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Abstract: Cerebral cavernous malformation (CCM) is a common cerebrovascular malformation
causing intracranial hemorrhage, seizures, and focal neurologic deficits. A unique CCM lesional
inflammatory microenvironment has been shown to influence the clinical course of the disease. This
review addresses the inflammatory cell infiltrate in the CCM lesion and the role of a defined antigen-
driven immune response in pathogenicity. We summarize immune mechanisms associated with the
loss of the CCM gene and disease progression, including the potential role of immunothrombosis. We
also review evidence of circulating inflammatory biomarkers associated with CCM disease and its
clinical activity. We articulate future directions for this research, including the role of individual cell
type contributions to the immune response in CCM, single cell transcriptomics of inflammatory cells,
biomarker development, and therapeutic implications. The concepts are applicable for developing
diagnostic and treatment strategies for CCM and for studying other neurovascular diseases.

Keywords: cerebral cavernous malformation; immune response; inflammation; transcriptome;
immunothrombosis

1. Introduction

Cerebral cavernous malformation (CCM), also known as cerebral cavernous angiomas,
is a common cerebrovascular malformation with a population prevalence estimated be-
tween 0.3 and 0.9% [1]. The lesion consists of dilated capillaries (caverns) with sluggish
blood flow, containing thrombus at various stages of organization, in addition to perile-
sional blood products and a robust inflammatory cell infiltration. Symptomatic clinical
presentations include seizures, focal neurologic deficits, and hemorrhagic stroke [2,3]. The
CCM can be inherited in an autosomal dominant familial form (20–30% of cases) with
multiple lesions throughout the brain or present in a sporadic form with a solitary lesion
or lesions clustered around a developmental venous anomaly (70–80% of cases) [1,2]. The
identification of genes implicated in CCM development has not fully explained the great
variability in lesional clinical behavior [4]. Epidemiological studies have shown that pa-
tients can harbor an identical CCM genotype while experiencing different clinical courses
of the disease during their lifetime [5–10].

Over the past 30 years, immune cell infiltration in CCMs, their interaction with
the lesional milieu, and potential pathogenicity have been investigated [11–16]. Pro-
inflammatory genotypes and gut microbiome factors have been implicated in lesional
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activity [6,17,18], and the CCM transcriptome studies and circulating biomarkers have
endorsed the potential roles of immune response and inflammatory activity in this disease.
We here review these concepts and how they influence potential biomarker development
and therapy in CCM, as well as how they may be applied to other neurovascular diseases.

1.1. Inflammatory Cell Infiltrate in CCM, Predominance of B Cells and Their Clonal Expansion,
Potential Pathogenicity

Familial and sporadic CCMs are histopathologically indistinguishable [4,13]. Regard-
less of genotype or recent clinical activity, resected lesions included a rich infiltration of B-
cells and T-cells, human leukocyte antigen-DR-expressing cells, as well as macrophages [13].
As compared to arteriovenous malformations, a preponderance of B cells was documented
in CCM and an oligoclonal IgG immune response in lesions [19], including oligoclonality
of IgG mRNA [13]. De Souza et al. (2019) reported immune cell infiltration in association
with CCM lesion aggressiveness [20]. Other authors have attributed the recurrence of CCM
to local inflammatory conditions [21].

Later, Shi and co-workers demonstrated in situ B-cell clonal expansion and antigen-
driven affinity maturation in CCMs [14]. These inflammatory cell niches are adjacent to
abnormal vascular channels, suggesting an organ-intrinsic adaptive immune response in
CCMs (Figures 1 and 2).
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Figure 1. B and T cells as well as plasma cells in human CCM. (A) CD20+ B-cells (red) and CD3+

