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Abstract: Rapid eye movement (REM) sleep is the main sleep correlate of dreaming. Ponto-geniculo-
occipital (PGO) waves are a signature of REM sleep. They represent the physiological mechanism of
REM sleep that specifically limits the processing of external information. PGO waves look just like
a message sent from the pons to the lateral geniculate nucleus of the visual thalamus, the occipital
cortex, and other areas of the brain. The dedicated visual pathway of PGO waves can be interpreted
by the brain as visual information, leading to the visual hallucinosis of dreams. PGO waves are
considered to be both a reflection of REM sleep brain activity and causal to dreams due to their
stimulation of the cortex. In this review, we summarize the role of PGO waves in potential neural
circuits of two major theories, i.e., (1) dreams are generated by the activation of neural activity in the
brainstem; (2) PGO waves signaling to the cortex. In addition, the potential physiological functions
during REM sleep dreams, such as memory consolidation, unlearning, and brain development and
plasticity and mood regulation, are discussed. It is hoped that our review will support and encourage
research into the phenomenon of human PGO waves and their possible functions in dreaming.

Keywords: rapid eye movement sleep; ponto-geniculo-occipital waves; dreams; mechanisms
underlying dreaming; non-rapid eye movement sleep

1. Introduction

Dreams are images and experiences that people have while they sleep. In ancient
cultures, dreams were believed to contain messages from the gods or omens of the future.
In the late 19th century, dreams became a subject of study for psychologists and psycho-
analysts. Sigmund Freud’s The Interpretation of Dreams [1] initially developed the most
prominent psychoanalytic theory of dreams. This model has been quite influential in sleep
research and continues to have strong adherents to this day. For Freud, the dream is a
highly meaningful mental product that is the result of specific mental processes under the
conditions of sleep. Dreams that have “hidden meanings” and “repressed desires” are
well established in popular folk psychology. Although Freud theorized that the purpose of
dreaming is wish fulfillment, there is little experimental evidence to support this concept.

Modern sleep science has evolved significantly since the late 1950s, largely due to the
seminal discoveries of rapid eye movement (REM) sleep [2–5]. Aserinsky and Kleitman [2]
found that 74% of awakenings from REM sleep resulted in the recall of a dream, as com-
pared to only 9% of awakenings from non-REM (NREM) sleep. The linking of REM sleep to
dreaming ushered in a new era in the study of dreams [6]. During REM sleep, in addition
to rapid eye movements (REMs), cortical electroencephalogram (EEG) desynchronization
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(or activation), loss of muscle tone, and autonomic fluctuations [2–5], many other phys-
iological and behavioral features have also been found in humans and other mammals.
These include high-amplitude spiky potentials of ponto-geniculo-occipital (PGO) waves,
high-amplitude hippocampal EEG theta waves, penile erections, sporadic limb twitching,
increases in brain/body temperature, and an elevated arousal threshold [7–17]. In these
characteristic components of REM sleep, PGO waves are undoubtedly powerful internal
sensory signals that convey a large amount of information to the visual cortex and seem to
“compose the song sheet of dreams” [18]. Accordingly, a “dream state generator”, located
mainly in the pontine reticular formation and producing PGO waves, has been postulated
to be the cause of both REMs and the periodic intrusion of new content into hallucinatory
dreams [19–22].

This review summarizes the PGO waves involved in the proposed neural mecha-
nisms of dreaming and memory. The hypothesized physiological roles of PGO waves in
performance are discussed.

