reduction in venous pressure leads to a reduction in
transmural pressure [16]. Given that there are no typical postural and diurnal alterations to
CVP during spaceflight, this change is more persistent in the microgravity environment.
The continued transmural pressure during LDSF may lead to remodeling of the eye over
time, which may lead to signs of SANS in astronauts [16].

In the Studying the Physiological and Anatomical Cerebral Effects of CO2 and Tilt
(SPACECOT) study, cerebral blood volume (CBV) was analyzed with near-infrared spec-
troscopy (NIRS) in subjects undergoing head-down tilt, a terrestrial analog for SANS [21].
The results from the SPACECOT study observed an increase in CBV in individuals undergo-
ing HDT. The authors in this study hypothesized that persistent increased CBV pulsatility
during LDSF may lead to remodeling of ocular structures [21]. The remodeling process
helps to explain why astronauts continue to have persistent SANS findings even after
returning to Earth [21].

Mechanical shifting of the brain in the upwards direction has been proposed as a
contributor to SANS through its subsequent uplifting of the optic chiasm. Evidence of
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an upward shift of the brain and its effects was observed by Roberts et al. in a study
comparing pre- and post-flight MRI images of 34 astronauts’ brains [22]. The authors
examined anatomical changes in the brain and its CSF spaces, tracking vertical brain
displacement, central sulcus volume, ventricle volume, and changes in the volume of
CSF spaces at the vertex. Astronauts were grouped based on mission length, resulting
in 18 LDSF and 16 short-duration (SD). High-resolution cine MRI clips were generated
for 12 astronauts within the LDSF group and 6 in the SD group. In these clips, upward
shift of the brain was observed after all LDSF but none of the SD flights. Three of the
twelve long-duration astronauts developed ODE; all three of these subjects also exhibited
irregular CSF pressure and narrowing of the central sulcus. However, these symptoms
also appeared in several other members of the LDSF group who did not develop ODE,
indicating that alterations in CSF pressure may not levy sufficiently robust effects to cause
ODE. Narrowed CSF spaces, including the central sulcus, occurred often within the LDSF
group and were correlated with upward brain shifting. A reduction in volume in these CSF
spaces may lead to subsequent ventricle congestion [22]. These findings are valuable in
light of a mathematical model of ONS mechanics composed by Shinojima et al. Their model
used optic nerve sheath diameter (ONSD) to calculate CSF pressure, enabling them to
monitor CSF pressure in astronauts using only measures of their ONSD. However, during
application, the model reported implausibly high CSF pressures for several astronauts [23].
This result led the authors to believe that the astronauts’ ONSs had elasticities that differed
from the standard measure used in the model. They hypothesized that this degraded
elasticity was an effect of the upward shift of the brain, whose consistent backwards pull on
the optic nerve could deform the ONS dura. This model reinforces Roberts et al.’s findings,
and the studies in conversation with each other lend support to upward brain shifting as a
potential mechanism for SANS [23].

Recent findings have tentatively linked SANS to the ocular glymphatic system. The
glymphatic system is a recently discovered network of perivascular pathways within the
brain that washes out excess interstitial fluid, clears waste from the brain and central
nervous system, and distributes compounds such as lipids, glucose, and amino acids [24].
It has also been proposed as a primary mechanism for CSF transport [25]. In this model,
CSF flows into the cranial SAS from the choroid plexus, traveling through the brain via
perivascular spaces (PVS). It eventually enters the complex brain parenchyma, flushing out
waste and interstitial fluid and then draining into the lymphatic system. Cranial glymphatic
flow was linked to the ocular system in a 2017 study by Mathieu et al. which observed
CSF inflow into the optic nerve spaces [26]. Additionally, it has been illustrated that ocular
fluids are cleared from the eye via perivenous drainage pathways in rodents [27]. This
connection led to the definition of a specialized ocular glymphatic system, one which
relies on a delicate balance of pressures, polarization, and venous and arterial functionality.
Wostyn et al. discusses the potential mechanisms and consequences of ocular glymphatic
dysregulation, focusing specifically on instances of PVS dilation [25]. They identify two
key mechanisms by which spaceflight could induce PVS dilation. The first draws from
Marshall-Goebel et al.’s IJV findings, described above. The altered hemodynamics that
they describe cause cerebral vein distention. Because an increase in venous volume would
necessarily shrink the surrounding perivenous outflow, this vascular congestion could halt
glymphatic outflow and drainage. CSF continuing to enter via the periarterial spaces would
be unable to move forwards and instead accumulate, causing the observed periarterial
dilation. Wostyn et al. further propose that weakened CSF resorption, when combined
with the impaired outflow, can cause CSF buildup along the ONS, generating pressure
near the optic nerve head and contributing to globe flattening and ODE. This buildup
may also contribute to choroidal folds by forcing choroid expansion, increasing its rigidity,
and predisposing it to corrugation [28]. Further research in the ocular glymphatic system
during microgravity may provide additional insights into SANS.

