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Abstract: Network motif analysis approaches provide insights into the complexity of the brain’s
functional network. In recent years, attention-deficit/hyperactivity disorder (ADHD) has been
reported to result in abnormal information interactions in macro- and micro-scale functional networks.
However, most existing studies remain limited due to potentially ignoring meso-scale topology
information. To address this gap, we aimed to investigate functional motif patterns in ADHD to
unravel the underlying information flow and analyze motif-based node roles to characterize the
different information interaction methods for identifying the abnormal and changing lesion sites of
ADHD. The results showed that the interaction functions of the right hippocampus and the right
amygdala were significantly increased, which could lead patients to develop mood disorders. The
information interaction of the bilateral thalamus changed, influencing and modifying behavioral
results. Notably, the capability of receiving information in the left inferior temporal and the right
lingual gyrus decreased, which may cause difficulties for patients in processing visual information in
a timely manner, resulting in inattention. This study revealed abnormal and changing information
interactions based on network motifs, providing important evidence for understanding information
interactions at the meso-scale level in ADHD patients.

Keywords: ADHD; brain effective network; network motifs; information interaction; node roles;
abnormal interaction; changing roles

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neu-
rodevelopmental disorders [1–4]. The psychopathology of this disorder is marked by
developmentally inappropriate and pervasive expressions of inattention, overactivity,
and impulsiveness, which result in lower academic achievement and a range of social
dysfunctions [5–7]. At present, the pathogenesis has not been elucidated.

The inclusion of noninvasive neuroimaging techniques and graph-theoretical analytical
methods has enabled the widespread use of large-scale functional brain networks in the
research of ADHD [8–14]. Some studies have proven that ADHD patients have abnormal
brain network topology in functional networks, which increases modularity, decreases
global efficiency, and increases local efficiency in comparison to normal control (NC) [15–19].
Comparing this to undirected functional networks, direction increases our understanding
of the association between brain function and behavior [20]. Some studies have confirmed
the abnormal effective connectivity of certain brain regions and the directional causal
relationships among ROIs in ADHD patients, which could differentiate patients with ADHD
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from NC [21–24]. However, the majority of these studies have described macro- and micro-
scale network properties in functional networks in these individuals, and the underlying
meso-scale characteristics of brain function networks in ADHD patients are not well known.

Network motifs are recurring local connectivity patterns in a network that are present
in numbers significantly higher than those in random networks. They are thought to be the
building blocks of brain networks, with functions representing communication channels
between multiple nodes [25,26]. In the human functional brain network, Friedman et al.
presented the first application of directed network motifs and showed that frequencies
of specific directed network motifs could be used to distinguish between patients with
Alzheimer’s disease (AD) and NC [27]. Moreover, Wei et al. found the distribution in dis-
tinct patterns of several significantly recurring motifs within the network, which supports
intra- and inter-module functional connectivity, promoting integration and segregation in
network organization [28]. Nonetheless, the above studies only confirmed the frequencies
of motifs and analyzed the distribution in the whole brain network [27–31]. The node func-
tions involved in the network motifs of ADHD patients, which could reflect specific brain
regions’ information interaction patterns, require further exploration. In this study, the term
“information interaction” refers to the process of receiving and transmitting information
between brain regions.

To address this gap, we aimed to investigate functional motif patterns in ADHD to
unravel the underlying information flow and further analyze motif-based node functions to
identify the lesion site of ADHD. In this paper, we focused on (i) identifying functional motif
patterns to determine underlying information flow in directed functional brain networks;
(ii) introducing the concept of node roles to describe the information interaction functions
and mine differential brain regions; (iii) exploring the discrepant effective connectivity
based on node roles between specific brain regions; and (iv) probing the node role variation
tendency of specific brain regions between ADHD and NC. We investigated abnormal and
changing information interactions based on node roles, hoping to provide new insights
into the pathogenesis of ADHD.

2. Materials and Methods
2.1. Participants

We examined resting-state functional MR images (fMRI) using two datasets to verify
the consistency of the network motifs in the human brain. (1) The first dataset was the
HCP retest dataset, which contains 45 resting-state functional MRI (rs-fMRI) scans from the
Human Connectome Project (HCP) Retest data release [32]. They could be identified twice
to reflect the consistent motif patterns of the human brain and avoid randomness. Details
of the dataset can be found on the HCP website (http://www.humanconnectome.org/,
accessed on 30 July 2023). (2) The second dataset consisted of 50 rs-fMRI scans from NC
and 42 rs-fMRI scans from individuals with ADHD. It was compared to the motif detection
results of HCP datasets in order to establish a foundation for further research. They were
provided by the Consortium for Neuropsychiatric Phenomics study at the University of
California, Los Angeles (UCLA). Details of the dataset can be acquired from the OpenfMRI
data-sharing webpage (https://www.openfmri.org/, accessed on 30 July 2023).

