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Abstract: Embolization is the preferred method for treating intracranial aneurysms due to its less
invasive nature. However, recent findings suggest that even uncomplicated embolization may cause
structural damage to the brain through ischemic or inflammatory mechanisms. This study aimed
to find possible biomarkers of brain injury and inflammation in patients suffering from intracranial
aneurysms who underwent endovascular treatment by measuring serological markers indicating
brain damage. The study involved 26 patients who underwent uncomplicated intravascular stenting
for unruptured intracranial aneurysms between January 2020 and December 2021. Blood samples
were collected before the procedure, at 6–12 h, and at 24 h after the procedure. The following
protein biomarkers levels were tested with ELISA: S100B, hNSE, TNF, hsCRP, FABP7, NFL, and GP39.
Statistical analysis of the results revealed significant increases in serum levels for the four biomarkers:
FABP7—before 0.25 (ng/mL) vs. 6–12 h 0.26 (p = 0.012) and vs. 24 h 0.27 (p < 0.001); GP39—before
0.03 (pg/mL) vs. 6–12 h 0.64 (p = 0.011) and vs. 24 h 0.57 (p = 0.001); hsCRP—before 1.65 (µg/mL)
vs. 24 h 4.17 (p = 0.037); NFL—before 0.01 (pg/mL) vs. 6–12 h 3.99 (p = 0.004) and vs. 24 h 1.86
(p = 0.033). These biomarkers are recognized as potential indicators of neurovascular damage and
should be monitored in clinical settings. Consequently, serum levels of NFL, GP39, hsCRP, and
FABP7 measured before and 24 h after endovascular procedures can serve as important markers for
assessing brain damage and indicate avenues for further research on biomarkers of neurovascular
injury.

Keywords: intracranial aneurysms; endovascular embolization; brain injury; inflammation; serum
markers

1. Introduction

Depending on aneurysm location and morphological features, endovascular treatment
(embolization) is currently the preferred treatment for patients with intracranial aneurysms
due to its less invasive nature compared to the traditional neurosurgical method of clipping.
Although the endovascular technique is associated with rare complications, the periopera-
tive course for patients treated with embolization is typically favorable. However, scientific
studies indicate that, even in uncomplicated cases, the incidence of microembolic lesions,
also known as “silent brain injury” or SBI, in MR diffusion-weighted imaging (DWI) after
endovascular coiling of intracranial aneurysms is not low. Most patients who show SBI are
asymptomatic, and the clinical significance of such findings remains unclear [1,2]. Nonethe-
less, these observations suggest that even uncomplicated embolization of a brain aneurysm
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may be associated with structural damage to the brain caused by ischemic or inflammatory
mechanisms. While studies in interventional radiology refer to endarterectomy procedures
or stenting of the external carotid arteries, there are currently no literature data available on
the determination of serological biomarkers in terms of brain damage after embolization
of intracranial aneurysms for vascular neurosurgery procedures [3–5]. Therefore, more
research is needed to explore this area. Based on scientific research in vascular surgery,
the following potential serological biomarkers of brain injury and inflammation have been
identified: S100B protein, human neuron-specific enolase (hNSE), tumor necrosis factor
(TNF), high-sensitivity C-reactive protein (hsCRP), FABP7 protein, neurofilament protein L
(NFL), and human cartilage glycoprotein 39 (GP39).

The objective of this study was to find possible biomarkers of brain injury and inflam-
mation in patients suffering from intracranial aneurysms who underwent endovascular
treatment. Specifically, we measured serological biomarkers indicating damage to the
nervous tissue or its inflammation previously reported in the literature in patients with un-
ruptured cerebral aneurysms who underwent uncomplicated stent-only endovascular treat-
ment. These results serve as a preliminary step towards further research into brain damage
and inflammation markers in individuals after neuroendovascular procedures—diagnostic
3D-DSA and aneurysm embolization.

2. Materials and Methods

This study included patients hospitalized in the Neurosurgery Department at the
University Clinical Center of Silesia in Katowice between 2020 and 2021 due to unruptured
intracranial aneurysm.

The study was conducted in accordance with the Declaration of Helsinki, approved by the
Ethics Committee of Medical University of Silesia in Katowice (PCN/0022/KB1/138/I/19/20),
and all participating subjects provided written informed consent.