T-cells (brown) were aggregated around the cavern of a CCM lesion. (B) CD138+ plasma cells (brown)
were well-circumscribed around a cavern of a CCM. (C) CD4+ helper and (D) CD8+ cytotoxic T-cells
were the T-cell subtypes identified in CCM. (E) CD4+ helper T-cells (brown) and CD20+ B-cells (red)
or (F) cytotoxic CD8+ T-cells (brown) and CD20+ B-cells (red) were co-localized in CCM lesions,
respectively. The original magnification is 400×. All scale bars are 50 µm. (Figures were published in
J. Neuroimmunol. 272: Shi, C., et al., Immune complex formation and in situ B-cell clonal expansion in
human cerebral cavernous malformations, 67–75 [2014]).
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Figure 2. Clonal tree of B cell in-situ clonal expansion. Genealogical relationships of germ-line
sequences with IgG (A) heavy (H) and (B) light (L) chain variable regions identified in CCM, with a
predicted germ-line clone (top). The gradual accumulation and pattern of mutation are consistent
with in situ somatic hypermutation. (Figures were published in J. Neuroimmunol. 272: Shi, C.,
et al., Immune complex formation and in situ B-cell clonal expansion in human cerebral cavernous
malformations, 67–75 [2014]).

A preclinical study showed that Ccm3 mice treated with anti-mouse BR3 to deplete
B cells harbored smaller lesions, fewer mature CCMs [15], and decreased non-heme iron
deposition, confirming the pathogenicity of the B-cell-mediated immune response in
CCMs [15,22]. Additional studies further elucidated that these immune cells target cy-
toskeletal elements, including vimentin, myosin, and tubulin, that are commonly present
in endothelial cells (ECs) and astrocytes [23]. This result also suggests that in situ inflamma-
tory cells may react with other lesional cellular components such as neurons, pericytes, and
other cell types [23].

Neutrophils, which have been identified in CCM, have been described as playing a
role in the development of an inflammatory response and induction of a prothrombotic
state in other diseases, such as intracerebral hemorrhage (ICH), cerebral arteriovenous
malformations, and cancer [24–27]. The recruitment of neutrophils as well as the deposition
of neutrophil extracellular traps (NETs) to neuroinflammatory sites have been shown
in CCMs [28]. Nobiletti et al. (2022) demonstrated the role of the CCM1 gene (KRIT1)
in the regulation of neutrophil adhesion and motility [29]. NET formation, also known
as NETosis, is considered the innate immunity function of neutrophils [30], which can
be triggered by proinflammatory cytokines as well as activated platelets and ECs [27,31].
Excessive NETosis can result in further endothelial damage due to its cytotoxic effect [28,32].
NETs could mediate adaptive immunity by inducing the secretion of proinflammatory
chemokines/cytokines and/or present autoantigens to active B and T cells [33,34]. NET
formation and release processes also depend on the generation of reactive oxygen species
(ROS), a process shown to play an important role in CCM pathogenesis [35]. While the
relationship of NOS to CCM pathogenicity requires further study, a Phase 2 trial targeting
ROS to treat symptomatic CCM is ongoing (NCT05085561).

Macrophages and microglia identified in CCM have well-defined roles in the break-
down of red blood cells as well as heme iron and have been shown to react acutely following
an ICH [13,36]. Activated microglia release pro-inflammatory mediators such as interleukin
(IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and ROS essential for the innate immune re-
sponse, leading to neurotoxic sequelae [37,38]. Of interest, pro-inflammatory IL-1β has
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been suggested to be involved in the recruitment of leukocytes, while IL-6 may be a critical
cytokine, controlling the transition from innate to adaptive immunity in the brain [39].
Moreover, TNF-α has been shown to play a role in T cell adhesion to brain ECs, which may
occur during neuroinflammation [40]. Activation of microglia and the overproduction of
ROS have been reported in the chronic inflammation microenvironment [41]. It contributes
to secondary injury cascades through mitogen-activated protein kinase/nuclear factor-
κB (MAPK/NF-κB) signaling and NOD-, LRR-, and pyrin domain-containing protein 3
inflammasome activation [41].

RhoA/Rho kinase (ROCK) signaling is negatively regulated by CCM proteins, and its
dysregulation can increase endothelial permeability [42,43]. In addition, the activation of
ROCK not only enhances leukocyte recruitment but also regulates B and T cell activation,
proliferation, and cytokine production [44,45]. Lesional B and T cell infiltration was shown
to be decreased in CCM preclinical models when blocking the Rho/ROCK signaling
pathway [22]. Heterogeneities in the inflammatory cell populations within the lesional
micro-environment have been shown to correlate with phenotype characteristics or clinical
outcomes [13,46]. Sporadic CCMs harbor greater T-cell infiltration than familial CCMs [13].
Similarly, a higher Th17/Treg ratio has been observed in CCM with clinical symptoms
suggestive of a primarily pro-inflammatory T cell phenotype [46].