Along with the physical mechanisms proposed to drive SANS, research suggests that
genetics and vitamin status may predispose some astronauts to develop SANS [29,30].
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Zwart et al. investigated whether astronauts with naturally higher levels of 1-carbon metabo-
lites experienced SANS-associated ophthalmic changes [29,30]. 1-carbon metabolite concen-
tration was shown to be correlated with ophthalmic change in several astronauts in 2012 [31].
The authors investigated five single-nucleotide polymorphisms (SNPs) within several genes
involved in 1-carbon metabolism to assess their potential correlation with these symptoms:
globe flattening, choroidal folds, optic disc edema, CWS, and change in diopters. They created
three models of association, which tracked the development of SANS against (1) days in space,
(2) days + presence of polymorphisms, and (3) days + presence + vitamin B levels. Comparing
these models revealed several genetic associations. The MTRR 66 G allele was highly corre-
lated with choroidal folds and CWS; astronauts homozygous for the GG genotype always
presented both symptoms, while those homozygous for AA developed none. The SHMT
1 C allele was correlated with ODE, whereas the SHMT 1420 TT allele appeared to provide
protection from it as none of the astronauts with the TT allele developed ODE. Although none
of the five SNPs were associated with diopters or globe flattening, these findings nonetheless
provide strong support for the possibility of genetic predisposition for SANS. Building on
their previous work, Zwart et al. published a 2019 study investigating proposed links between
1-carbon metabolic polymorphisms and ODE. The study’s subjects experienced head-down
tilt bed rest (HDTBR), a terrestrial analog technique that mimics the hydrostatic pressure
of microgravity [32], under 0.5% elevated CO2 levels for 30 days. To determine the risk of
developing ODE, total retinal thickness (TRT) and RNFL thickness were recorded using OCT.
Changes in thickness were then analyzed against the participants’ allele types and vitamin B
levels. The authors found that TRT in participants with 3–4 risk alleles increased dramatically
more than in those with 0–2, creating a difference of 40 µm. Furthermore, pre-HDTBR TRT
for participants with 3–4 risk alleles was 14 µm greater than the low-risk group at baseline.
Thus, the risk alleles were both correlated with larger TRT at onset and greater response
during exposure to adverse conditions. These findings are striking and offer an intriguing
explanation of the differential development of SANS in astronauts (Table 1).

Table 1. Hypotheses for the pathogenesis of spaceflight-associated neuro-ocular syndrome (SANS).

Hypothesis Summary Reference

Cephalad fluid
shift and elevated
intracranial pressure

Drops in hydrostatic pressure cause widespread disruption of
cranial fluids. These shifts can cause venous congestion and block
cerebrospinal outflow, resulting in excess pressure on the optic
nerve sheath (ONS). Congestion in the cranial vascular system and
CSF spaces causes ICP to increase. The elevation in overall pressure
is transferred to the ocular system via the ONS, which may cause
SANS findings.

Mader et al., 2011 [5]
Marshall-Goebel et al., 2019 [12]
Orešcović & Bulat, 1993 [13]
Martin Paez et al., 2020 [33]
Zhang et al., 2018 [9]
Zhang et al., 2014 [34]
Lee et al., 2020 [1]

Brain upward shift
Microgravity can cause the brain to shift upwards, retracting the
optic nerve and compressing CSF spaces. Reduced CSF space volume
results in congestion and a subsequent increase in CSF pressure.

Roberts et al., 2017 [22]
Shinojima et al., 2018 [23]

Ocular glymphatic
dysfunction

The ocular glymphatic system is an offshoot of the general
glymphatic system, a series of perivascular spaces (PVS) that
transport CSF. Altered venous and arterial flows modify these PVS;
such changes both increase CSF inflow and impair its outflow and
drainage, causing CSF buildup near and along the ONS.

Jessen et al., 2015 [24]
Mathieu et al., 2017 [26]
Wang et al., 2020 [27]
Wostyn et al., 2018 [28]
Wostyn et al., 2022 [25]

Genetics

Several polymorphisms within 1-carbon metabolites have been
correlated with increased presentation of SANS symptoms,
suggesting that genetic mechanisms could predispose astronauts to
developing the syndrome.

Zwart et al., 2012 [31]
Zwart et al., 2016 [29]
Zwart et al., 2019 [30]

Vitamin B levels Higher levels of vitamin B have been correlated with lower incidence
and magnitude of SANS symptom development.

Zwart et al., 2016 [29]
Zwart et al., 2019 [30]
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Table 1. Cont.

Hypothesis Summary Reference

Reduction of tissue
compressive forces

Reduction of tissue compressive forces in microgravity may
lead to a reduction in transmural pressure at the posterior
aspect of the eye. Persistent transmural reduction may lead to
ocular remodeling and SANS.

Buckey et al., 2022 [16]
Buckey et al., 2018 [19]
Norsk et al., 2020 [18]

Cerebral blood
volume pulsatility

Cerebral blood volume pulsatility may be increased during
spaceflight. This persistent increase in pulsatility during
long-duration spaceflight may affect nearby ocular structures
to cause remodeling.