2.1. Study Population

The study involved 26 patients who received intravascular stenting for an unruptured
intracranial aneurysm. The treatment was recommended by an experienced interventional
radiologist based on the prior three-dimensional digital subtraction angiography (3D-DSA).
As per the treatment protocol, every patient underwent follow-up imaging 6 and 12 months
after the procedure. None of the patients showed signs of recanalization or the need
for re-embolization or additional treatment during the follow-up period. Patients who
experienced any complications during the procedure, such as neurological deficit, stroke,
or abnormal wound healing, were excluded from the study. Additional exclusion criteria
were age under 18 years or over 75 years, presence of multiple cerebral aneurysms or any
other malformations affecting cerebral blood flow, severe clinical condition, pregnancy, and
family history of intracranial aneurysms or genetical disorders associated with an increased
risk of cerebral aneurysm formation (e.g., autosomal dominant polycystic kidney disease
or neurofibromatosis type I).

The majority of the study participants were women (88.5%; 23/26) with a mean age of
57 years (min: 27; max: 73). More than half of the patients had hypertension (61.5%; 16/26),
and half of them (50%; 13/26) reported mild neurological symptoms upon admission
(headache: 9; vertigo: 4). Most patients did not show any neurological deficits upon
admission (84.6%; 22/26). No complications were observed after the procedure, and all
patients had a good general condition during the postoperative period. None of them
showed any signs of ischemic or hemorrhagic stroke.

2.2. Sampling of Serum and Biomarker Analysis

Blood samples were collected three times. The first blood sample was taken before the
embolization procedure, the second between 6 and 12 h after embolization, and the third at
24 h after the embolization. Approximately 5 mL of blood was taken each time, and blood
samples were incubated 30–45 min to allow clotting. the samples were then centrifuged at
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3000 rpm for 15 min at room temperature. The supernatant was collected and pipetted into
aliquots (500 µL). Samples were stored at −80 ◦C until further analysis.

The protein level of S100B, hNSE, TNF, hsCRP, FABP7, NFL, and GP39 were tested
in 78 samples in total using a commercially available enzyme-linked immunosorbent
assay (ELISA) kit for S100B/hNSE/TNF/hsCRP/FABP7/NFL and GP39 (Tecomedical
Osteogroup/Quidel, San Diego, CA, USA).

2.3. Statistical Analysis

The obtained results were statistically analyzed using the Statistica 13.3 program
(StatSoft, Tulsa, OK, USA). The normal distribution of the analyzed variables was assessed
using the Shapiro–Wilk test. Since all distributions significantly deviated from normal
distribution, Friedman and Wilcoxon tests for paired samples were used for further analysis
to assess the significance of changes in parameter levels over time. p-values < 0.05 were
considered statistically significant. A minimum sample size to achieve a significance power
of 80% and alpha value of 0.05 was calculated to be between 18 and 26 depending on the
analyzed variable. The results were presented graphically using box plots, with quartiles
(including the median) and minimum and maximum values indicated.

3. Results
3.1. S100B

There were no significant differences in serum S100B (pg/mL) levels between all three
measurements: median 40.82 (interquartile range 23.641–60.916), median 37.43 (interquar-
tile range 30.023–60.205), and median 49.59 (interquartile range 25.336–68.645) (p = 0.840,
p = 0.882, and p = 0.840, respectively). The analysis of variance also showed that there were
no significant differences in serum S100b levels between all three recorded measurements
(p = 0.961). The serum S100B levels are presented in Figure 1.
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3.2. hNSE

There were no significant differences in serum hNSE (ng/mL) levels between all
three measurements: before median 14.63 (interquartile range 12.921–17.278), 6–12 h me-
dian 13.19 (interquartile range 10.585–15.002), and 24 h median 11.97 (interquartile range
10.889–17.653) (p = 0.367, p = 0.925, and p = 0.397, respectively). The analysis of variance
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also showed that there were no significant differences in serum hNSE levels between all
three recorded measurements (p = 0.619). The serum hNSE levels are presented in Figure 2.
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3.3. TNF

There were no significant differences in serum TNF (pg/mL) levels between all three
measurements as results were close to 0 (p = 0.068, p = 1.0, and p = 0.501, respectively).
The analysis of variance also showed that there were no significant differences in serum
TNF levels between all three recorded measurements (p = 0.691). The serum TNF levels are
presented in Figure 3.
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3.4. hsCRP

hsCRP serum levels (µg/mL) were significantly higher 24 h after the procedure com-
pared to levels before treatment: median 4.17 (interquartile range 1.765–8.158) vs. median
1.65 (interquartile range 0.931–3.401) (p = 0.037), respectively. There were no statistically
significant differences between I vs. II and II vs. III records. The analysis of variance also
indicated that there were significant differences in serum hsCRP levels between all three
recorded measurements (p = 0.022). The serum hsCRP levels are presented in Figure 4.
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3.5. FABP7

