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Abstract: Background: Stroke-associated pneumonia (SAP) is a common stroke complication, and the
changes in the gut microbiota composition may play a role. Our study aimed to evaluate the predictive
ability of gut microbiota for SAP. Methods: Acute ischemic stroke patients were prospectively enrolled
and divided into two groups based on the presence or absence of SAP. The composition of gut
microbiota was characterized by the 16S RNA Miseq sequencing. The gut microbiota that differed
significantly between groups were incorporated into the conventional risk scores, the Acute Ischemic
Stroke-Associated Pneumonia Score (AIS-APS), and the Age, Atrial fibrillation, Dysphagia, Sex,
Stroke Severity Score (A2DS2). The predictive performances were assessed in terms of the area under
the curve (AUC), the Net Reclassification Improvement (NRI), and the Integrated Discrimination
Improvement (IDI) indices. Results: A total of 135 patients were enrolled, of whom 43 had SAP
(31%). The short-chain fatty acids (SCFAs)-producing bacteria, such as Bacteroides, Fusicatenibacter,
and Butyricicoccus, were decreased in the SAP group. The integrated models showed better predictive
ability for SAP (AUC = 0.813, NRI = 0.333, p = 0.052, IDI = 0.038, p = 0.018, for AIS-APS; AUC = 0.816,
NRI = 0.575, p < 0.001, IDI = 0.043, p = 0.007, for A2DS2) in comparison to the differential genera
(AUC = 0.699) and each predictive score (AUCAISAPS = 0.777; AUCA2DS2 = 0.777). Conclusions: The
lower abundance of SCFAs-producing gut microbiota after acute ischemic stroke was associated with
SAP and may play a role in SAP prediction.
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1. Introduction

Acute ischemic stroke is a leading cause of disability and mortality, representing a major
global health burden [1]. After a stroke, ischemic injury not only activates the neuroinflamma-
tion in the brain, but also results in an imbalance of the autonomic nervous system, which
leads to systemic immunodepression [2,3]. Immunodepression mainly includes the transfor-
mation of T cells from pro-inflammatory T-helper (Th) 1 type to anti-inflammatory Th2 type,
and the lymphocytosis in blood, spleen, and lymph nodes [4]. Immunodepression paves the
way for post-stroke infections. The most common post-stroke infections are pneumonia and
urinary tract infections, both reported with a percentage of 10% [5].

Stroke-associated pneumonia (SAP) is the most notable post-stroke infection for its
significant association with poor stroke outcome [6–8]. SAP could increase stroke mortality
and the length of in-hospital stay, affecting self-care ability [9,10]. Based on the known risk
factors for SAP, such as age, dysphagia, and stroke severity [11,12], prediction models have
been developed to identify patients at an increased risk for SAP, such as the Acute Ischemic
Stroke-Associated Pneumonia Score [13] (AIS-APS), and the Age, Atrial fibrillation, Dys-
phagia, Sex, Stroke Severity Score [14] (A2DS2). Previous studies have proved the validity
of AIS-APS and A2DS2 in predicting SAP [15,16]. In a recent meta-analysis, AIS-APS and
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A2DS2 showed moderate predictive accuracy for SAP [17]. To improve the discriminatory
ability of the present models, more predictive risk factors of SAP need to be included.

Recent studies have demonstrated that a stroke could change the composition of
patients’ gut microbiota, with an increase in opportunistic pathogens and a decrease in
anti-inflammatory bacteria [18,19]. Furthermore, a stroke could reduce the transepithelial
resistance of the gut barrier, disturb the immune homeostasis of the intestine, and promote
the enrichment of proinflammatory bacteria [20]. The gut dysbiosis enhances the systemic
inflammation in turn and induces the post-stroke infection [21]. Stanley et al. reported the
activation of the sympathetic nervous system increased intestinal permeability after a stroke,
leading to the translocation of the microbiota from the intestinal tract to the lung, ultimately
resulting in post-stroke pneumonia [22]. The gut microbiota are thought to play a critical
role in the occurrence and development of SAP, and several studies have proved it [23,24].
The feature of gut microbiota in stroke patients may be an essential predictor of SAP.

Therefore, this study aimed to (1) compare the composition of gut microbiota in
acute ischemic stroke patients with and without SAP, (2) identify the patterns of altered
gut microbiota in SAP patients, and (3) discern the improvement of predictive ability by
integrating specific gut microbiota for SAP into conventional risk prediction models (i.e.,
AIS-APS and A2DS2).