Strangman et al., 2017 [21]

3. Medical Diagnostic Challenges during Spaceflight

The field of space medicine is faced with distinctive challenges in the diagnosis
and treatment of medical conditions during spaceflight [35]. These challenges can be
attributed to several factors, including constrained medical capabilities, a scarcity of medical
personnel, and restricted access to diagnostic imaging [1,2,36]. Furthermore, the absence of
invasive approaches such as fluorescein angiography and lumbar punctures, along with
imaging modalities such as MRI, may present as an obstacle in understanding particular
medical conditions such as SANS [37]. The comprehensive documentation of SANS requires
careful evaluation of multiple imaging modalities. This presents a significant challenge
for astronauts because the available diagnostic imaging capabilities are limited, and the
transmission of high-quality images can be delayed, particularly when traveling away from
Earth [37]. In addition, the limited number of astronauts participating in space missions
poses a challenge in obtaining a comprehensive dataset for grasping SANS, as well as for
the purposes of developing artificial intelligence (AI) models for diagnostic purposes [36].
In this section, we describe the unique challenges that are experienced during spaceflight.

Despite these challenges, recent advances in AI have shown promising results in the
diagnosis of SANS [38]. Various advances have been made for terrestrial ophthalmic diseases
including IDx-DR, the first FDA-approved AI device for the diagnosis of diabetic retinopathy
with fundus imaging [39]. As fundus imaging is available on the ISS, such technology can be
relatively quickly translated and applied to SANS. In addition to fundus imaging, OCT and
orbital ultrasound are accessible onboard the International Space Station (ISS) and can provide
valuable information for the diagnosis of SANS [40]. As seen with fundus imaging, OCT
imaging is also well-suited for AI-based automated diagnosis due to the ease of acquiring
high-quality images [41]. The interpretation of various imaging modalities may be aided by
AI-based automated diagnostics, providing prompt monitoring of SANS.

3.1. Delayed Communication and Imaging Transmission

One of the anticipated obstacles in the diagnosis of medical conditions during plane-
tary spaceflight involves the delayed transmission of high-quality medical images, particu-
larly when the spacecraft is travelling away from Earth [36,42]. This can be attributed to
several factors, such as limited bandwidth, distance, and communication interruptions [36].
In various cases, including SANS documentation, medical images need to be taken onboard
the spacecraft, which can be sent to Earth for diagnosis by medical experts.

For planetary travel, this process may take several hours or even days depending on
various factors including the distance between the spacecraft and Earth and the size/quality
of images. This delay in transmission can be critical when countermeasure initiation
is imperative. To overcome these challenges, several approaches have been proposed,
including the use of advanced imaging techniques, automated analysis algorithms, and
even AI-based diagnosis/monitoring that we discuss in subsequent sections [3,43].

There have been several advancements in onboard medical imaging technologies that
can provide high-quality medical images without the need for transmission to Earth. For
instance, researchers have developed a portable ultrasound device that can be used onboard
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the International Space Station (ISS) to provide real-time imaging of the heart, blood vessels,
and other organs [44–46]. Such systems can also be useful in diagnosing/monitoring SANS,
which is a major concern for LDSF missions.

3.2. Limited Individuals Undergoing Spaceflight

Another significant challenge in diagnosing medical conditions during spaceflight
is the limited number of astronauts, making it difficult to have a broad dataset for under-
standing SANS. Since SANS is a relatively new condition, there is limited data available on
its causes, mechanisms, and long-term effects [5]. Moreover, the limited number of astro-
nauts who have developed SANS makes it difficult to identify the risk factors associated
with the condition [5,47]. The small proportion of astronauts who suffer SANS makes it
difficult to completely comprehend this condition. Few astronauts travel over extended
periods of time in space, and not all of them encounter SANS. The difficulty of defining
SANS is exacerbated by the variation in the onset and severity of the illness in various
people [47]. The inability to properly comprehend the pathophysiology of the illness is
further hampered by the absence of a comprehensive dataset on SANS.

Data for SANS primarily comes from astronauts who have completed space mis-
sions [47,48]. These investigations have been invaluable regarding new information about
the risk factors, clinical characteristics, and prevalence of SANS. However, these studies
are constrained by small sample sizes and reliance on information gathered from numer-
ous missions spanning many years. Data collected during these missions may not be
uniform because in-flight medical technology continues to change (e.g., optical coherence
tomography angiography capabilities onboard the ISS in 2018).

One potential solution to this challenge is to collect additional data on astronauts who
have spent long durations in space. This can be achieved through longitudinal studies that
follow astronauts before, during, and after their space missions to monitor any changes in
their visual and neural health. Furthermore, the development of wearable technologies
that can continuously monitor astronaut health during spaceflight can provide real-time
data on any changes in visual and neural health, including the onset of SANS [49–51].

4. Imaging Onboard the International Space Station

There are several types of retinal imaging techniques that can be used onboard the
ISS to aid in the diagnosis and monitoring of ocular abnormalities, including fundus
photography, optical coherence tomography (OCT), and orbital ultrasound. Each of these
imaging techniques can provide valuable information for diagnosing and monitoring ocular
abnormalities in astronauts during spaceflight.

1. Fundus photography: Fundus photography is a non-invasive imaging modality that
captures detailed images of the retina, optic nerve, and blood vessels. This technique
can be used to detect and monitor a variety of ocular abnormalities, including diabetic
retinopathy, glaucoma, macular degeneration, and retinal detachment [52].