When the respective researchers released the data, they stated that all participants gave
written informed consent after receiving a thorough explanation. Specific demographic
characteristics of the two datasets are shown in Table 1.

2.2. Data Acquisition and Preprocessing

The HCP imaging data were acquired on a customized 3T Siemens connectome-Skyra
3T scanner using a multiband sequence (Berlin, Germany). Each participant completed
two rs-fMRI scanning sessions 140 days apart. The parameters were as follows: repetition
time (TR) = 720 ms, echo time (TE) = 33.1 ms, slice thickness = 2 mm, slices = 72, flip
angle = 52◦, and duration = 14 min and 33 s (1200 TRs). The magnetic resonance images of
ADHD patients were acquired using a 3T Siemens Trio scanner (Berlin, Germany). Each
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participant completed one rs-fMRI scanning session. The parameters were as follows:
repetition time (TR) = 2 s, echo time (TE) = 30 ms, slice thickness = 4 mm, slices = 34, flip
angle = 90◦ field of view (FOV) = 192 mm, matrix = 64 × 64, and duration = 5 min and 4 s
(152 TRs). During the entire scanning process, the participants of the two datasets were
asked to relax and close their eyes, but not fall asleep.

Table 1. Specific demographic characteristics of two datasets.

Group HCP ADHD NC p-Value

Number 45 42 50 --
Age (mean ± SD) 30.6 ± 3.17 32.71 ± 10.47 32 ± 8.96 0.728 a

Sex (M/F) 14/31 21/21 27/23 0.702 b

ASRS -- 15.43 ± 3.80 7.94 ± 2.89 0.000 a

Abbreviations: SD, standard deviation; ASRS, Adult ADHD Self-Report Scale. a Independent-samples t-test.
b Pearson chi-square two-tailed test.

Data preprocessing of the two datasets was conducted using the DPABI toolbox (Data Pro-
cessing & Analysis for Brain Imaging, http://rfmri.org/dpabi, accessed on 30 July 2023) [33].
Firstly, we discarded the first ten volumes of the signal, considering the adaptability of the
environment, and corrected the first slice timing and head motion of the remaining data.
Subsequently, the data generated were normalized relative to the Montreal Neurological
Institute (MNI) standard space in order to compensate for individual brain variations. Next, to
reduce the inexactness of registration and enhance the signal-to-noise ratio, spatial smoothing
was conducted using a Gaussian kernel with 6 mm full-width at half-maximum (FWHM). Ad-
ditionally, bandpass filtering (0.01 ≤ f ≤ 0.1 Hz) was implemented on the image to transform
the time series into the frequency domain and calculate the energy in the lower frequency
band. Finally, resting-state scans were parcellated into 90 regions of interest (ROIs) using the
automatic anatomical marker template (AAL atlas) [34] and the time series were extracted.
Notably, the cerebellum was excluded from this study.

2.3. Construction of Directed Brain Functional Networks

To construct directed functional brain networks using resting-state fMRI data, we
used the Wiener–Granger causality analysis (GCA) approach to estimate the mean time
series of any pair of ROIs by computing the causation, which is a common method to
study the causal relationship between variables on the base of the causality of time series.
Compared to the traditional causality algorithms (e.g., structural equation modeling and
dynamic causal modeling), GCA does not necessitate the postulation of an effect between
any two regions [35]. It is flexible and could accommodate hemodynamic variability [36].
The results of causal relationships are reflected in the form of predictions. Here, GCA
was employed for every ROI in the whole brain, and the effective connectivity (EC) from
each ROI to the remaining ROIs was obtained. The GCA of 2 time-series Xt and Yt can be
calculated using the following autoregressive model:

Yt =
p

∑
i=1

A11,iX(t−i) +
p

∑
i=1

A12,iY(t−i) + εt (1)

Xt =
p

∑
i=1

A21,iY(t−i) +
p

∑
i=1

A22,iX(t−i) + ε′t (2)

where p is the model order of the maximum number of lagged samples; A11,i and A21,i are
the signed-path coefficients; A12,i and A22,i are autoregression coefficients; and εt and ε′t
are residuals for each time series. If the variance in εt (or ε′t) is reduced by the inclusion
of the Y (or X) term in the first (second) equation, then we could conclude that Y (or X) G
causes X (or Y). Assuming that X and Y are covariance stationarity, the magnitude of the
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interaction can be determined by calculating the log ratio of the prediction error variances
for the restricted (R) and unrestricted (U) models [37]:

FX→Y = ln
var(εR)

var(εU)
(3)

FY→X = ln
var(ε′R)
var(ε′U)

(4)

where εR and ε′R are derived from the model omitting the A11,i and A21,i (for all i) coeffi-
cients, and εU and ε′U are derived from the full model. It is worth noting that the results
of constructing a directed brain functional network using GCA may be better if the fMRI
signals are first deconvolved with the hemodynamic response. Additionally, the selection
of model order p is very important. If the order p of the multivariate autoregressive model
is too small, the data may not be accurately represented, and if it is too large, the model
estimation could be problematic. In this study, the model order p was set to 1 and the
calculation process is detailed in the Supplementary Materials.