2. Methods
2.1. Study Participants

This prospective observational cohort study was conducted in Nanjing First Hospital
from May 2018 to June 2019. The inclusion criteria were as follows: (1) aged 50 years or
older; (2) admitted within 72 h of symptom onset with a magnetic resonance imaging-
confirmed diagnosis of acute anterior ischemic stroke; (3) have lived in Nanjing for at least
six months. The exclusion criteria included: (1) use of antibiotics, probiotics, corticosteroids,
or immunosuppressants in the last 30 days before admission; (2) a history of immune
diseases, severe liver and kidney failure, or malignant tumors; (3) acute hemorrhagic stroke;
(4) unavailable blood or stool samples. This study was approved by the Ethical Review Board
of Nanjing First Hospital (Nanjing, China). The written informed consent was provided by
all patients (or their immediate family members) before participating in this study.

SAP was diagnosed within seven days after stroke onset by two neurologists according
to the 2015 Consensus Group criteria [25], with evidence of sputum culture or radiological
signs of pulmonary infection on the chest-computed tomography. Participants who had SAP
were included in the SAP group, while those without SAP were in the non-SAP (NSAP) group.

2.2. Data Collection

The basic information and medical histories were obtained from participants or their
immediate family members through face-to-face conversations. All serum and stool sam-
ples were collected within 24 h of admission before the treatment with antibiotics or
probiotics. The blood parameters were measured in the central laboratory of Nanjing
First Hospital by the laboratory technicians who were blind to the clinical information.
The hematological parameters including of white blood counts (WBCs), neutrophil, and
lymphocyte counts were analyzed by Hematology Analyzer (BC-6900, Mindray, Shen-
zhen, China). The blood glucose and CRP were assayed by Fully Automated Biochemistry
Analyzer (C16000, Abbott, Abbott Park, IL, USA).

The clinical subtype of stroke was determined by the Oxfordshire Community Stroke
Project (OCSP) classification [26]. The etiology of stroke was described using the Trial of
Org 10172 in Acute Stroke Treatment (TOAST) classification [27]. The neurological function
was evaluated by modified Rankin Scale (mRS). The severity of stroke was assessed by the
National Institute of Health Stroke Scale score (NIHSS). The level of consciousness was
assessed by Glasgow Coma Scale (GCS), a 15-point scale composed of eye, verbal, and
motor responses [28]. AIS-APS and A2DS2 were used to predict the risk of SAP. AIS-APS is
a 34-point score based on demographics, medical history, pre-stroke mRS, stroke features,
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and admission glucose level [13]. A2DS2 score is a 10-point scale calculated as follows [14]:
age ≥ 75 years = 1, atrial fibrillation = 1, dysphagia = 2, male sex = 1, NIHSS score of
0–4 = 0, NIHSS score of 5–15 = 3, and NIHSS ≥ 16 = 5. All clinical scores were evaluated by
two experienced neurologists.

2.3. DNA Extraction and Sequencing

All 135 fecal samples underwent DNA extraction and sequencing in July 2019. Using
the QIAamp® DNA Stool Mini Kit (Qiagen, Hilden, Germany), the fecal DNA was extracted
from stool samples according to the instructions. Briefly, the stool samples were lysed
in argininosuccinate lyase buffer, and InhibitEX was used to adsorb impurities. Next,
protease K was used to digest proteins, and DNA was purified with a two-step wash. After
centrifugation, DNA was finally eluted from the spin column in the low-salt buffer. The
concentration of DNA was calculated by measuring the absorbance of DNA eluate at 260 nm
through the Nanodrop. The integrity was verified by 0.8% agarose gel electrophoresis.

The V3 to V4 hypervariable regions of the bacterial 16S rRNA gene were amplified by
polymerase chain reaction (PCR) using the forward primer (5′-CCTACGGGNGGCWGCAG-3′)
and the reverse primer (5′-GACTACHVGGGTATCTAATCC-3′) [29]. The amplified products
were detected by gel electrophoresis and purified by the Agencourt AMPure XP Kit (Beckman
Coulter, Brea, CA, USA). The index of purified products was performed in the 16S V3-V4
library. The Qubit@2.0 Fluorometer (Thermo Scientific, Waltham, MA, USA) and Agilent
Bioanalyzer 2100 systems (USA) were used to evaluate the library quality. Using the 2× 250 bp
paired-end read protocol, high throughput sequencing was performed on the Illumina Miseq
platform. This work was supported by the Shanghai Genesky Biotechnology Company
(Shanghai, China).