2. Optical coherence tomography (OCT): OCT is an imaging technique that utilizes light
waves to produce a detailed, cross-sectional image of the retina. This technique can
provide detailed information on the thickness of the retinal layers, which can be useful
for diagnosing and monitoring conditions such as macular edema, macular holes,
and vitreomacular traction [53,54]. OCT can also be used to monitor changes in the
retinal nerve fiber layer thickness, which is important for diagnosing and monitoring
glaucoma [55]. OCT has been utilized to evaluate SANS during and after spaceflight
(Figure 1) [7]. As of 2018, OCT angiography (OCTA) and MultiColor Imaging became
available onboard on the ISS [1]. These recent advances will allow for additional
insights into changes within the retina and retinal vasculature during spaceflight.

3. Orbital ultrasound: Orbital ultrasound is a non-invasive imaging technique that
employs sound waves to produce images of the structures in and around the eye. This
technique can be used to visualize the optic nerve and surrounding tissues, which
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can be useful for diagnosing and monitoring conditions such as optic nerve swelling
(papilledema), retinal detachment, and retrobulbar hematoma [56].
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Figure 1. Optical coherence tomography (OCT) of an astronaut’s eye pre-flight (top image) and
30 days before to returning to Earth from spaceflight (bottom image, R-30). OCT in R-30 demonstrates
optic disc edema, choroidal folds, and peripapillary wrinkles. Courtesy of NASA. Reprinted with
permission from Ong et al. Spaceflight-associated neuro-ocular syndrome: proposed pathogenesis,
terrestrial analogues, and emerging countermeasures. British Journal of Ophthalmology. January
2023. https://doi.org/10.1136/bjo-2022-322892 (accessed on 25 June 2023) under Creative Commons
Attribution NonCommercial (CC BY-NC 4.0) license (https://creativecommons.org/licenses/by-nc/
4.0/legalcode) (accessed on 25 June 2023).

5. Introduction to Artificial Intelligence-Based Diagnosis in Ophthalmic Imaging

The prompt identification and management of SANS is imperative to minimize its
detrimental impact on the well-being of astronauts. The transfer of high-quality visual
information from space to Earth may experience latency issues because of restricted band-
width, which could delay timely medical assessment and intervention [57]. Recent ad-
vancements in AI have the potential to significantly improve the diagnostic capabilities in
spaceflight [58]. AI algorithms can process large amounts of medical data quickly and ac-
curately, allowing for the detection of subtle changes in ocular anatomy that could indicate
the development of SANS. Additionally, AI can help generate high-quality images from
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low-resolution or noisy data, which is particularly important when considering the limited
diagnostic and imaging capabilities on board spacecrafts [4,59].

One area where AI is already making significant contributions is in the field of auto-
mated diagnosis in ocular imaging. Deep learning algorithms have demonstrated high
accuracy in detecting diabetic retinopathy, a highly prevalent ocular disorder that can
lead to vision loss if untreated [60]. Furthermore, the IDx-DR system, which is the first
FDA-approved AI device for the automated diagnosis of diabetic retinopathy [61], has been
shown to achieve a diagnostic accuracy rate of 87.4%, which is comparable to practicing
ophthalmologists [61]. Similarly, AI-based algorithms can be trained to automatically
detect and quantify changes in the retinal anatomy that are indicative of SANS. This can be
achieved through both supervised and unsupervised learning techniques. In supervised
learning, the machine learning algorithm is trained on a dataset of labeled images [62],
with the labels indicating the presence or absence of SANS. The algorithm can then use
this knowledge to identify similar patterns in new, unlabeled images [62]. In unsupervised
learning, the algorithm learns to identify patterns in the data without any labeled examples
and can be used to identify features that are associated with SANS [63].

The success of IDx-DR and other AI-based diagnostic devices highlights the potential
of AI in ocular imaging and its ability to overcome some of the challenges associated with
spaceflight medical diagnostics. This section will examine the potential application of AI in the
automation of the diagnosis of SANS under conditions of transmission delays in high-quality
imaging to mission control centers and limited medical personnel during spaceflight.

6. Convolutional Neural Networks, Supervised Learning, and Unsupervised Learning
for SANS

In this section, we will discuss two primary techniques for artificial intelligence-based
diagnosis in ocular imaging that can be utilized for SANS: Supervised and Unsupervised
learning. We also discuss convolutional neural networks (CNNs), which serve as a fundamen-
tal architecture in deep learning for imaging processing/recognition. It is important to note
that many of the applications in the context of spaceflight and SANS have not yet been tested
in-flight. The purpose of this section is to discuss foundations of the technology, terrestrial
applications, and the connections of its relevance to SANS for potential future applications.

Supervised learning involves training an algorithm using labeled data, where the
correct diagnosis or classification of the image is provided to the algorithm [62]. This
allows the algorithm to learn how to accurately diagnose new images it has not seen before.
Unsupervised learning involves training an algorithm using unlabeled data, where the
algorithm must identify patterns and structures within the data itself [63]. This approach is
useful when there is not enough labeled data available, or when new patterns may arise
that were not previously identified.