To make the strength and reliability of the general results certain, the coefficient matrix
of the directed brain functional networks was converted into binary form with varied
thresholds. The equal interval threshold range (with 10% to 40% as limits and a gap of
5%) was taken into consideration for calculation. Notably, the brain functional networks
in different groups were typically formed with the same threshold to make sure that all
produced networks had similar topological structures with the same amount of edges [38].

2.4. Identification of Network Motifs

Complex networks are studied across many fields of science. To uncover their struc-
tural design principles, “network motifs” were defined; they are patterns of interconnec-
tions occurring in complex networks at numbers that are significantly higher than those
in randomized networks [25]. Such motifs have been found in networks in the fields of
biochemistry, neurobiology, ecology, and engineering. As a kind of complex network, we
will further investigate the motif patterns in directed human functional brain networks.

Within a network, a motif is a small graph which is local to the network and consists of
M nodes as well as a collection of edges linking them [26]. Keeping to a motif size of M, the
amount of motif classes remains unchanged. Herein, our main focus is on the 13 different
3-motifs, as shown in Figure 1A. For comparison with previous studies, the IDs of the
motifs are consistent.
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Figure 1. All possible directed 3-node motifs and node roles based on identified motifs. (A) Directed
3-node motifs labeled ID 1 to 13. Circles indicate nodes in the network and arrows represent functional
relationships between nodes; (B) three types of node roles based on identified motif. They are named
“Double Ping-Pong”, “Ping-Pong_Output”, and “Ping-Pong_Receive”, where s represents the source node,
t represents the target node, b indicates the bidirectional edge, and u indicates the unidirectional edge.
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Initially, we figured out the motif frequency distribution by tallying the number of
times each type of three-node motif appeared in the network. After that, we compared the
frequency distribution of this result with those from 1000 surrogate random networks. The
random networks serve as a null model to determine which motifs are overexpressed in
the original network, which retains an identical number of nodes and edges, along with
the same in-degree and out-degree distributions [25,28]. Given the motif frequency in the
random networks, the magnitude of overexpression of motif M in G is given by its z-score:

ZM =
Nreal

M −
〈

Nrand
M

〉
std
(

Nrand
M

) (5)

〈
Nrand

M

〉
=

1
1000

1000

∑
1

Nrand
M (6)

std
(

Nrand
M

)
=

√
∑1000

1 (Nrand
M −

〈
Nrand

M
〉
)

999
(7)

where Nreal
M is the occurrence frequency of motif M in the real network, and

〈
Nrand

M
〉

and std
(

Nrand
M

)
indicate the mean and SD of its frequency of appearance in the 1000

surrogate random networks. Motif M is regarded as statistically significant only if ZM > 1.96
(p < 0.05) [28].

To verify the consistency of the motifs, we first performed motif identification twice
in the directed functional brain networks of the HCP retest dataset to identify the specific
motif patterns in the human brain, reflecting the underlying information flow. In this study,
the coefficient matrix of the HCP-directed brain functional networks was converted into
binary form by applying a 30% threshold to ensure that the number of edges in the brain
network matched that of the ADHD dataset. For clarity, the 30% threshold is in reference
with keeping 30% of the strongest connection. Then, the same procedure was performed
on the ADHD dataset, and the motif detection results for both datasets were consistent.
This indicates that the recognized motifs are indeed specific organizational patterns in the
directed brain functional network. Moreover, we identified motif patterns in all networks
of ADHD groups (threshold ranging from 10% to 40% with a partition interval of 5%) and
found that when the threshold was 30%, the population proportion of all kinds of network
motifs in the two groups reached the maximum and remained stable. The motifs of other
threshold networks in the brain atlas are shown in Supplementary Figures S1 and S2.