2.4. Bioinformatics and Statistical Analyses

After quality filtering merging, UPARSE was used to cluster the raw reads into opera-
tional taxonomic units (OTUs) with a 97% similarity. All OTUs were classified by Mothur,
according to Ribosomal Database Project (RDP) Release 9. Then, the Alpha diversities, in-
cluding Chao, ACE, Shannon, Simpson, and Coverage index, were analyzed using Mothur.
The Beta diversities were analyzed by permutational multivariate analysis of variance (PER-
MANOVA) and presented visually by principal coordinate analysis (PCoA). The Metastats
and Linear discriminant analysis (LDA) Effect Size (LEfSe) was used to determine the mi-
crobial features between the two groups. The absolute values of logarithmic LDA score > 2
and p-value < 0.05 were considered statistically significant. The p values were adjusted
with the Benjamini–Hochberg false discovery rate (FDR) correction for multiple testing.
These analyses were performed on R version 3.4.3 (Vegan package).

The student t-test or Mann–Whitney U test was used to compare the statistical differ-
ences between the two groups for continuous variables. Fisher’s exact probability test or
chi-squared test was applied for categorical variables. Also, Spearman’s rank correlation
coefficient analysis was used to measure the correlation between gut microbiota and the
prediction scores. The receiver operating characteristic curve (ROC) was performed to assess
the predictive performance of gut microbiota. The Net Reclassification Improvement (NRI)
and Integrated Discrimination Improvement (IDI) indices were generated to evaluate the
improvement of predictive abilities after adding specific gut microbiota into AIS-APS and
A2DS2. A p-value of <0.05 was considered to be statistically significant. All the statistical
analyses were performed on SPSS 22.0 for Windows (IBM Inc., New York, NY, USA).

3. Results
3.1. Baseline Characteristics

We screened 732 patients with acute ischemic stroke and recruited 135 patients from
May 2018 to June 2019. A total of 43 patients developed SAP (31.8%). Univariate analyses
showed that patients in the SAP group were older than those in the NSAP group (71.5 vs.
66.3 years, p = 0.006). The SAP group, in comparison to the NSAP group, had a smaller
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percentage of male patients (51.2% vs. 75.0%, p = 0.006), and were more likely to have
atrial fibrillation (44.2% vs. 15.2%, p < 0.001), dysphagia (39.5% vs. 8.7%, p < 0.001), and
speech disorders (86.0% vs. 66.3%, p = 0.017). Patients with SAP had higher levels of
WBC (9.2 vs. 7.4 × 109/L, p = 0.001), neutrophil counts (5.6 vs. 4.4 × 109/L, p < 0.001),
C-reactive protein (9.4 vs. 2.5 ug/mL, p < 0.001), and neutrophil-to-lymphocyte ratios (NLRs)
(4.8 vs. 2.7, p < 0.001) compared to the NSAP patients. Furthermore, higher NIHSS scores
(11.0 vs. 3.0, p < 0.001) and lower GCS scores (8–15 vs. 15–15, p < 0.001) on admission, higher
AIS-APS scores (11.0 vs. 5.0, p < 0.001), and higher A2DS2 scores (5.0 vs. 1.0, p < 0.001) were
found in the SAP group compared with the NSAP group (Table 1).

Table 1. Baseline characteristics.

Stroke-Associated Pneumonia
p Value

Yes (N = 43) No (N = 92)

Age, mean (SD), y 71.5 (10.7) 66.3 (9.6) 0.006
Male, n (%) 22 (51.2) 69 (75.0) 0.006

Hypertension, n (%) 37 (86.0) 74 (80.4) 0.427
Diabetes mellitus, n (%) 15 (34.9) 35 (38.0) 0.723

Dyslipidemia, n (%) 28 (65.1) 53 (57.6) 0.407
Atrial fibrillation, n (%) 19 (44.2) 14 (15.2) <0.001

Coronary heart disease, n (%) 5 (11.6) 8 (8.7) 0.591
History of stroke or TIA, n (%) 11 (25.6) 16 (17.4) 0.268

COPD, n (%) 1 (2.3) 2 (2.2) 0.687
Dysphagia, n (%) 17 (39.5) 8 (8.7) <0.001

Speech disorders, n (%) 37 (86.0) 61 (66.3) 0.017
OCSP type, n (%) <0.001

PACI or LACI 31 (72.1) 87 (94.6)
TACI or POCI 12 (27.9) 5 (5.4)