2. The Neural Mechanisms Underlying Dreaming
2.1. PGO Waves

PGO wave activity was first discovered in cats in the 1950s [5,23,24]. Because these
local field potentials originate in the pons (P) and propagate to the lateral geniculate
nucleus (G) of the visual thalamus and the occipital cortex (O), they are called PGO
waves [18,25,26]. PGO waves occur just before the onset of REM sleep and continue
throughout its duration. They are characterized as biphasic, sharp field potentials lasting
60–120 ms, with an amplitude of 200–300 µV, occurring as singlets and clusters (Figure 1).
These spikes during REM sleep period are in parallel to eye saccades and are observed
not only in cats [5,25,27–29] but also in rats [30,31], mice [32], in non-human primates such
as macaques [33,34], baboons [35], and in humans [7,36–38]. Cholinergic/glutamatergic
neurons in the pontine brainstem have been shown to generate PGO waves by burst
firing. PGO waves look just like a message sent from the pons to the lateral geniculate
nucleus (LGN), occipital cortex, and other brain regions, including the temporal and
prefrontal cortices and the amygdala. The dedicated visual pathway of PGO waves could
be interpreted by the brain as visual information, thereby leading to the visual hallucinosis
of dreams. These waves are not only associated with dream production but also limit
the cortex’s ability to process external inputs [39,40]. Similar signals are known to be
widespread in posterolateral cortical regions of the human brain. These PGO waves are the
best candidates, so far, for the long-sought dream stimuli, and as such, they must somehow
contribute to our thinking about consciousness [41].

In humans, many invasive and non-invasive studies provide insight into how PGO
waves occur during REM sleep and how they contribute to dreaming. For example, in
two invasive studies in Parkinson’s disease patients, deep brain stimulation electrodes
were surgically implanted in the pedunculopontine nucleus of the pontine tegmentum [36]
and the subthalamic nucleus (STN) [7]. The results showed that PGO-like waves were
observed during REM sleep. Much like feline models, PGO wave singlets and clusters were
recorded within STN during pre-REM and REM sleep [7]. A single-neuron study using
depth-electrode EEG in patients with epilepsy found that potentials in the medial temporal
lobe with a morphology similar to feline PGO waves were reliably observed time-locked
to REMs, providing considerable support for the hypothesis that PGO waves propagate
throughout the brain [42]. Several non-invasive technologies such as functional magnetic
resonance imaging (fMRI) and positron emission tomography (PET) provide indirect evi-
dence to support the existence of PGO waves in humans. An fMRI study combined with
polysomnographic (PSG) recording [43] showed that the pontine tegmentum, ventroposte-
rior thalamus, primary visual cortex, and putamen and limbic areas were activated during
REM sleep in association with REMs. Neural evidence for the existence of human PGO
waves and a link between REM and dreaming is provided by the REM-related activation
of the primary visual cortex in the absence of visual input from the retina. The existence
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of PGO wave-like activity in humans was also supported by another study using PET
combined with hemodynamic recordings of PSG activity [44]. This study found remarkable
activity during REM in the ventroposterior thalamus and V1 of the occipital cortex, with
additional activity in a number of limbic regions and the parahippocampal gyrus. This
supports the hypothesis that PGO waves play an important role in the generation of visual
content during REM sleep.
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Figure 1. PGO waves in cats. PGO waves occur just before the onset of REM sleep, i.e., during
the transition from NREM to REM, and during REM sleep period. PGO wave singlets occur pre-
dominantly during the transition from NREM to REM sleep and are not time-locked to rapid eye
movements (REMs), but PGO wave clusters (≥3 waves) occur predominantly during REM sleep
and correlate strongly with REMs and typical hippocampal theta oscillations. Abbreviations: EEG,
electroencephalogram of the neocortex; EMG, electromyogram; EOG, electro-oculogram; Hipp, EEG
of the hippocampus; LGN, EEG of the lateral geniculate nucleus.

Overall, much of the detailed understanding of PGO waves and their mechanisms still
depends on animal studies. However, direct translation to humans may require further
investigation and validation. Using noninvasive methods such as fMRI and magnetoen-
cephalogram, the future of PGO wave research undoubtedly lies in broad studies that
combine behavioral, pharmacological, physiological, and cognitive experiments in human
subjects [38].