With retinal imaging, these two revolutionary techniques may be able to accurately
detect and diagnose retinal changes that may be indicative of SANS [64]. Additionally,
the use of AI-based diagnosis can help to mitigate the challenges of limited medical staff
and diagnostic capabilities during spaceflight, allowing for more efficient and accurate
diagnosis of ocular changes. Throughout this section, we will discuss various studies that
have explored the use of these techniques in the context of ocular imaging and spaceflight.

6.1. Convolutional Neural Networks

Deep learning is a subset of machine learning (ML), which is itself a subset of AI [65].
Unlike traditional programming, in which a set of rules are given to solve a particular
problem, machine learning algorithms allow a computer to learn from data inputs and
improve over time [65]. One of the most popular types of machine learning algorithms
used in deep learning is the convolutional neural network (CNN) [65]. CNNs are a class
of neural networks that are commonly used for image classification and recognition [66].
They are largely inspired by the structure and function of the visual cortex in the brain [67].
The architecture of a CNN is typically composed of a series of (1) Convolutional layers,
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(2) Pooling layers, and (3) Fully connected layers. In a CNN, the input image is passed
through multiple convolutional layers. Every convolutional layer applies a set of filters
to the original input image to extract different features [67,68]. The filters are learned
by the network during training, and they help to identify patterns in the image that are
important for classification [68,69]. After the convolutional layers, the output is typically
passed through one or more pooling layers, which downsample the features to reduce
computational complexity [68,69]. Finally, the output is passed through one or more fully
connected layers, which combine the features to produce a classification [67–69].

While CNNs are powerful tools for analyzing retinal images, they often require
significant amounts of labeled data for training. In the context of spaceflight, where the
number of astronauts is limited, acquiring large amounts of labeled data may be challenging.
This limitation arises from a variety of factors, encompassing the distinct and rigorous
conditions of the space environment, the prolonged durations of missions, and the absence
of resupply capabilities. However, recent advances in transfer learning, where pre-trained
models are fine-tuned on a smaller dataset, have shown promise in reducing the amount of
labeled data required for training [69,70].

Overall, the application of CNNs and other deep learning techniques in retinal imag-
ing holds great potential for the automated diagnosis with ophthalmic imaging during
spaceflight missions. Figure 2 demonstrates a CNN architecture that can utilize multiple
blocks to classify between OCT images with SANS findings and those that do not have
SANS findings.
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(OCT) images, an imaging modality onboard the International Space Station (ISS). The encoder con-
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Figure 2. Deep convolutional neural network architecture designed for classifying between space-
flight associated neuro-ocular syndrome (SANS) and non-SANS in optical coherence tomography
(OCT) images, an imaging modality onboard the International Space Station (ISS). The encoder
consists of residual blocks which have a convolution, batch-normalization, leaky-ReLU activation
layer and a residual connection from the input to the output. This is followed by an Identity block,
which consists of a convolution layer, batch-normalization layer, and leaky-ReLU layers to learn
inherent features. We also utilize a sub-sampling block, which downsamples the spatial features to
half the size using stride = 2 convolution operator. The decoder consists of a Global average pooling
layer to calculate the channel-wise average of the features and the three dense, fully connected layers
for flattening the 2D spatial features to 1D features. The labels utilized are “Non-SANS” and “SANS”,
and we utilize supervised cross-entropy loss function to train the model.

6.2. Similarities and Differences between Supervised and Unsupervised Learning

Supervised and unsupervised learning are two fundamental approaches to machine
learning that have been extensively used in various fields, including medical imaging
analysis [71]. Both approaches involve training models to identify patterns and make
predictions based on input data, but they differ in their training process, the nature of the
input data, and the types of tasks they are suitable for.
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Supervised learning is a type of machine learning technique that involves training
a model on labeled data with the goal to predict the output for new input data [62]. The
input data and their corresponding labels are used to guide the learning process and adjust
the model’s parameters to minimize the prediction error [62]. In medical imaging analysis,
supervised learning has been used for various tasks, including classification of diseases,
segmentation of anatomical structures, and detection of abnormalities [62]. Some examples
of supervised learning algorithms that have been used in medical imaging analysis include
support vector machines (SVM), random forests, decision trees, and deep learning models
such as CNNs [68,69].

Unsupervised learning is another type of machine learning technique that involves
training a model with unlabeled data to identify hidden patterns or structures in the data [63].
As opposed to supervised learning, unsupervised learning does not require labeled data or the
prediction of a specific output [63]. Instead, the model learns from the input data distribution
and tries to cluster similar data points or identify outliers [63]. Unsupervised learning has
been used in medical imaging analysis for various tasks, such as image registration, data
compression, and dimensionality reduction [72,73]. Some examples of unsupervised learning
algorithms that have been used in medical imaging analysis include k-means clustering,
principal component analysis (PCA), and autoencoders [74–76].

Despite their differences, supervised and unsupervised learning share some similar-
ities. For example, both approaches involve training a model to learn from data, which
requires a large dataset and computing resources [77]. Both approaches also require careful
preprocessing of the input data, including normalization, augmentation, and feature extrac-
tion [62,63]. Moreover, both approaches have their advantages and limitations depending
on the nature of the tasks and the characteristics of the data.