Fasting Glucose, median (IQR), mmol/L, (n = 130) 5.8 (5.0–7.9) 5.1 (4.4–6.6) 0.004
C-reactive protein, median (IQR), ug/mL, (n = 72) 9.4 (3.6–34.6) 2.5 (1.0–5.6) <0.001

WBC, mean (SD), ×109/L 9.2 (3.2) 7.4 (2.6) 0.001
Neutrophil, median (IQR), ×109/L 5.6 (5.0–8.8) 4.4 (3.3–6.5) <0.001
Lymphocyte, mean (SD), ×109/L 1.5 (0.9) 1.7 (0.7) 0.147

NLR, median (IQR) 4.8 (3.1–8.4) 2.7 (2.0–4.2) <0.001
Baseline NIHSS score, median (IQR) 11.0 (3.0–16.0) 3.0 (2.0–4.0) <0.001

Baseline GCS, median (IQR) 15 (8–15) 15 (15–15) <0.001
Baseline mRS, median (IQR) 0 (0–0) 0 (0–0) 0.216

Thrombolysis, n (%) 17 (39.5) 29 (31.5) 0.360
AIS-APS, median (IQR) 11.0 (7.0–20.0) 5.0 (3.0–7.0) <0.001
A2DS2, median (IQR) 5.0 (2.0–7.0) 1.0 (1.0–2.0) <0.001

Abbreviations: TIA transient ischemia attack; COPD chronic obstructive pulmonary disease; OCSP Oxfordshire
Community Stroke Project classification; PACI partial anterior circulation infarct; LACI lacunar infraction; TACI
total anterior circulation infarct; POCI posterior circulation infarct; SD standard deviation; IQR interquartile range;
WBC, white blood cell count; NLR neutrophil-to-lymphocyte ratio; NIHSS National Institute of Health Stroke Scale
score; GCS Glasgow Coma Scale; mRS modified Rankin Scale; AIS-APS the Acute Ischemic Stroke-Associated
Pneumonia Score; A2DS2 the Age, Atrial fibrillation, Dysphagia, Sex, Stroke Severity score.

3.2. Altered Gut Microbiota in the SAP Patients

The α-diversity indices of gut microbiota showed no significant group differences
(Figure 1), except for the Simpson index, which indicated a lower diversity of the microbial
community in the SAP group than that of the NSAP group (p = 0.022). The results of PCoA
(Figure S1) revealed that Bray distances (Coefficient of determination (R2) = 0.014, p = 0.007),
Jaccard distances (R2 = 0.010, p = 0.035), and weighted uniFrac distances (R2 = 0.050,
p < 0.001) were significantly different between the two groups.



Brain Sci. 2023, 13, 1217 5 of 13

Brain Sci. 2023, 13, x FOR PEER REVIEW 5 of 13 
 

Abbreviations: TIA transient ischemia attack; COPD chronic obstructive pulmonary disease; OCSP 
Oxfordshire Community Stroke Project classification; PACI partial anterior circulation infarct; LACI 
lacunar infraction; TACI total anterior circulation infarct; POCI posterior circulation infarct; SD 
standard deviation; IQR interquartile range; WBC, white blood cell count; NLR neutrophil-to-lym-
phocyte ratio; NIHSS National Institute of Health Stroke Scale score; GCS Glasgow Coma Scale; 
mRS modified Rankin Scale; AIS-APS the Acute Ischemic Stroke-Associated Pneumonia Score; 
A2DS2 the Age, Atrial fibrillation, Dysphagia, Sex, Stroke Severity score. 

3.2. Altered Gut Microbiota in the SAP Patients 
The α-diversity indices of gut microbiota showed no significant group differences 

(Figure 1), except for the Simpson index, which indicated a lower diversity of the micro-
bial community in the SAP group than that of the NSAP group (p = 0.022). The results of 
PCoA (Figure S1) revealed that Bray distances (Coefficient of determination (R2) = 0.014, p 
= 0.007), Jaccard distances (R2 = 0.010, p = 0.035), and weighted uniFrac distances (R2 = 
0.050, p < 0.001) were significantly different between the two groups. 

 
Figure 1. Comparison of α-diversity of gut microbiota between two groups. Abbreviation: SAP, 
stroke-associated pneumonia group; NSAP, non-SAP group. Note: * p < 0.05. 