2.2. Activation–Synthesis Hypothesis

Hobson and McCarley, following the pioneering work of Jouvet [45], proposed the
activation–synthesis hypothesis in 1977 [19]. This hypothesis is based primarily on micro-
electrode recordings of PGO waves in cats, which were found to occur primarily during
REM sleep. The dreaming process consists of activation and synthesis. In short, the neural
activity in the pons activates the brain, especially the LGN and visual cortex, to generate
information during REM sleep. Under these conditions, in the absence of external stimuli,
internally generated inputs randomly activate sensorimotor information, and the pas-
sive synthesis of this information (perceptual, conceptual, and emotional) creates dreams
(Figure 2). During REM sleep, these internal inputs generated by PGO waves continuously
activate the forebrain via the midbrain reticular formation and are ready to process informa-
tion. In this state, most motor outputs are blocked to prevent movement according to the
dream content, but the oculomotor and vestibular systems are activated to induce REMs.
Meanwhile, external sensory inputs are also blocked, increasing the relative impact of the
internal inputs to the brain and thus enhancing the dream image (Figure 2). Ten years later,
the activation–synthesis hypothesis was improved by Seligman and Yellen. They added
the involvement of emotional appraisal to the activation of the primary visual cortex and
secondary cognitive elaboration to explain the mechanism of dream generation [46].
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Figure 2. Schematic representation of the activation–synthesis model. Neural activity of PGO waves
in the pons activates the lateral geniculate nucleus of the visual thalamus and the visual cortex.
The passive synthesis of information (perceptual, conceptual, and emotional) generates dreams in
the cortex. Meanwhile, the neural activity in the pons also activates the vestibular nucleus and
oculomotor-related nuclei, such as the oculomotor nucleus, the trochlear nucleus, and the abducens
nucleus, to induce REMs during REM sleep. In this state, external input and motor output are blocked.
Abbreviations: II, optic nerve; III, oculomotor nerve; MR, medial rectus.

Based on this hypothesis, Crick and Mitchison later proposed that the function of
dreaming during REM sleep is to remove certain undesirable modes of interaction in
networks of cells in the cerebral cortex so that the trace in the brain of the unconscious
dream is weakened, rather than strengthened, by the dream [20].

2.3. Activation, Input, and Modulation (AIM) Model

The activation–synthesis hypothesis of dreaming was updated and extended by Hob-
son et al. [21,22], and transformed into the AIM state-space model of the brain–mind
isomorphism, where a conscious state can be understood as a point in a three-dimensional
state space. In the AIM model, the variables consist of activation (A), input (I), and mod-
ulation (M) (Figure 3). (A) The level of brain activation can be defined as the average
firing frequency of brainstem neurons as reflected by high and low frequency levels in
the EEG. The high levels of A in REM sleep are a correlate of the mind’s ability to access
and manipulate significant amounts of stored information from the brain during dream
synthesis. (I) Input source is a measure of how much of the sensory data being processed
are from external or internal sources. During REM sleep, internally generated PGO waves
replace blocked external sensory input, activating sensory and affective centers that then
prime the cortex for dream construction by stimulating the visual cortex with PGO waves.
This can be estimated from the frequency of REMs in REM sleep, which is thought to reflect
brainstem PGO and motor generator activity. (M) The brainstem neuromodulators that
they release exert a broad chemical influence on the brain. It is well known that REM
sleep is cholinergic potentiated and monoaminergic suppressed (Figure 3A). In addition,
the involvement of γ-aminobutyric acid (GABA) and glutamate has also been suggested
to participate in this process. This model postulates that the transition to the cholinergic
state in REM sleep, during which cholinergic PGO burst cells in the brainstem release
acetylcholine, alters the mnemonic capacity of the brain–mind and reduces the reliability of
cortical circuits, increasing the likelihood that bizarre temporal sequences and associations
are accepted as reality during dreaming [47].
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inhibited. These internal inputs activate the LGN and occipital cortex, and produce dreams. The
LDT/PPT–thalamus–cerebral cortex pathway causes the desynchronization of the cerebral cortex.
The LDT/PPT–amygdala pathway may be involved in mood regulation during dreams. (B) The cubic
3-dimensional model shows normal transitions within the 3-dimensional parameters (activation,
input, and modulation) from wakefulness to NREM and then to REM sleep. Abbreviations: 5–HT,
serotonergic; ACh, cholinergic; DR, dorsal raphe nucleus; LC, locus coeruleus; LDT/PPT, laterodorsal
tegmental and pedunculopontine nuclei; LGN, lateral geniculate nucleus; NA, noradrenergic; NREM,
non-rapid eye movement; REM, rapid eye movement; W, wakefulness.