FABP7 serum levels (ng/mL) were significantly higher after the procedure compared
to levels before treatment: before median 0.25 (interquartile range 0.245–0.261) vs. 6–12 h
median 0.26 (interquartile range 0.256–0.291) (p = 0.012) and vs. 24 h median 0.27 (interquar-
tile range 0.263–0.309) (p < 0.001). The analysis of variance also indicated that there were
significant differences in serum FABP7 levels between all three recorded measurements
(p < 0.001). The serum FABP7 levels are presented in Figure 5.

3.6. NFL

NFL serum levels (pg/mL) were significantly higher after the procedure compared
to levels before treatment: before median 0.01 (interquartile range 0.001–0.305) vs. 6–12 h
median 3.99 (interquartile range 0.156–33.499) (p = 0.004) and vs. 24 h median 1.86 (in-
terquartile range 0.009–20.015) (p = 0.033). The analysis of variance also indicated that there
were significant differences in serum NFL levels between all three recorded measurements
(p = 0.008). The serum NFL levels are presented in Figure 6.

3.7. GP39

The study showed that GP39 serum levels (pg/mL) were significantly higher after the
procedure compared to levels before treatment: before median 0.03 (interquartile range
0.004–0.081) vs. 6–12 h median 0.64 (interquartile range 0.011–8.456) (p = 0.011) and vs.
24 h median 0.57 (interquartile range 0.098–4.136) (p = 0.001). The analysis of variance also
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indicated that there were significant differences in serum GP39 levels between all three
recorded measurements (p = 0.003). The serum GP39 levels are presented in Figure 7.
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4. Discussion

S100B is a structural peptide of the S100 protein family, which belongs to a group of
calcium-binding proteins primarily expressed in the central nervous system. S100B has
level-dependent effects on neuronal tissue; at lower concentrations, it stimulates neurite
outgrowth and enhances neuronal survival during development, while higher levels stimu-
late the expression of proinflammatory cytokines. Increased concentrations of S100B have
been observed in various clinical conditions such as brain trauma [6,7] and ischemia [8,9],
which may be due to the destruction of astrocytes. A single serum level of S100B can
identify and stratify the severity of traumatic brain injury (TBI) [10]. In neurodegenerative,
inflammatory, and psychiatric diseases, increased levels of S100B may be caused by secreted
S100B or released from damaged astrocytes [11]. Brightwell et al. [12] observed a signifi-
cant elevation in S100B levels among patients who developed postoperative neurological
deficits after undergoing carotid artery stenting (CAS), implicating increased perioperative
microembolization as the likely cause. In contrast, our study failed to detect any significant
differences in serum S100B levels between patients with and without postoperative neu-
rological deficits, which suggests that microembolization was not a contributing factor in
our cohort.

Human neuron-specific enolase (hNSE) is an isoenzyme of glycolytic enolase and a
major protein in the brain, which makes it a promising marker for neuronal injury. How-
ever, hNSE is also expressed in neuroendocrine tissue, erythrocytes, and platelets [13].
Cheng et al. [14] conducted a meta-analysis on the prognostic value of serum hNSE in
patients with TBI and found that higher hNSE concentrations were significantly associated
with mortality and unfavorable outcomes. Additionally, hNSE is a moderate prognostic
factor for mortality and neurological outcomes in TBI patients. Kedziora et al. [15] inves-
tigated the changes in brain-specific biomarker levels (S100B and hNSE) in patients after
an aneurysmal subarachnoid hemorrhage (aSAH). Their study demonstrated a significant
increase in these markers in patients following aSAH, and a direct correlation between
serum levels of S100B and hNSE and the neurological outcome. Contrasting to presented
studies, our results indicated that both hNSE and S100B would not work as potential
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biomarkers of brain damage following uncomplicated cerebral aneurysm embolization,
probably due to lack of sufficient neuronal injury.