Other researchers have linked immune responses in CCMs as well as other cerebrovas-
cular anomalies to the lymphatic system and cerebrospinal fluid flow [47]. Low fluid shear
stress conditions have been shown to contribute to the activation of cerebral cavernous
malformation signaling pathways [48]. They have also been implicated in endothelial
inflammation [49,50].

1.2. Transcriptomic Studies Highlight Inflammatory and Immune Mechanisms in CCM

The transcriptome of human and murine CCMs has clarified several features of this
disease, such as lesion genesis, maturation, growth, and intralesional and extralesional
hemorrhage. Some of the mechanistic findings observed in preclinical models of CCM
disease were translated and validated in human CCM [16,51–54]. The transcriptomes of
CCM lesional neurovascular units served as a reference to validate mechanistic hypotheses
related to the pathogenesis of CCMs [16,55]. Interestingly, common pathways related to
immune response, such as leukocyte migration and regulation of antigen receptor-mediated
signaling are found across human CCMs, mouse BMECs, and Caenorhabditis elegans, as well
as in two different genotypes (Ccm1 and Ccm3) [16]. In addition, several pathways related to
macrophage cytokine production and activation (i.e., innate immunity) as well as activation
and regulation of B and T cells (i.e., adaptive immunity) were identified in both human
CCM and mouse BMECs [16]. The transcriptome of in vitro mouse brain microvascular ECs
(BMECs) with induced allelic loss of Ccm3/Pdcd10 specifically identified several pathways
associated with innate immunity pathways such as macrophage/granulocyte chemotaxis
and migration [52].

Of interest, Chapman et al. (2019) reported that a mutation on kri-1(ok1251) in the C.
elegans model affects several genes that are predicted to be involved in innate immunity [54].
These results suggest that a mutation in the CCM gene affects innate immunity pathways.
Fusco et al. (2022) published transcriptome analyses revealing altered expression of genes
involved in hypoxia, inflammation, and immune regulation in Ccm3 (Pdcd10)-depleted
mouse endothelial cells [56].

Later, the analyses of the lesional transcriptome of acute and chronic Ccm3 mouse pre-
clinical models showed that adaptive immune response pathways, such as chemotaxis and
activation of neutrophils and leukocytes, chemokine production, and cytokine secretion,
were only enriched in the chronic model with more mature lesions akin to symptomatic
human CCMs [52]. The transcriptome of the acute Ccm3 model mostly identified enriched
angiogenesis and cell proliferation pathways [52]. This result suggests that chronic bleeding
in CCM accompanies an inflammatory stimulus, which may result in a local adaptive im-
mune response. Finally, the transcriptome of surgically resected human CCMs with recent
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bleeding showed several enriched pathways associated with acute inflammation compared
to non-recent bleeding [55]. The CCMs that recently bled likely carry unique biologic
signatures, reflecting recent bleeding and subsequent vulnerability to hemorrhage [55].

The contribution of each cell type within the lesional milieu to CCM pathogenesis
remains unclear. Pericytes, microglia, astrocytes, and neurons are necessary to maintain
the integrity of the blood-brain barrier (BBB) and have also been associated with leukocyte
infiltration and the local inflammatory response [12,57,58]. Pericytes normally regulate
vascular integrity through close physical contact with ECs as well as paracrine signaling.
Brain pericytes have also been shown to have similar functions to immune-regulating
cells [59]. Recent preclinical studies on CCM lesional pericytes have identified leuko-
cyte migration/proliferation, leukocyte cell-cell adhesion/activation, and the chemokine
signaling pathway [57]. Moreover, pericytes express receptors for DAMPs and inflamma-
tory mediators (IL-1β, IL-6, TNF-α, nitric oxide [NO], matrix metallopeptidase [MMP]-2,
and MMP-9) that are associated with inflammatory responses in the brain [60,61]. In re-
sponse to inflammatory stimuli, pericytes may also have macrophage-like functions such
as phagocytosis and act as antigen-presenting cells by displaying antigens through major
histocompatibility complex class II [61,62].