Within the three-dimensional space of the AIM model, the coordinates differ according
to wake, NREM, and REM sleep states. In wakefulness, (A) is high, (I) is externally
dependent, and (M) is dominated by monoaminergic systems. In NREM sleep, (A) and
(M) are lower, and I is both external and internal. In REM sleep, (A) is high, (I) is internal,
and (M) is predominantly from the REM sleep cholinergic system (Figure 3B). As suggested
by the AIM model, there is little hallucinatory activity during NREM sleep, but recent
research suggests that dreams still occur [48].

2.4. Neuronal Mechanisms of REM Sleep Regulation

REM sleep is generally thought to be mediated by a neural network located primarily
in the brainstem. More recently, the concept of REM sleep regulation has evolved. Several
hypothalamic and forebrain networks, including newly identified neuropeptides such
as orexin and melanin-concentrating hormone (MCH), have been implicated in both the
control and the final expression of this behavioral state [14,16,17,49–54]. Firstly, a reciprocal
interaction between REM on and REM off states has been proposed to occur in the brain-
stem. In this model, the cholinergic laterodorsal and pedunculopontine tegmental neurons
(LDT/PPT) are REM-on cells. The serotonergic dorsal raphe nucleus and noradrenergic
locus coeruleus neurons are REM-off cells [22,55,56] (Figure 3A). However, this reciprocal
interaction may not be sufficient to produce REM sleep, as suggested by experimental
evidence over the past decade [16,53]. The glutamateric sublaterodorsal tegmental nucleus
(SLD) and the GABAergic lateral paragigantocellular nucleus (LPGi) have been subse-
quently found to act as REM-on neurons, whereas GABAergic ventrolateral periaqueductal
gray matter (vlPAG) and lateral pontine tegmentum (LPT) act as REM-off neurons [16,53].
Next, in the hypothalamus, orexinergic neurons are generally REM-off and are suppressed
during REM sleep [57]. A deficiency in this process may be a cause of narcolepsy [16,17].
MCH neurons act as REM-on neurons and play an important role in REM sleep onset
and maintenance [16]. In the forebrain, a transient increase in dopamine in the basolateral
amygdala during NREM sleep terminates NREM sleep and initates REM sleep [58]. Thus,
the mutual inhibitory interactions between REM-on and REM-off neurons switch the brain
state between NREM and REM sleep [54]. Taken together, the REM sleep-regulating circuits
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are widely distributed throughout the brain stem (midbrain, pons, and medulla) and the
hypothalamus, and they involve a number of neurotransmitters and neuropeptides. As a
result, the REM sleep regulatory circuitry is a highly robust and complex system.