2.5. Analysis of Motif-Based Node Roles

In order to better characterize the node functions participating in network motifs, we
introduced the concept of node roles based on the similarity of ties between participating
nodes. In other words, different node roles represent different ways in which information
interacts. In this study, according to the results of identifiable motif patterns, we set
the node roles into three types, which were named “Double Ping-Pong” (DPP), “Ping-
Pong_Output” (PPO), and “Ping-Pong_Receive” (PPR) (Figure 1B), and calculated the
Pearson correlation with the traditional node degree to describe the functions of the node
roles (see Supplementary Figure S3). As shown in Figure 1B, the “Double Ping-Pong”
role, the first type of node role, has two bidirectional edges that can receive and output
information from the other two nodes. The “Ping-Pong_Output” role, the second type of
node role, has one bidirectional edge and one outward edge, and is more inclined to output
node information. The “Ping-Pong_Receive” role, the third type of node role, has one
two-way edge and one inward edge, which is more inclined to receive node information.
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The measurement of motif-based node roles is obtained from their role-degree, which is the
frequency of node roles appearing in the network:

RDi =
n

∑
j=1

m

∑
p=1

M i,jp (8)

M i = f i (9)

where i is the type of node role, j represents the category of identifiable motif, p represents
the number of motifs in the brain network, and f indicates the number of node roles in
a motif. The M indicates that this motif contains a number of corresponding node roles.
For example, motif13 contains three DPP roles. The role-degree indicates the information
interaction capability. The greater the role-degree, the stronger the interaction capability.

Furthermore, in order to better explore abnormal information interactions between
specific brain regions, we analyzed the participating edges of node roles (Figure 1B). The
measurement is obtained from their edge-degree, which is the number of times that directed
edges appear in the node role:

EDi =
k

∑
s,t=1,s 6=t

(uai,st + bai,st ) (10)

where i is the type of node role, s represents the source node, t represents the target node, u
indicates the presence of a unidirectional edge between nodes, and b indicates the presence
of a bidirectional edge. ast indicates the number of connections from the source node to the
target node. When calculating the bidirectional edges between nodes, the value of b is set
to 1 and u to 0, and vice versa. The greater the value of the number, the more frequent the
information interaction between specific brain regions.

In addition, we researched the variation tendency of node roles to explore the changing
interaction ways of specific brain regions. We calculated the weights of different roles at each
node and determined which role dominates the information function of nodes through a
one-sample t-test. The formula for determining the dominant role of each node is as follows:

RWi =
RDi

∑3
i=1 RDi

(11)

t =
〈RW〉 − µ0

std(RW)/
√

n
(12)

where i is the type of node role, and RWi indicates the weight of the node role in each
node. 〈RW〉 and std(RW) denote the average value and the SD of the node role’s weight in
each group, µ0 represents the assumed population mean (set to 0.33), and n represents the
number of samples. We convert the t value to the corresponding p value. When p is less
than 0.05, it indicates that the weight of the node role is significantly higher than µ0 and we
consider it to be the dominant role of the node.

By calculating the role weights of each node in a directed functional network, we
could determine the relative contribution of different roles to the information processing of
each node. This could be used to better understand the function of the brain and to identify
potential targets for therapeutic interventions in disorders. BrainNet Viewer was employed
to complete the visualization [39].

2.6. Statistical Analysis between Groups

In this study, we used the Wilcox test to evaluate differences between groups. Since
gender is a categorical class of data that is not ordered, chi-square distribution was used to
test for differences between groups. Spearman’s correlation, a statistical method that does
not rely on specific assumptions about the data, was used to assess the relationship between
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cognitive factors. All results were adjusted for multiple comparisons using the Benjamini
and Hochberg false discovery rate (BH_FDR) approach. The threshold for determining
significant differences was set at p < 0.05. Please see Supplementary Materials for more
detail. The pipeline of the analysis strategy for this study is displayed in Figure 2.
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Figure 2. Schematic overview of the analysis strategy. (A) Construct brain effective networks by
estimating the mean time series of any pair of ROIs using the GCA method; (B) identified network
motifs of human brain effective networks in two datasets. Through the calculation of Formulas (5)–(7),
it was found that the specific network motifs of human brain effective network are 4, 6, 9, 12, and 13;
(C) analysis of motif-based node roles in ADHD dataset. According to the results of the identifiable
motifs, we categorized the node roles into three types: DPP, PPO, and PPR. Through the calculation
of Formulas (8)–(11), we used statistical analysis to explore the differential brain regions, discrepant
effective connectivity, and changing node roles.

3. Results
3.1. Motif Patterns within Directed Functional Brain Networks

We examined the distribution patterns of 13 classes of three-node motifs in the HCP
retest dataset and the ADHD dataset. The frequency distribution of the three-node motifs of
the directed functional brain networks in the two datasets is shown in Figure 3A. Compared
with the matched random networks (Figure 3B), five motifs (ID = 4, 6, 9, 12, and 13) were
observed at frequencies significantly higher than expected (Z > 1.96, p < 0.05) (Figure 3C),
which reflects the underlying information flow. The proportion was obtained by dividing
the number of subjects with a Z-score greater than 1.96 by the total number of people. The
results of the identified motif patterns in the two datasets were consistent, as shown in
Figure 3D.
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Figure 3. Identification of motif patterns in HCP retest dataset and ADHD dataset. In the HCP retest
dataset, the green bar represents the first test data for HCP, while the dark-green bar represents
the second test data for HCP. In the ADHD dataset, the dark-green bar represents the data for NC,
while the dark-red bar represents the data for individuals with ADHD. (A) Frequency distribution
(mean ± variance) of 13 classes of three-node motifs; (B) frequency distribution (mean ± variance) of
three-node motifs in surrogate random networks conserving the same in/out degree distribution;
(C) proportion of significant motif across participants; (D) identified motifs in two datasets.