There were 112 unique OTUs in the SAP group, 979 unique OTUs in the NSAP group, 
and 1511 shared OTUs in both groups, as shown in the Venn diagram (Figure S2). The 
phyla of Firmicutes, Bacteroidetes, and Proteobacteria comprised most of the gut microbiota 
community. The Metastats analysis showed that the relative abundance of phylum Bac-
teroidetes in the NSAP group was higher than in the SAP group (p = 0.020) (Figure S3a). At 
the family level, the abundances of Bacteroidaceae (p = 0.007), Veillonellaceae (p = 0.029), and 
Sutterellaceae (p = 0.014) were relatively lower in the SAP group (Figure S3b). At the genus 
level, Bacteroides (p = 0.006), Coprococcus (p = 0.032), Fusicatenibacter (p = 0.039), Butyricicoc-
cus (p < 0.001), Butyricimonas (p = 0.046), and Clostridium_XlVb (p = 0.018) were more en-
riched in the NSAP group (Figure 2). Also, the results of LEfSe analysis and LDA score 
showed that the relative abundances of class Bacilli, order Lactobacillales, family 

Figure 1. Comparison of α-diversity of gut microbiota between two groups. Abbreviation: SAP,
stroke-associated pneumonia group; NSAP, non-SAP group. Note: * p < 0.05.

There were 112 unique OTUs in the SAP group, 979 unique OTUs in the NSAP group,
and 1511 shared OTUs in both groups, as shown in the Venn diagram (Figure S2). The phyla
of Firmicutes, Bacteroidetes, and Proteobacteria comprised most of the gut microbiota commu-
nity. The Metastats analysis showed that the relative abundance of phylum Bacteroidetes
in the NSAP group was higher than in the SAP group (p = 0.020) (Figure S3a). At the
family level, the abundances of Bacteroidaceae (p = 0.007), Veillonellaceae (p = 0.029), and
Sutterellaceae (p = 0.014) were relatively lower in the SAP group (Figure S3b). At the genus
level, Bacteroides (p = 0.006), Coprococcus (p = 0.032), Fusicatenibacter (p = 0.039), Butyricicoccus
(p < 0.001), Butyricimonas (p = 0.046), and Clostridium_XlVb (p = 0.018) were more enriched
in the NSAP group (Figure 2). Also, the results of LEfSe analysis and LDA score showed
that the relative abundances of class Bacilli, order Lactobacillales, family Corynebacteriaceae,
genus Corynebacterium, and the species Clostridium innocuum in the SAP group were higher
than those in the NSAP group (Figure 3).

3.3. Gut Microbiota Correlated with SAP Predictive Scores

Both scores of AIS-APS and A2DS2 were higher in the SAP group. The analyses on
their correlation with the 50 most common genera showed that the genus Bacteroides was
negatively correlated with AIS-APS (r = −0.197, p = 0.02) and A2DS2 (r = −0.320, p < 0.001).
The same results were obtained for genus Fusicatenibacter (r = −0.25, p = 0.003 in AIP-APS;
r = −0.22, p = 0.010 in A2DS2), Butyricicoccus (r = −0.24, p = 0.004 in AIP-APS; r = −0.219,
p = 0.010 in A2DS2), and Clostridium_XlVb (r = −0.230, p = 0.007 in AIP-APS; r = −0.254,
p = 0.003 in A2DS2). The genus Enterococcus had a significant positive correlation with
both AIS-APS and A2DS2 scores (r = 0.297, p < 0.001 in AIS-APS; r = 0.360, p < 0.001 in
A2DS2), though it did not show any significant difference between the SAP and NSAP
groups (Figure 4).
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3.4. Predictive Performance of Gut Microbiota for SAP

We tested the predictive validity of the six genera with significant group differences
in Metastats analysis, including Bacteroides, Coprococcus, Fusicatenibacter, Butyricicoccus,
Butyricimonas, and Clostridium-IVb. The area under the curve (AUC) of the differential
genera was 0.699 (Standard Error (SE): 0.046, 95% Confidence Interval (CI): 0.609–0.790),
while the AUCs of AIS-APS (SE: 0.047, 95% CI: 0.684–0.870) and A2DS2 (SE: 0.050, 95%
CI: 0.679–0.874) were both 0.777. After adding the differential genera into AIS-APS, the
AUC of the integrated model was improved to 0.813 (SE: 0.040, 95% CI: 0.735–0.891, as
seen in Figure 5a). The results of IDI showed that the predictive ability of the model was
significantly improved (IDI = 0.038, 95% CI: 0.006–0.070, p = 0.018), while NRI showed
a borderline significant improvement (Continuous NRI = 0.333, 95% CI: −0.003–0.700,
p = 0.052, Table 2). The ability of A2DS2 to predict SAP was also significantly improved
after adding the differential genera, with the AUC improved to 0.816 (SE: 0.041, 95% CI:
0.735–0.897, as seen in Figure 5b), NRI 57.5% (95% CI: 0.245–0.906, p < 0.001), and IDI 4.3%
(95% CI: 0.012–0.075, p = 0.007, as seen in Table 2).