1.3. Immunothrombosis in CCM

Thrombosis is known to promote an inflammatory response involving a rich repertoire
of immune cell infiltration [63–65]. The hallmarks of every CCM lesion are the organized
thrombi in vascular caverns and leaky endothelium, with blood breakdown products in the
surrounding brain parenchyma [11]. A complex interplay occurs between thrombotic and
hemostatic regulatory pathways, mediated by cells of the neurovascular unit, and appears
to lead to a proinflammatory milieu in brain tissue directly adjacent to the CCM [11,12,66].
A loss of hemostasis due to dysfunctional endothelium has been reported in CCM, resulting
in upregulation of both pro- and anti-coagulant factors [51,67]. An upregulation of KLF4, a
driver of CCM pathogenesis in mutant ECs, leads to the upregulation of the anticoagulant
factors thrombomodulin (TM) and endothelial NO synthase (eNOS) [68]. A local increased
level of TM and endothelial protein C receptors generates anticoagulant activated protein
C, which could be associated with bleeding in CCMs [51].

Procoagulant domains that contribute to inflammation and the breakdown of endothe-
lial integrity have been identified in CCM in conjunction with the inflammatory response
induced by anticoagulant lesional domains [51,66]. This prothrombotic environment is a
result of both endothelial and non-cell autonomous effects. ECs, as a proinflammatory effec-
tor, in the presence of Factor Xa can elevate expression of IL-8, IL-6, monocyte chemotactic
protein-1, as well as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion
molecule-1 (VCAM-1), which play roles in the promotion of leukocyte adhesion [69]. ECs
are also responsible for the production of von Willebrand factor (vWF), which facilitates
T-cell and neutrophil recruitment depending on the presence of platelets and the acces-
sibility of their VWF-receptor glycoprotein (GP) Ib-IX-V complex [70]. Given a marked
accumulation of vWF in the lumen of CCMs, recruitment of leukocytes can create positive
feedback by increasing inflammatory cells around the CCM [11,67].

Perilesional astrocytes have been shown to upregulate coagulant tissue factor produc-
tion in a Ccm3 murine model, likely due to increased shear stress caused by diminished
actin rearrangement capability in CCM ECs [71,72]. Procoagulant domains and thrombi
formation, in addition to low flow through caverns, induce a local hypoxia within the
CCM, leading to increased production of endothelial NO and hypoxia-inducible factor
(HIF)-1α [11,73]. Increased HIF-1α induces upregulation of VEGF-A in astrocytes, which
has been linked to BBB breakdown by targeting endothelial tight junction proteins such
as claudin-5 and occludin [73,74]. Astrocytes also play an active role as immune effector
cells through the secretion of proinflammatory factors, including TNF-α and IL-1β, at high
thrombin levels [75]. Increased levels of TNF-α have been shown to increase expression
of ICAM-1 and VCAM-1, increasing trans-endothelial leukocyte migration and further
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contributing to the proinflammatory environment [76]. Similarly, microglia have shown
reactive morphologies in a Ccm3 murine model within areas colocalized with thrombi
and have been positively associated with the number of thrombi around lesions [12].
ICAM-1 stabilization and recruitment of neutrophils may form a feedback loop in which
procoagulant-induced inflammation can lead to further endothelium injury and the release
of cytokines such as IL-6, IL-8, and TNF-α [77–80]. These cytokines have been shown to
promote the release of vWF from ECs [81,82], allowing for the recruitment of inflammatory
cells into the lesional milieu.

These findings suggest a disrupted balance between pro- and anti-coagulant domains
within the CCM to provide a nidus for the recruitment of pro-inflammatory cells and
cytokines, further weakening the angio-architecture and leading to neurological sequelae
(Figure 3).
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Figure 3. Diagram of the mechanism of immune response in CCMs. (A) Previous experimental
studies showed dysfunctional endothelial cells in CCMs led to extravasation of blood products and
leukocyte infiltration. It could create a pro-inflammatory domain, further activating astrocytes and
microglia. Cytoskeletal elements of lysed endothelial cells or astrocytes may activate the infiltrated B
cells (green star), then cause their clone expansion and differentiation into plasma cells. Activated
astrocytes and microglia may release cytokines, which recruit more immune cells to the lesion.
In the meantime, the dysfunctional endothelial cells could also show a pro-thrombotic effect and
cause thrombi formation and a local hypoxic condition, which could potentially lead to hyperactive
angiogenesis. (B) In silico analyses indicate leukocyte extravasation through leaky endothelium may
trigger a vicious cycle of inflammation and damage in endothelial cells. Furthermore, pericytes
may serve as non-traditional antigen-presenting cells, which may lead to leukocyte and astrocyte
activation and the release of cytokines contributing to endothelial cell death.