It is essential to keep in mind that a motif that has no significance cannot be considered
a building block of brain networks. In Figure 3, it can be seen that motif IDs = 1, 2, and 3
are also more numerous than motif IDs = 12 and 13. Although they occur frequently, they
occur with a similar frequency during the process of rewiring through random links.

3.2. Differential Brain Regions about Node Roles between Groups

To better understand the information interaction capability of brain regions between
the ADHD patients and the NC, we analyzed the role-degree data and noticed some brain
areas which had been impacted by the disease (Figure 4). When controlling for multiple
comparisons (FDR), four regions were observed to be significantly different in terms of
the DPP and PPR roles, and two regions were significantly different in regard to the PPO
role. Differentiated areas of the brain in the DPP role included the left precentral gyrus,
right hippocampus, right amygdala, and left precuneus (Figure 4A). For the PPO role,
the significantly different brain regions included the left Rolandic operculum and the left
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Heschl’s gyrus (Figure 4B). For the PPR role, notable variations in brain areas included the
left inferior frontal gyrus, triangular part, right lingual gyrus, right caudate nucleus, and
left inferior temporal gyrus (Figure 4C). The distribution of differential brain regions in
each RSN is shown in Figure 4D. Please see Supplementary Table S2 for more detail.
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p < 0.01: **) and the distribution in each RSN. (A) Differential brain regions of DPP role; (B) differential
brain regions of PPO role; (C) differential brain regions of PPR role; (D) the distribution of differential
brain regions in the brain map. Different colors represent the 5 RSNs. The 5 RSNs include the DMN,
default mode network; SN, subcortical network; AN, attention network; SMN, sensorimotor network;
VN, visual network. The PreCG.L, the HIP.R, the AMYG.R, and the PCUN.L belong to the DPP role;
the ROL.L and the HES.L belong to the PPO role; the IFGtriang.L, the LING.R, the CAU.R, and the
ITG.L belong to the PPR role.

3.3. Discrepant Effective Connectivity of Node Roles between Groups

In order to explore the abnormal effective connectivity of information interaction
between specific brain regions, we compared the edge-degree data participating in node
roles and found that there were significant differences in the connections between brain
regions in the two groups (Figure 5). Connections between the brains with significant
differences for the DPP role included ten pairs of bidirectional connectivity. In particular,
compared to the NC, two brain regions between the left precentral gyrus and the left
precuneus interacted less, and interaction frequencies between the right hippocampus and
the right amygdala increased. For the PPO and PPR roles, we found differences in one-way
connections between four pairs of brain regions, respectively. Specifically, for the PPO
role, the left Rolandic operculum output less information to the right median cingulate
and paracingulate gyri in ADHD patients. For the PPR role, the left inferior frontal gyrus
triangular part received an increased frequency of information from the left amygdala
compared to NC. Please see Supplementary Table S3 for more detail.
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Figure 5. Discrepant effective connectivity between groups (p < 0.05: *, p < 0.01: **, p < 0.001: ***).
(A) Discrepant bidirectional effective connectivity of the DPP role; (B) discrepant unidirectional
effective connectivity of the PPO role and the PPR role. Five RSNs are symbolized by different colored
dots. The five RSNs include the DMN, default mode network; SN, subcortical network; AN, attention
network; SMN, sensorimotor network; VN, visual network. Different colored five-pointed stars
represent the three types of node roles. Black lines indicate effective connectivity between RSNs, and
lines of other colors indicate effective connectivity within RSNs.

3.4. Variation Tendency of Node Roles between Groups

Each node has three types of roles, and diverse roles characterize different information
interaction methods. To explore the relative contribution of diverse roles to the informa-
tion processing of each node, we analyzed nodal role weight and found that there were
certain variation tendencies in some brain regions (Figure 6). Specifically, the bilateral
thalamus, which plays a DPP role in normal subjects, takes on a PPO role in ADHD patients.
Additionally, the right middle occipital gyrus, left supramarginal gyrus, and left inferior
temporal gyrus shifted from a DPP role in NC to a PPR role in ADHD patients. These
changes in brain function may contribute to the symptoms associated with ADHD. Please
see Supplementary Table S4 for more detail.