6.3. Supervised Learning for SANS

One of the key advantages of supervised learning is its ability to predict a specific
output for novel input data, rendering it suitable for tasks such as classification and
segmentation [78]. Supervised learning also allows for the incorporation of prior knowledge
and domain expertise into the model through the labeled data [62]. However, supervised
learning requires a large amount of labeled data for training, which can be time-consuming
and expensive to obtain [62,78,79]. Additionally, supervised learning models are prone
to overfitting if the training data is not representative of the test data, and the model’s
performance can suffer if the labeled data contained lots of noise or is incomplete [78].

In contrast, unsupervised learning does not require labeled data and can identify
hidden patterns or structures in the data, making it suitable for tasks such as clustering
and data visualization [74,80]. Unsupervised learning is also more scalable and adaptable
than supervised learning because it can learn from unlabeled data and adapt to new
data distributions without the need for retraining [63,80]. However, unsupervised learning
models are more difficult to evaluate and interpret than supervised learning models because
they do not have a specific output to predict [63].

In regard to the applying these techniques to SANS, supervised learning has been
applied terrestrially in ophthalmic diagnosis using retinal imaging modalities such as
fundus photography and OCT [70]. These modalities enable the visualization of various
structures in the retina including blood vessels, the optic nerve head, and the macula [70].
An emerging approach for using supervised learning in ophthalmic diagnosis is through
retinal vessel segmentation [81]. Retinal vessel segmentation involves the separation of
blood vessels from the surrounding retinal tissue in fundus images [81]. Accurate vessel
segmentation is critical for the diagnosis of various retinal diseases because changes in the
appearance and morphology of vessels can indicate underlying pathology [81]. Several
studies investigated retinal segmentation using different networks and algorithms. For
example, Gegundez-Arias et al. presented a deep learning approach utilizing the U-Net
network architecture, which integrates residual blocks and batch normalization techniques
to effectively segment blood vessels in fundus images [82]. Similarly, Boudegga et al.
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proposed a U-shaped deep learning network framework capable of accurately segmenting
retinal blood vessels [83]. Moreover, a study by Oliveira et al. presented a technique that
minimizes the computational complexity of the convolutional layer in a network, while
also preserving segmentation accuracy [70]. This was achieved by combining a multi-scale
wavelet transform with a multi-scale convolutional neural network to segment retinal blood
vessels [70]. Tan et al. introduced a spatial attention mechanism into their new lightweight
pyramid network in order to fuse multi-scale features and retain the structural information
of retinal vessels. The construction of the pyramid hierarchy model is aimed at producing
multi-scale representations, which yielded promising results for better visualizing vessel
structures and better understanding the location of vessels [84].

6.4. Unsupervised Learning for SANS

Delayed transmission of high-quality imaging data is a challenge that is faced during
spaceflight missions [57,63]. This unique spaceflight limitation can be overcome by employ-
ing AI to process the images onboard the spacecraft. Unsupervised learning is a machine
learning technique that is well suited for processing high-dimensional, complex data such
as images without the need for explicit supervision [62,85].

Terrestrially, unsupervised learning has been used to identify hidden patterns or
features in data and can be used for tasks such as image reconstruction and denoising [86].
In regard to SANS, unsupervised learning can be used to analyze and interpret fundus and
OCT images, without the need for explicit labeling [63]. One study used an unsupervised
learning technique known as a deep Boltzmann machine to extract features from fundus
images for the purpose of classifying different stages of diabetic retinopathy [87]. Another
study used a deep autoencoder, which is a type of unsupervised learning algorithm, to
learn the features of OCT images for the purpose of classifying glaucoma.

Image reconstruction in unsupervised learning may be a solution to the delayed trans-
missions during spaceflight for SANS images. Image reconstruction is the process of creating
a high-quality image from a set of low-quality or compressed images [88]. Unsupervised
learning can be employed for image reconstruction in spaceflight missions where there is
limited bandwidth for transmitting high-quality images to Earth [37,88]. High-quality images,
such as SANS OCT images, may be compressed and possibly sent and received quicker back
on Earth. Image reconstruction may be utilized on Earth to reconstruct these high-quality
images for terrestrial imaging experts to evaluate in a timely manner.

7. Generative Adversarial Networks

A Generative Adversarial Network (GAN) is a type of AI that is revolutionizing
medicine [89]; GANs consist of two neural networks: (1) generator and (2) discri-
minator [64,90]. The generator network creates new data that is similar to a training
dataset, while the discriminator network learns to distinguish between synthesized and
real data [64,90]. GANs have been employed in a variety of diverse applications, includ-
ing image and audio synthesis, data augmentation, and anomaly detection [91]. In the
context of spaceflight, GANs have the potential to generate high-quality images from low-
resolution or noisy data, as well as to provide training data for machine learning models.
In this section, we discuss the foundation of GAN technology and current applications in the
terrestrial setting. We then discuss how this emerging technology is relevant to SANS for
potential future applications. As a relatively new technology, rigorous validation for space
medicine applications will be extensively required in the future prior to in-flight deployment.