Brain Sci. 2023, 13, 1217 8 of 13

Brain Sci. 2023, 13, x FOR PEER REVIEW 8 of 13 
 

seen in Figure 5b), NRI 57.5% (95% CI: 0.245–0.906, p < 0.001), and IDI 4.3% (95% CI: 0.012–
0.075, p = 0.007, as seen in Table 2). 

 
Figure 5. ROC curves of differential genera, 2 predictive scores, and the combination of genera and 
scores in predicting SAP. (a). ROC of genera (AUC = 0.699), AIS-APS (AUC = 0.777), and the combi-
nation of genera and AIS-APS (AUC = 0.813); (b). ROC of genera (AUC = 0.699), A2DS2 (AUC = 
0.777), and the combination of genera and A2DS2 (AUC = 0.816). Genera consist of 6 bacteria at 
genus level, Bacteroides, Coprococcus, Fusicatenibacter, Butyricicoccus, Butyricimonas, and Clostridium-
IVb, with significant difference between two groups in Metastats analysis. Abbreviation: ROC, re-
ceiver operating characteristic curve; AIS-APS, the Acute Ischemic Stroke-Associated Pneumonia 
Score; A2DS2, the Age, Atrial fibrillation, Dysphagia, Sex, Stroke Severity Score; SAP, stroke-associ-
ated pneumonia. 

Table 2. Reclassification statistics for the predictive ability of combination of differential genera and 
prediction scores for SAP. 

  NRI (Continuous) IDI 
Models Variables Estimate (95% CI) p Value Estimate (95% CI) p Value  
AIS-APS  +genera 0.333 (−0.003–0.700) 0.052 0.038 (0.006–0.070) 0.018 
A2DS2  +genera 0.575 (0.245–0.906) <0.001 0.043 (0.012–0.075) 0.007 

The genera consist of 6 bacteria at genus level, Bacteroides, Coprococcus, Fusicatenibacter, Butyricicoc-
cus, Butyricimonas, and Clostridium-IVb, with significant difference between two groups in Metastats 
analysis. SAP, stroke-associated pneumonia; NRI, Net Reclassification Improvement; IDI, Inte-
grated Discrimination Improvement; CI, Confidence Interval; AIS-APS, the Acute Ischemic Stroke-
Associated Pneumonia Score; A2DS2, the Age, Atrial fibrillation, Dysphagia, Sex, Stroke Severity 
Score. 

4. Discussion 
In this prospective observational cohort study, we explored the baseline differences 

in gut microbiota between SAP and NSAP patients. The two groups had significant dif-
ferences in α-diversity and β-diversity, showing lower bacteria richness in SAP patients. 
Specifically, the genera Bacteroides, Coprococcus, Fusicatenibacter, Butyricicoccus, Butyrici-
monas, and Clostridium_XlVb were less abundant in the SAP group, while the abundances 
of family Corynebacteriaceae, genus Corynebacterium, and species Clostridium_innocuum 
were higher in the SAP group. Furthermore, the six decreased genera in the SAP group 
compared to the NSAP group could improve the predictive ability of AIS-APS and A2DS2. 

Previous studies have revealed an alteration in gut microbiota composition after a 
stroke, which can differ depending on the severity of the stroke [18,19,30]. As a stress 
event, the stroke will activate the sympathetic nervous system, hypothalamic–pituitary–

Figure 5. ROC curves of differential genera, 2 predictive scores, and the combination of genera and
scores in predicting SAP. (a). ROC of genera (AUC = 0.699), AIS-APS (AUC = 0.777), and the combina-
tion of genera and AIS-APS (AUC = 0.813); (b). ROC of genera (AUC = 0.699), A2DS2 (AUC = 0.777),
and the combination of genera and A2DS2 (AUC = 0.816). Genera consist of 6 bacteria at genus level,
Bacteroides, Coprococcus, Fusicatenibacter, Butyricicoccus, Butyricimonas, and Clostridium-IVb, with signif-
icant difference between two groups in Metastats analysis. Abbreviation: ROC, receiver operating
characteristic curve; AIS-APS, the Acute Ischemic Stroke-Associated Pneumonia Score; A2DS2, the
Age, Atrial fibrillation, Dysphagia, Sex, Stroke Severity Score; SAP, stroke-associated pneumonia.