3.5. Correlations between Node Role-Degree and ASRS Scores

Although the above results indicated that the information interactions within the
brain’s functional network in ADHD patients were abnormal, we were still curious about
the connections between node role-degree and cognitive impairment (measured by ASRS)
in ADHD patients (see Figure 7). We primarily focused on areas that showed a statistical
difference between the two groups. Based on the Spearman correlations, in regions where
there were significant differences, the ASRS scores showed significant positive correlations
with two nodes in relation to the DPP role-degree. One node had strong positive correla-
tions, while another node had strong negative correlations in terms of the PPR role-degree.
Please see Supplementary Table S5 for more detail.
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Figure 7. Correlations between node role-degree and ASRS scores. (A) For the DPP role, the role-
degree of the right hippocampus and the right amygdala have significant positive correlations with
ASRS scores; (B) For the PPR role, the role-degree of the left inferior frontal gyrus triangular part has
significant positive correlations with ASRS scores, while the role-degree of the right lingual gyrus has
a strong negative correlation.
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4. Discussion

In this study, we examined motif patterns in the directed functional brain networks
in order to uncover meaningful underlying information flows of brain activity, and mined
divergent and varied information interactions based on node roles between groups. Several
functional motifs were determined to be statistically significant within the network. Then,
based on the identification results of the network motifs, we introduced the role concept to
characterize the information interaction functions of nodes and to explore the diseased brain
regions in the information processing of the patients. As opposed to the classical effective
connectivity, the node roles demonstrate the information interaction between multiple nodes
(in this study, three nodes in particular). It denotes interconnectivity among sets of nodes,
not just between two nodes, hoping to provide new insights into the pathogenesis of ADHD.
There may be potential for using this information to develop targeted interventions for ADHD.

4.1. Significant Motif Patterns in the Directed Functional Brain Networks

Upon inspection of the directed functional brain networks, we noticed that the oc-
currence of five types of three-node motifs was significantly more likely to be embedded
in the functional brain networks of the two datasets compared with random networks,
and the results of the identified network motifs were consistent [28]. This indicates that
these five types of motifs are the basic building blocks of directed human functional brain
networks, which play important functions in information processing and regulation. These
five motifs can be split into chain motifs and loop motifs. Investigations conducted pre-
viously have indicated that the three categories of chain-like motifs largely contribute to
the unification of information within the whole-brain network. Additionally, loop-like
motifs may be the critical information-processing pattern that enables the local integration
of functionally related regions, leading to greater functional detail and a more enriched
functional state [26,28,40–44]. This has a notable significance in uncovering the information
interaction principles of brain functional networks.

4.2. Differential Brain Regions Regarding Information Interaction Capability in ADHD Patients

Different node roles represent different information interaction ways. The node role-
degree indicates the information interaction capability; we found that some brain regions
of ADHD patients had significant differences compared with those of NC subjects. For the
DPP role, the left precentral gyrus and the left precuneus in the patients were significantly
decreased. These are the components of the default network, which is mainly responsible
for emotional processing and self-introspection [45]. When the default network is damaged,
it may cause poor self-control and be accompanied by emotional problems. However, the
interaction functions of the right hippocampus and the right amygdala were significantly
increased. We hypothesize that the functional abnormalities may be caused by a reduced
volume in the hippocampus and amygdala [46–50]. Additionally, both of these brain regions
are in the core of the limbic system, which is responsible for controlling emotions. The
anomaly to the limbic system could lead patients to develop mood disorders. In addition,
the amygdala is also a center for emotional processing and is involved in the production and
expression of emotions [51,52]. Some studies have found that ADHD patients have difficulty
recognizing fearful facial expressions and have excessive amygdala activity [52]. Figure 7
demonstrates a strong positive relationship between DPP role-degree and ASRS scores,
which suggests that the heightened activities in the right hippocampus and right amygdala
are likely to be the cause of the symptoms experienced by ADHD patients. For the PPR role’s
function with stronger information-receiving ability, the left inferior frontal gyrus triangular
part was significantly increased, and the right lingual gyrus, the right caudate nucleus, and
the left inferior temporal gyrus were significant decreased. Specifically, the inferior frontal
gyrus triangular part is involved in language production [53–55]. The brain region received
information unusually frequently, which may be one of the reasons for patients’ irritable
impulses to speak. Additionally, the strong positive relationship between PPR role-degree
and ASRS scores, observed in Figure 7, suggests that heightened interaction leads to the
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symptoms experienced by ADHD patients. Notably, the right lingual gyrus, which belongs
to the occipital lobe, is mainly responsible for visual processing [56–58]. The left inferior
temporal gyrus plays a role in processing visual information. It receives input from the
occipital lobe, which is a higher-order area for visual processing [59–61]. The capability of
receiving information in two brain regions was decreased, which may cause patients to
process visual information in a timely manner, resulting in inattention. Moreover, the data
presented in Figure 7 demonstrate a very negative correlation between PPR role-degree and
ASRS scores, which strongly suggests that the reduced interaction in the right lingual gyrus
is the cause of the symptoms experienced by ADHD patients. The right caudate nucleus
is an important component of the striatum. The striatum is a major source of dopamine,
which plays a vital role in attention [62,63]. Current neurobiological studies suggest that
distraction and restlessness in ADHD patients are associated with decreased dopamine [64].
We hypothesize that the abnormal function of the right caudate nucleus may be related to
the decreased volume of the caudate nucleus in patients [46,47]. For the PPO role with a
stronger information-outputting function, the left Rolandic operculum and the left Heschl’s
gyrus were significantly decreased in patients. They are part of the sensorimotor network,
which is primarily responsible for monitoring and regulating motor behavior [65,66]. The
weakening of sensorimotor network output information may cause an abnormal reception
of information in other brain areas in patients, causing hyperactivity symptoms.