GANs have been used extensively for image synthesis tasks, including super-resolution,
inpainting, and style transfer [92–94]. Super-resolution refers to the task of generating
a high-resolution image from a low-resolution input, while inpainting involves filling
in missing or corrupted regions of an image [95]. Style transfer refers to the process of
transferring the style of one image onto another while preserving the content [96]. These
tasks are particularly relevant for spaceflight, where images may be noisy, low-resolution,
or corrupted due to transmission delays or hardware limitations.
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7.1. GANS for Denoising Retinal Imaging and Data Generation

One application of GANs for spaceflight is the generation of high-quality retinal images
from low-resolution or “noisy” data. For example, GANs have been used to generate high-
resolution fundus images from low-resolution images, with results comparable to those
obtained from traditional image processing methods [97,98]. GANs can also be utilized in
the field of spaceflight to generate synthetic training data for machine learning models to
address limited data during spaceflight. GANs have the potential to produce substantial
amounts of synthetic data that exhibit similarities to authentic data, albeit with differences in
lighting, orientation, or other parameters [64,99]. The network responsible for generating data
is trained to produce synthetic data that can effectively deceive the discriminator network into
perceiving it as authentic data [64]. This process continues iteratively until the generator can
generate synthetic data of higher quality that cannot be discerned from authentic data [64]. A
study by Zhao et al. utilizing GANs and related frameworks in a learning-based approach was
able to successfully synthesize composite images of retinal fundus and neuronal structures.
The model exhibited the ability to acquire knowledge from limited training sets comprising
merely 10 to 20 cases. The images that were synthesized exhibited consistent tubular structures
while displaying varying textural characteristics [99].

This ability to synthesize data can be useful for training machine learning models
on datasets that are limited in size such as SANS data. For example, GANs have been
used to generate synthetic OCT images for monitoring of macular edema post-therapy,
with results comparable to those obtained from real data [100]. Ultimately, GANs have the
potential to improve the quality and quantity of retinal images obtained during spaceflight,
as well as to provide synthetic training data for machine learning models. Future research
directions may focus on developing GANs that are robust to noisy or corrupted data, and
on integrating GANs into spaceflight hardware and software systems.

7.2. GAN Non-Invasive Angiogram Synthesis for SANS

Spaceflight imposes limitations on the availability of medical resources and diagnostic
techniques, making it necessary to explore alternative approaches for medical imaging. For
example, fluorescein angiography (FA), which is an invasive and nephrotoxic diagnostic
test, is a relatively common procedure on Earth, but its risks are exacerbated in the space-
flight environment due to limited medical and safety capabilities [101,102]. While FA has
been never been utilized during spaceflight, its utility in understanding retinal vascular
changes may provide further insights into SANS pathophysiology. However, recent studies
have explored the use of generative adversarial networks (GANs) to generate synthetic
angiographic images from fundus photography, a non-invasive imaging modality on the
ISS. One study published in 2020 used a deep convolutional GAN to generate synthetic
FA images from fundus images. The researchers demonstrated that their GAN model was
able to generate high-quality angiographic images that were comparable to those obtained
from FA in terms of vessel segmentation and perfusion patterns. The study showed that
GAN-based angiographic synthesis has the potential to be a useful tool for diagnosing and
monitoring retinal vascular diseases in space.

It is worth noting that OCTA is now available on the ISS for studying retinal vas-
culature [1]. However, OCTA has its limitations as an angiographic modality, such as a
relatively smaller field of view [103], which can be overcome with GAN-based angiographic
synthesis to provide a larger view of the retinal vasculature. This can be especially useful
in monitoring the effects of microgravity on the retinal vasculature in space. Figure 3
demonstrates a GAN architecture that can take non-invasive fundus images on the ISS and
generate angiograms for retinal vasculature analysis. In summary, the use of GAN-based
angiographic synthesis from fundus images has the potential to overcome the limitations
of invasive and nephrotoxic tests such as FA and provide a non-invasive and real-time
alternative for diagnosing and monitoring retinal vascular diseases during spaceflight
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Figure 3. An overview of proposed Fundus-to-Fluorescein Angiography translation generative adver-
sarial network (GAN) architecture to produce SANS angiograms from fundus images. The architecture
consists of two generators and two discriminators (for coarse and fine images). Each of the architectures
contains distinct blocks, namely: convolution, generator residual, discriminator residual, downsampling,
attention, and upsampling. One of the intermediate layers of the coarse generator is added with the Fine
generator’s intermediate layer for feature fusion. The generator utilizes reconstruction and adversarial
loss, whereas the discriminator utilizes adversarial and feature-matching loss.

8. Transfer Learning

Transfer learning is a technique that involves utilizing pre-existing neural network
architectures and weights to address novel and intricate tasks within a particular do-
main [104]. This approach eliminates the need to build a deep learning model from scratch,
or gather a significant amount of data. This is particularly useful for SANS because there is
limited SANS data available for analysis owing to the limited number of astronauts per
mission. The utilization of transfer learning can enhance the proficiency and efficacy of
deep learning models in instances when the data may be limited or when training deep neu-
ral networks from scratch is computationally challenging [104,105]. A pre-trained model
refers to a widely recognized model that has undergone training on a vast dataset, such as
VGG16 or ResNet [105,106]. Its primary function is to extract high-level features from the
original data. The act of extracting advanced features is commonly referred to as feature
extraction. Subsequently, those already extracted features are utilized as input for a novel
model, which is trained on a reduced dataset, featuring a lower number of parameters to
be optimized [104,107]. The act of refining a pre-existing model using a reduced dataset
is commonly referred to as fine-tuning [105,106]. Although it is a powerful technique, the
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validity of this technology to address limited SANS datasets must be rigorously tested prior
to deployment.