1.4. Biomarkers and Clinical Features of CCM Disease

The U.S. FDA/NIH have outlined definitions for categorizing biomarkers in relation to
their clinical contexts of use [83,84]. Molecular or imaging signatures have been proposed
for the diagnosis, etiologic, and severity categorization of several neurological and neuro-
vascular disorders [55,85–88]. The first association between the clinical course of CCM
disease and circulating systematic compounds reported a hierarchical cluster of 5 plasma
inflammatory cytokines, including IL-2, IFN-γ, TNF-α, IL-1β, and IL-6, defining CCM
patients with a “high” inflammatory state, which was associated with seizures and more
than one prior SH during a patient’s lifetime [89]. Several translational studies have
recently reported that the complex inflammatory and angiogenic milieu observed in the



Brain Sci. 2023, 13, 1336 7 of 12

transcriptome of CCMs is reflected in the plasma of CCM patients [16,55]. The lesional
transcriptomes have since served as a reference to not only validate mechanistic hypotheses
related to the pathogenesis of CCMs but also identify circulating mechanistically plausible
candidate biomarkers [16,55]. While many of the biomarkers are not specific to CCM and
have been invoked in other inflammatory conditions, they have been linked to the lesional
CCM transcriptome and CCM-specific contexts of use. A novel paradigm that integrates
multi-omic mechanistic discoveries and applies a likelihood-based computational model
was developed to generate and improve biomarker candidates of disease activity [90]. This
approach generated two weighted biomarkers based on the combination of plasma levels
of inflammatory and angiogenic proteins, able to distinguish CCM patients recent (i.e.,
diagnostic) and impendent (i.e., prognostic) hemorrhagic activity with up to 80% sensitivity
and specificity [55]. There is currently a multi-site initiative to develop highly accurate as
well as generalizable diagnostic and prognostic biomarkers of symptomatic hemorrhage
in CCMs (R01 NS114552), powered to examine the independent effects of confounders
including sex, genotype, age, and lesion location.

The analyses of circulating genetic traits have also shown genetic polymorphisms
within pro-inflammatory and immune response genes, such as TGFBR2, CD14, IL-6R, MSR1,
IGH, and TLR4, that have been associated with total lesion count, number of large lesions,
and intracerebral hemorrhage [6,8,17]. In addition, circulating microRNAs (miRNAs)
have been suggested as possible mechanistic biomarkers of hemorrhagic activity for CCM
disease. Lyne et al. (2019) identified 13 differently expressed (DE) miRNAs in the plasma of
patients who experienced recent CCM-related brain bleeding [55]. Further computational
analyses showed that miR-185-5p, one of these 13 DE miRNAs, had IL-10RA as a putative
target, which was dysregulated in the lesional transcriptome of CCMs [55]. Of interest,
lower plasma levels of IL-10 have been reported in CCM subjects who experienced recent
bleeding [55].

1.5. Conclusions and Future Directions

A complex inflammatory cell environment and several potential immune mechanisms
are inherent to CCM (Figure 3). More research on the role of the immune response in CCM
is needed and may impact novel therapeutic and biomarker development. Future studies
must parse out the individual roles of the inflammatory cells during lesion genesis and
maturation and their involvement in clinical sequelae. Single-cell transcriptomic studies of
inflammatory cells at various stages of lesion development could lead to more personalized
treatments based on the lesion’s developmental stage [91–94]. These studies could also
aid in the identification of molecules that can stratify patients based on lesion severity
and prognosticate clinical events. Cytokines and chemokines may serve as biomarkers to
predict disease characteristics due to the inflammatory microenvironment and increased
vascular permeability. Of interest, IL-1β and IL-10 are currently being tested as biomarkers
of hemorrhagic activity in CCM [90]. Other studies will motivate the repurposing of
drugs that impact immune cells for therapeutic interventions [15]. In many ways, CCM
remains a paradigmatic disease, as these concepts may be applicable to other neurovascular
diseases where there is an interplay between vascular dysmorphism, immune response,
and inflammation.
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