To sum up, the node roles illustrate the interaction of information between the three
nodes, which play important roles in the brain’s activity. Through statistical analysis,
we found that some brain regions had differential information interaction capability in
the process of information processing, resulting in ADHD patients with symptoms such
as language impulses, emotional disorders, visual disorders, and attention deficits. The
majority of the brain regions with abnormal interactions were also areas of damage in
the patients’ brains, which corresponds with results from prior studies. Notably, visual
impairments are rarely reported, and patients have abnormalities in processing visual
information, which may be the main cause of inattention. Furthermore, utilizing the
proposed method on activity tasks as a classic Go-no-Go paradigm could be a way to
validate the brain regions that have been largely studied.

4.3. Discrepant Effective Connectivity of Node Roles in ADHD Patients

Brain functional networks do not operate in isolation, and there are interactions be-
tween brain networks that play an important role in maintaining healthy mental states and
cognitive abilities. Based on the node roles, we found that there are some discrepant effec-
tive connections during information interaction [21,52,67]. Specifically, in terms of the DPP
role, the interaction between the default mode network and other functional subnetworks
in ADHD patients decreased. However, the interaction within the subcortical network in-
creased. For the PPR role, the interaction was disordered between the attention network and
other functional subnetworks in ADHD patients. For the PPR role, the interaction from the
sensorimotor network to the subcortical network decreased in ADHD patients compared
to NC. Abnormal interactions intra- and inter-RSN may cause symptoms such as difficulty
concentrating, hyperactivity, and impulsive behavior in ADHD patients. In particular,
the interaction between the left precentral gyrus and the left precuneus decreased. These
two brain regions are responsible for two important areas of executive control function,
including inhibiting impulses and regulating attention [68,69]. The effective connection
between these two brain regions was impaired, causing them to have difficulty controlling
their behavior and attention, while the interaction between the right hippocampus and
the right amygdala was increased. Previous research suggests that emotional reactivity
is one of the most disabling symptoms associated with attention-deficit/hyperactivity
disorder (ADHD) [70,71]. The over-interactions between the hippocampus and amygdala
may lead to emotional instability in patients [52]. Moreover, compared with NC, the right
caudate nucleus, which receives information from the right inferior frontal gyrus triangular
part, decreased, while the left inferior frontal gyrus triangular part, which receives informa-
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tion from the left amygdala, increased. The right caudate nucleus and the left amygdala
are related to emotion, reward, and attention, and the triangular inferior frontal gyrus is
associated with language production. The above abnormal connections may reflect the
brain’s asymmetry in emotional regulation and attention control. This asymmetry may
be associated with neurodevelopmental disorders such as ADHD. Notably, the discrepant
effective connections, mostly belonging to the frontal striatum and frontal parietal path-
ways [72–74], could lead to impaired cognitive and attention functions. Generally speaking,
we could accurately pinpoint which two brain regions have abnormal information interac-
tions through connections based on node roles. It is noteworthy that this is distinct from
the classic effective connection. In this research, node role is the basis of the differential
effective connection, symbolizing the intercommunication between the three nodes. This
provides a new mentality for us to accurately understand the mechanisms of ADHD.

4.4. Changed Information Interaction Ways of Brain Regions in ADHD Patients

The node roles based on motifs play their respective functions during the information
processing process. We found that some brain regions in ADHD patients have changed
in the way information interacts. Specifically, the function of the bilateral thalamus to
receive information was decreased, which may be caused by changes in the volume of
the thalamus in ADHD patients [23,75]. The thalamus is a key subcortical structure of
the cortico-stria-to-thalamo-cortical loop (CSTC) [76], mostly involved in attention and
cognitive behavioral processes, and is considered a mediator connecting the basal ganglia,
cerebral cortex, and cerebellum [47,77,78]. It regulates brain regions that are responsible
for both stimulating and inhibiting functions, thus impacting and altering behavioral
outcomes [78,79]. Moreover, the function of the right middle occipital gyrus, the left
supramarginal gyrus, and the left inferior temporal gyrus to output information was
decreased. Notably, the left inferior temporal gyrus is an important pathological brain
area. We found that the PPR role’s function dominates the left inferior temporal gyrus, but,
compared with NC, the role’s function was still decreased. This means that the patient’s
ability to process visual information may be weakened, which may cause the patient’s
attention deficit.