Table 2. Reclassification statistics for the predictive ability of combination of differential genera and
prediction scores for SAP.

NRI (Continuous) IDI

Models Variables Estimate (95% CI) p Value Estimate (95% CI) p Value

AIS-APS +genera 0.333 (−0.003–0.700) 0.052 0.038 (0.006–0.070) 0.018

A2DS2 +genera 0.575 (0.245–0.906) <0.001 0.043 (0.012–0.075) 0.007

The genera consist of 6 bacteria at genus level, Bacteroides, Coprococcus, Fusicatenibacter, Butyricicoccus, Butyricimonas,
and Clostridium-IVb, with significant difference between two groups in Metastats analysis. SAP, stroke-associated
pneumonia; NRI, Net Reclassification Improvement; IDI, Integrated Discrimination Improvement; CI, Confidence
Interval; AIS-APS, the Acute Ischemic Stroke-Associated Pneumonia Score; A2DS2, the Age, Atrial fibrillation,
Dysphagia, Sex, Stroke Severity Score.

4. Discussion

In this prospective observational cohort study, we explored the baseline differences
in gut microbiota between SAP and NSAP patients. The two groups had significant
differences in α-diversity and β-diversity, showing lower bacteria richness in SAP patients.
Specifically, the genera Bacteroides, Coprococcus, Fusicatenibacter, Butyricicoccus, Butyricimonas,
and Clostridium_XlVb were less abundant in the SAP group, while the abundances of family
Corynebacteriaceae, genus Corynebacterium, and species Clostridium_innocuum were higher in
the SAP group. Furthermore, the six decreased genera in the SAP group compared to the
NSAP group could improve the predictive ability of AIS-APS and A2DS2.

Previous studies have revealed an alteration in gut microbiota composition after a
stroke, which can differ depending on the severity of the stroke [18,19,30]. As a stress event,
the stroke will activate the sympathetic nervous system, hypothalamic–pituitary–adrenal
axis, and enteric nervous system, increasing the permeability of the intestinal mucosal
barrier and the translocation of gut microbiota [20,31]. With the close association between
the gut and the lung, gut dysbiosis could influence pulmonary health [32]. Chen et al.
reported that commensal gut microbiota played a vital role in immune defense against
Escherichia Coli pneumonia by inducing the expression of Toll-like receptor 4 (TLR) and
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activation of nuclear factor κB [33]. By stimulating TLR, gut microbiota can regulate the
immune response of respiratory mucosa against influenza virus infection [34]. As one of
the most significant and abundant commensal flora in the human intestine, the phyla
Bacteroidetes can stimulate the TLR signaling pathways and regulate Treg cells [35,36]. Our
study detected the early changes in gut microbiota in SAP patients, particularly the decrease
in phyla Bacteroidetes, which suggested impaired immune surveillance preceding SAP.

The genera Bacteroides, Coprococcus, Butyricicoccus, Butyricimonas, and Fusicatenibacter, of
which the abundances were lower in SAP patients, are all SCFAs-producing bacteria [37–40].
Among them, Fusicatenibacter and Butyricicoccus were negatively correlated with AIS-APS
and A2DS2. A similar decrease in SCFAs-producing bacteria has been detected in pa-
tients with ischemic stroke [18] and post-stroke infection [24]. SCFAs are essential for
their anti-inflammatory properties and immunomodulatory effects, such as suppressing
the production of pro-inflammatory Interleukin-6 (IL-6) and inducing the production of
anti-inflammatory IL-10 [41–44]. For instance, as one of the SCFAs, acetate was reported to
activate the interferon-β response to enhance the antiviral effect on pulmonary epithelial
cells [45]. While butyrate, another member of SCFAs, was positively associated with a de-
creased risk of lower respiratory tract infection due to its anti-inflammatory properties [46].
The transplantation of SCFAs-producing bacteria could improve neurological dysfunction
and reduce inflammation in aged mice with middle cerebral artery occlusion [47]. Further-
more, increasing the levels of SCFAs through symbiotic therapy could reduce the incidence
of enteritis and ventilator-associated pneumonia in sepsis patients [48]. Counterintuitively,
several well-known SCFAs-producing bacteria like Roseburia were not differential between
the two groups in our study, which was inconsistent with a recent study [23]. We thought
that this may be attributable to the discrepancy between two cohorts, such as stroke severity
and dietary structures, which could influence gut microbiota.