Tumor necrosis factor (TNF) is a multifunctional cytokine that plays an essential role
in various cellular events such as cell survival, proliferation, differentiation, and death [16].
In the adult brain, TNF is primarily derived from glia, astrocytes, and microglia. Although
its levels are low, TNF affects the central nervous system (CNS) cells in several ways, such
as regulating neurotransmitter processes, playing a pivotal role in neurogenesis [17], and
influencing blood–brain barrier (BBB) permeability by altering the morphology of endothe-
lial cells in the CNS and inducing angiogenic mediators that affect vascular endothelial cell
proliferation [18–20]. TNF has been associated with the progressive inflammatory process
that promotes aneurysm formation, progression, and rupture [21–23]. Due to its complex
and multifaceted role in the CNS, TNF may be a potential marker for stroke and brain
injury [24,25]. Our study showed that there was no significant elevation in TNF serum
levels following intracranial aneurysm stenting, suggesting that performed procedures did
not induce TNF-mediated processes including neuroapoptosis and BBB disruption.

C-reactive protein (CRP) is an acute-phase protein and serves as a biomarker of inflam-
mation, with plasma concentrations rapidly increasing up to 100-fold or more in response
to tissue injury or inflammation. High-sensitivity CRP (hsCRP) provides a more precise
measurement of normal or baseline CRP concentrations and enables a measure of chronic
inflammation. However, due to high intra-individual variability, a single hsCRP test may
not accurately reflect an individual patient’s basal hsCRP level [26]. Nevertheless, recent
studies indicate that hsCRP may serve as a useful component of acute and longitudinal
biomarker panels for diagnosing and prognosticating mild traumatic TBI. Elevated hsCRP
levels were also associated with poor clinical outcomes in arterial ischemic stroke patients
receiving endovascular treatment [27]. Our study showed that hsCRP serum levels were
significantly higher 24 h after the embolization compared to levels prior to treatment.
There were no complications nor new neurological deficits following treatment; thus, since
hsCRP is a very sensitive biomarker, its elevation may be sign of a performed procedure
(anesthesia, epithelial tear) without any clinical importance.

Lipids, specifically fatty acids (FAs), are the main components involved in the forma-
tion of the myelin sheath. Fatty acid-binding proteins (FABPs) are a class of 14–15 kDa
proteins that prevent FA aggregation and facilitate cellular transportation of long-chain
FAs, allowing them to perform their functions within different cell compartments [28].
Astrocyte-expressed FABP7 controls FA uptake and transportation, signal transduction,
gene transcription, and plays a crucial role in neurogenesis involving the formation of
a radial fiber scaffold in the developing brain [29]. High FABP7 is a sign of a protective
response to BBB disruption, suggesting that it may serve as a brain damage marker [30].
FABPs are also involved in the ischemic injury of neurovascular units, with FABP3 and
FABP5 overexpressed in ischemic neurons, mediating oxidative stress and participating
in ischemic neuronal death. FABP4 expressed in microglia stimulates the expression and
release of pro-inflammatory cytokines (IL-1β, IL-6, TNFα) and matrix metalloproteinase
MMP-9, which activate extrinsic apoptotic signals in ischemic neurons and disrupt the
BBB. Additionally, FABP7 enhances the pro-inflammatory expression of astrocytes and
stimulates ischemic neuronal apoptosis through inflammation [31], although our study
showed that FABP7 serum levels were significantly higher after the endovascular procedure
compared to levels before treatment; all patients were asymptomatic. Elevated FABP7 and
hsCRP levels may indicate damage to the neurovascular unit, resulting in BBB disruption
and inflammation, but the observation period of this study was too short to observe any
long-term complications resulting from the described mechanism.

Cytoplasmic intermediate filaments are an essential component of the cytoskeleton,
classified into five subclasses: keratin filaments (found in epithelial cells), vimentin fila-
ments (found in cells of mesenchymal origin), desmin (found in muscle cells), glial filaments
(found in astrocytes), and neurofilaments (found in neurons). Neurofilaments, consisting of
three neuron-specific proteins (NFL 68 kDa, NFM 125 kDa, and NFH 200 kDa), internexin,



Brain Sci. 2023, 13, 1308 9 of 12

and peripherin, are crucial for maintaining the structural integrity of axons. Neurofilament
protein L (NFL), also known as the neurofilament light chain, is encoded by the NEFL gene
in humans [32,33]. Measuring NFL levels in plasma and CSF is a reliable way to monitor
axonal damage or neurodegeneration, as neurofilaments are crucial in the proper radial
growth of axons [34–36]. Cerebrospinal fluid NFL was reported to correlate with outcome
after aneurysmal subarachnoid hemorrhage [37] followed by the observations of increased
CSF NFL levels in acute ischemic stroke [38]. Gisslen et al. [39] suggested that most of the
NFL in peripheral blood is CNS-derived and could be used as a proxy measure for CSF
NFL levels. Our study found significantly higher NFL serum levels 6–12 and 24 h after
the procedure compared to admission levels, which may indicate structural damage to
neurofilaments of the astrocyte-building neurovascular unit resulting from endovascular
treatment for intracranial aneurysms.