Broadly speaking, according to the distribution of brain regions, there are abnormal
brain regions in each RSN except the default mode network. Some studies have also shown
that ADHD patients have distributed brain network disorders rather than disorders with
discrete region abnormalities [13,80]. This is demonstrated by the alteration of nodes’ roles
in specific brain areas. We take it for granted that each node has three separate node roles
that serve different purposes in information processing. The patient’s brain region has an
abnormal function as a result of changes in the brain area’s information processing. This
offers us a novel perspective to accurately grasp the mechanisms of ADHD. Future research
may further reveal the information interaction between these brain regions, thus providing
a more targeted approach to ADHD treatment.

4.5. Limitations and Future Directions

Despite the dependability of some of the outcomes of this study, it still has certain
restrictions. First, due to comparisons with previous studies and the complexity of the
calculations, this study only focused on three-node motifs. In future research, we plan
to expand the motif size to four or five nodes. Then, in order to compare it with the
previous literature about motif identification, the cerebellum information was excluded.
We will incorporate cerebellar information in further studies. Additionally, despite being
at rest, the human brain will alternate between various activities periodically. The latest
dynamic network investigations have verified the existence of fluctuations in functional
connections, which has gained growing attention in the scholarly world. The analysis
of ADHD patients using dynamic methods has yielded certain results that cannot be
obtained through static network analysis. For example, Kaboodvand N et al. suggested a
dynamical systems approach to examine how the DMN recruits different configurations
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of network segregation and integration as time passes. Their exploration uncovered that
ADHD differs to controls, both in terms of the recruitment rate and topology of specific
synergies between resting-state networks [81]. Our further research would focus on the
node roles of a dynamic network. Finally, ADHD is typically classified into three categories:
inattentive, impulsive/hyperactive, and combined. The various subtypes of ADHD patients
have varying pathological mechanisms. For example, Iravani B et al. utilized a freshly
created adaptive-frequency-based model of whole-brain oscillations to resting-state fMRI
data. The model matched the results of the empirical behavior data, showing two distinct
ADHD subgroups with different behavioral phenotypes related to emotional instability
(i.e., depression and hypomanic personality traits) [82]. Petrovic P et al. proposed that a top-
down dysregulation framework could unify ADHD, emotional features seen in ADHD, and
borderline and antisocial personality disorder into one group of mental health issues [83].
When we drill down to the specific subtypes of ADHD, we believe the proposed approach
may unearth somewhat different brain regions, or differential connections compared to the
results of uncategorized ADHD. We will take this factor into account in the next study.

5. Conclusions

We assembled directed functional brain networks and confirmed three-node network
motif patterns in two datasets. The results show that motifs with IDs = 4, 6, 9, 12, and 13
are specific interaction patterns in directed human functional brain networks that char-
acterize the underlying information flow within the network. Then, we introduced the
concept of node roles based on the similarity of ties in order to better characterize the node
functions participating in network motifs. Different node roles represent different informa-
tion interaction functions. Through statistical tests, we found that some brain regions in
ADHD had significant differences compared with NC. The results showed abnormal and
changing information interactions in some brain regions, such as the right hippocampus,
the right amygdala, the right caudate nucleus, the bilateral thalamus, etc., which may be
caused by modifications to the sizes of brain regions. Notably, we also found some dis-
crepant effective connections, mostly belonging to the frontal striatum and frontal parietal
pathways involved in attention and executive function. These abnormal interactions can
lead to impaired cognitive and attentional functions. This study revealed abnormal and
changing information interactions based on network motifs, providing important evidence
for understanding information interactions at the meso-scale level in ADHD patients.
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//www.mdpi.com/article/10.3390/brainsci13091331/s1, Figure S1: The results of identified motifs
in each threshold about AAL atlas; Figure S2: The results of identified motifs in each threshold
about Power atlas; Figure S3: The correlation between node degree (in-degree/out-degree) and
motif-based role-degree; Figure S4: The model order p of parameter optimization. Table S1: Mapping
between ROIs and experiential function networks in AAL template; Table S2: Brain regions showing
significant differences based on node roles; Table S3: The directional edges of node roles with
significant differences between brain regions; Table S4: Brain regions showing variation trend among
node roles; Table S5: Brain regions showing significant correlations with ASRS scores.
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