The alteration in the gut microbiota after a stroke, which involves the growth of pro-
inflammatory bacteria, could affect immune homeostasis [49]. Our study found that several
pathogenic bacteria were enriched in the SAP group, including the family Corynebacteriaceae, the
genus Corynebacterium, and the species Clostridium innocuum. The genus Corynebacterium, which
belongs to the family Corynebacteriaceae, is a potential pathogen due to its ability to produce
the diphtheria toxin [50]. Clostridium Innocuum was reported to be cytotoxic by triggering cell
death through apoptosis, leading to a number of infectious diseases, such as intra-abdominal
infection, pylephlebitis, and empyema [51]. Highet et al. described that Clostridium Innocuum
could increase the susceptibility to infection [52]. Recently, the infection of Clostridium Innocuum
was reported to be associated with severe gastrointestinal complications and extraintestinal
infections [53]. The accumulation of pro-inflammatory bacteria in stroke patients suggested
that the imbalance in the immunologic barrier [54] may be a cause of SAP.

Compared to NSAP patients, SAP patients scored higher on two conventional pre-
dictive scores of AIS-APS and A2DS2. These scores were negatively correlated with the
SCFAs-producing bacteria Bacteroides, Fusicatenibacter, and Butyricicoccus. Moreover, the
six decreased genera in the SAP group, Bacteroides, Coprococcus, Fusicatenibacter, Butyricic-
occus, Butyricimonas, and Clostridium-IVb, were mostly SCFA-producing bacteria (except
Clostridium-IVb, which contains both beneficial and pathogenic species [55]). Haak et al.
established that the decline in SCFAs-producing bacteria was an independent predictor
of post-stroke infection [24]. Xia et al. showed that decreased SCFAs-producing genus
Roseburia and increased pathogenic bacteria were correlated with the risk of SAP [23].
Our study confirmed their observations and further proved the predictive value of the
above bacteria when integrated into the predictive scores. When the group-differential
genera were incorporated, the predictive performances of AIS-APS and A2DS2 were both
enhanced. This would imply that an altered gut microbiota, especially a lower abundance
of SCFA-producing bacteria, could be a predictor of SAP. The existing predictive scores
mainly focus on the clinical symptoms and may ignore the change in homeostasis prior to
SAP onset [17]. Incorporating altered gut microbiota at baseline may pioneer new ways of
early predictive models of SAP after further clinical verification.
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Interestingly, we found that the relative abundance of the genus Enterococcus was
significantly correlated with AIS-APS and A2DS2. Enterococcus was thought to be one of
the opportunistic commensal bacteria associated with several infections like urinary tract
infection, endocarditis, and biliary tract infection [56]. Enterococcus was also reported to
be enriched in pneumonia patients after hypertensive intracerebral hemorrhage [57] and
ischemic stroke [23], possibly due to the immunodepression after the stroke [58]. However,
Enterococcus was not significantly different between SAP and NSAP groups in our cohort.
This may be attributable to the regional differences between participants from previous
studies, whose different diet structures may have affected the gut microbiota composition.

Our single-center study had several limitations. Firstly, we did not characterize the
alterations in stool pH, inflammatory markers in stool, leaky gut markers, and metabolites
such as SCFAs in the fecal samples. Secondly, diet has been demonstrated to be an essential
factor influencing the composition of the gut microbiota [59]. Although we enrolled
residents with presumably consistent dietary structures, the dietary intake data of each
participant were not collected. Thirdly, we collected fecal samples at a single time point,
and the dynamic changes in the gut microbiota were unavailable due to the limited funds.
Fourthly, our study was an observational analysis without functional data to show causal
links; hence, the results should be treated with caution until the precise mechanism of
brain–gut–lung communication is revealed. Finally, due to the small sample size of this
study, the reliability of the early prediction and diagnosis data needs to be further verified.

5. Conclusions

In conclusion, the baseline abundance of SCFAs-producing gut microbiota was de-
creased in patients who developed SAP within a week after the onset of acute ischemic
stroke. The differential gut microbiota between SAP and NSAP added prognostic value
to the conventional SAP risk scores of AIS-APS and A2DS2. This study emphasized the
role of the altered post-stroke gut microbiota in predicting SAP, which merits attention in
further clinical research.
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