Human cartilage glycoprotein 39 (GP39), also known as chitinase-3-like protein 1, is
a mammalian glycoprotein. GP39 is synthesized and secreted by various cells, including
macrophages, neutrophils, synoviocytes, chondrocytes, fibroblast-like cells, smooth muscle
cells, and tumor cells. Xu et al. [40] found that serum GP39 levels were elevated in patients
with cerebrovascular diseases, and that serum levels of GP39 were significantly lower
in healthy control subjects than in patients with acute ischemic or hemorrhagic stroke
and transient ischemic attack. Park et al. [41] reported that serum GP39 levels were
associated with infarct volume, stroke severity, and neurological outcome in acute ischemic
stroke patients. Jiang et al. [42] observed that GP39 is associated with inflammation and
severity of intracerebral hemorrhage (ICH) and may independently predict long-term
clinical outcomes of ICH. These authors concluded that GP39 may be a useful diagnostic
and prognostic biomarker for cerebrovascular disease. Our study revealed that GP39 is
increased in patients after aneurysm stenting and that GP39 may be a useful biomarker for
monitoring cerebrovascular disease and assessing the efficacy of endovascular treatments.

Although the mechanism of the elevations observed in our study is currently unknown,
we hypothesize that damage to the neurovascular unit during endovascular treatment may
be a result of mechanical irritation and/or temporary changes in the local hemodynamic
environment. Damage to the neurovascular unit results in BBB disruption (FABP7), local
inflammation (hsCRP, FABP7, GP39), and astrocytic injury (NFL). Disruption of the BBB
allows the abovementioned markers to freely pass into the bloodstream. Moreover, neu-
rovascular damage triggers not only local neuroinflammation induced by cell death but
also systemic inflammation caused by disruption of the BBB [43,44]. Lack of increased
proinflammatory markers (TNF) indicates that the described process is self-containing. Due
to the uncomplicated course of treatment and lower levels of analyzed markers than in case
of TBI or SAH, it can be assumed that no significant damage to the nervous tissue occurs.

As a preliminary study, this work has several limitations that should be taken into
account. Firstly, the sample size was relatively small, which may limit the generalizability
of the results to a larger population. Secondly, the follow-up period was short, and it
is possible that the long-term effects of the treatment were not captured. Additionally,
there is a paucity of previous research studies on this topic and on possible impact of the
neuroendovascular procedures on brain damage/inflammation in general, which makes
it challenging to compare the findings to the existing literature. No additional imaging
studies, such as CT or MRI, were performed because of the uncomplicated course of
treatment. Therefore, it was impossible to determine presence and extent of potential brain
damage that may have occurred and whether the treatment was completely safe. It is
crucial to acknowledge these limitations when interpreting the findings of this study and
to consider the need for further research with larger study group, longer follow-up periods,
and more comprehensive imaging studies to obtain a more comprehensive understanding
of the effects of aneurysm stenting, and neuroendovascular procedures in general, on
brain damage.

In summary, the findings of our study indicate that endovascular treatment of intracra-
nial aneurysms has a significant impact on the serum levels of NFL, GP39, hsCRP, and
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FABP7. These biomarkers have been recognized in the literature as potential indicators of
neurovascular damage, making their monitoring an essential practice in clinical settings.
Variations in the analyzed markers can signify neurovascular damage caused by stenting,
followed by progressive neuroinflammation and BBB disruption. Consequently, NFL,
GP39, hsCRP, and FABP7 could serve as important markers of brain damage following
endovascular procedures, and their serum levels should be measured before and 24 h after
treatment. However, the observed changes in serum levels of these biomarkers in patients
do not necessarily require any modification of the recommendations for managing patients
with unruptured intracranial aneurysms. These changes, however, indicate avenues for
further research on biomarkers of neurovascular injury. Whenever possible, complete
obliteration of the aneurysm is recommended, and the choice of the treatment method
should involve a multidisciplinary decision based on the patient’s characteristics and
the aneurysm’s features. Stent-only embolization remains a safe and preferred treatment
method for cerebral aneurysms in most cases.
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