Transfer learning has the potential to enhance the efficiency of AI systems in detecting
ocular abnormalities in-line with SANS, in cases where medical data is limited. The lack
of medical supplies and imaging modalities in space implies that to achieve thorough
and effective visual examination, low mass and low footprint equipment must be utilized.
Transfer learning techniques can be utilized to train a deep neural network for the purpose
of detecting SANS. This can be achieved by utilizing pre-trained models that were originally
designed for image classification tasks, such as ImageNet.

In the context of spaceflight and Earth applications for the detection of ocular disorders,
the use of transfer learning provides numerous benefits:

- Addressing Data Scarcity: Space missions often have limited resources, including
medical data. Transfer learning helps AI systems overcome the problem of sparse data
by using prior knowledge from large, publicly accessible datasets such as ImageNet.

- Effective Model Training: The amount of computing power and training time are
reduced when pre-trained models are fine-tuned using a limited dataset of retinal pic-
tures acquired in space. In resource-constrained areas such as space, this effectiveness
is important. Furthermore, transfer learning combined with pre-trained models allows
AI systems to identify ocular anomalies in astronauts with high accuracy, assisting in
the early detection and treatment of SANS-related problems.

Fine-tuning pre-trained models on a small dataset of retinal images obtained in space
may serve as a promising solution to address the issue of limited data [105].

The application of transfer learning in machine learning involves training a model
on a vast dataset to acquire comprehensive features, which are subsequently utilized
to train another model on a smaller dataset [108]. The concept involves utilizing the
insights acquired from the extensive dataset to enhance the efficacy of the model on the
comparatively smaller dataset. The aforementioned circumstance holds significant value,
especially when the smaller dataset is constrained, which is a common occurrence in
medical imaging domains, encompassing those pertaining to SANS.

Fine-tuning refers to the practice of enhancing the performance of a pre-existing model
by training it on a smaller dataset [79]. This process involves utilizing the knowledge
gained from the pre-training phase to further optimize the model’s performance. There
are two methods for performing fine-tuning on a pre-trained model. The first involves the
freezing of pre-existing layers and the addition of new layers atop the model. The second
method entails the unfreezing of select layers within the pre-trained model, followed by
the retraining of the entire model [79].

An example of fine-tuning involves the utilization of a pre-trained model on a vast
dataset of retinal fundus images, which can be further optimized by adapting to a smaller
dataset of retinal images obtained during a space mission [79]. The proposed approach
would enable a precise and resilient examination of the images while minimizing the
need for substantial additional data. Similarly, it is feasible to adjust a pre-existing model
that has undergone training on an extensive range of OCT images by utilizing a smaller
dataset of OCT images that have been gathered during a space mission. The adoption of
this methodology would facilitate an accurate and robust analysis of the images, without
requiring a substantial amount of new information [79].

The utilization of transfer learning can prove to be advantageous in the field of SANS
due to the lack of extensive datasets that are required for the training of supervised and
unsupervised models [37]. The technique of transfer learning enables the adaptation and
refinement of models that have been trained on extensive datasets to operate effectively on
relatively smaller datasets [37]. Implementing this model during spaceflight and for the
assessment and diagnosis of SANS can offer significant benefits in situations where data
collection is constrained due to the logistical complexities associated with performing medical
imaging procedures in space and/or the sharing of medical images from Earth to the ISS.
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9. Limitations of the Application of Artificial Intelligence to SANS

There are various limitations to the AI technology mentioned above for SANS. A
primary limitation is the validation of the technology. As there is already a limitation in
training data for SANS, there will be a similar difficulty in understanding whether such
AI technology can provide robust outcomes on real SANS data. GAN technology to help
synthesize SANS images may help with datasets; however, true accuracy data must depend
on real SANS images. Another limitation is the computational and electronic capability to
facilitate such advanced techniques over an extended period of time. The computational
and processing requirements to facilitate such techniques may induce a relative strain of
resources for spacecraft and space travel where many resources are limited. Although these
technologies are helpful for SANS, careful consideration must be placed on the resources
such technologies take over the course of prolonged missions.

10. Future Direction and Conclusions

AI has revolutionized how we are approaching terrestrial ophthalmic diseases. These same
techniques can be applied to ophthalmic imaging. Current AI research for SANS is focused on
building architectures for the detection of SANS and further understanding the pathophysiology
of this neuro-ophthalmic phenomenon for orbital and planetary travel [37]. Research is also
focused on merging extended reality technology for SANS and other ophthalmic conditions
during spaceflight, which can be merged with AI techniques [50,109,109–113]. Additionally, as
these AI models are built for austere environments, these emerging and revolutionary techniques
can also be applied to areas on Earth with limited medical capabilities and resources [37].
Another utilization of AI for SANS may be the combination of genetic and nutritional data
with imaging data to improve personalization medicine in SANS. As we look towards the
Mars mission and other planetary missions, the various advances in AI applications can help to
further understand SANS and monitor this neuro-ophthalmic phenomenon.
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