2.5. Other Recent Mechanisms of Dreaming

Solms [59] has hypothesized that dreaming is controlled by forebrain mechanisms.
It is suggested that the cholinergic brain stem mechanisms that control the REM state are
only able to produce the psychological phenomena of dreaming through the mediation of
a second, presumably dopaminergic, forebrain mechanism. The dopaminergic forebrain
circuits arise from the neurons in the ventral tegmental area (VTA) and terminate in
the amygdala, anterior cingulate gyrus, and frontal cortex. This neural circuit of the
mesocortical–mesolimbic dopamine system has been implicated in dream generation,
and has been described as the “SEEKING” or “wanting” command system to subserve
emotional drive and motivation [59]. In addition, a reward activation model (RAM)
recently hypothesized that activation of the mesolimbic dopaminergic system during sleep,
particularly REM sleep, contributes to memory processes, REM sleep regulation, dream
generation, and motivation [13,60]. Thus, the mesolimbic dopaminergic system seems to
play an important role in dreaming, both in the dopaminergic forebrain mechanism and in
the RAM [13,59–61].

The amygdala, a limbic structure associated with emotions, memory, and dreams,
receives the dopaminergic projection. It serves as a node to integrate the regulation of REM
sleep and causes the intermittent appearance of REM sleep-related dreams and REM sleep
behavior disorder (RBD) [58,61,62]. The amygdala is very active in REM sleep, especially
in humans [63,64]. It can influence the frequency of PGO waves during REM sleep. This
suggests that it also plays a key role in setting the “emotional tone” for PGO activity [65].
A very recent study by Hasegawa et al. showed that a transient increase in dopaminergic
input from the VTA to the basolateral amygdala during NREM sleep triggers NREM-to-
REM transitions [58]. Next, a recent neuro-physio-pharmacological study showed that
both cholinergic PPT neurons and dopaminergic substantia nigra (SN) neurons project
to the amygdala and modulate REM sleep, in a conformal manner, indicating that REM
sleep-related dreaming may be due to the phasic activation of amygdala neurons by phasic
REM-onset neurons in the PPT and SN [62]. However, whether the dopamine system
is necessary or sufficient for transitioning to REM sleep and for dreaming remains to
be determined.

3. The Physiological Functions of Dreaming: The Involvement of PGO Waves during
REM Sleep
3.1. Memory Consolidation

Oneiric production is a form of mental sleep activity that appears to be closely related
to memory processes and cognitive elaboration [48,66,67]. Converging evidence suggests
that dreaming is influenced by memory consolidation during sleep [68]. A number of
studies have reported that PGO waves during REM sleep in rodents have been repeatedly
associated with memory consolidation [69]. For example, PGO waves increased during
REM sleep following learning tasks [70–74]. Artificially enhancing PGO waves by injecting
carbachol prevented avoidance memory deficits during a period of REM sleep depriva-
tion [75], while suppressing PGO wave generation in rats impaired avoidance memory
retention during sleep [76]. It appears that the density of PGO wave activity is directly
related to memory processes. A number of studies have reported an increase in PGO
wave density following fear memory training in rats, which predicted overnight memory
consolidation [70–73]. The success of fear extinction was recently shown to be predicted by
PGO wave density during REM sleep [74]. In addition, increased activity of brain-derived
neurotrophic factors and plasticity-related immediate early genes in the dorsal hippocam-
pus was associated with PGO wave density after training. The selective elimination of PGO
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wave-generating cells prevents these increases, whereas the enhancement of PGO waves
through cholinergic activation of these cells enhances the increases [72,73].

In general, PGO waves in the transition from NREM to REM sleep are considered
to be the physiological signals that initiate and maintain REM sleep, constituting a state
with characteristics distinct from both the preceding NREM sleep and the following REM
sleep [77,78]. Pontine caudolateral parabrachial neuronal discharge has been found to
contribute to the shift toward the two PGO-related states, the transition from NREM
to REM sleep and REM sleep [34,77,79]. Of note, a recent study in macaque monkeys
showed that PGO waves during the transition from NREM to REM sleep co-occurred with
hippocampal sharp-wave ripples associated with memory consolidation [34]. In addition,
the frequency of PGO waves during the transition from NREM to REM sleep is significantly
lower than during REM sleep, which may be related to the fact that the duration of dreams
during NREM sleep is usually shorter than that of dreams during REM sleep [80].

Furthermore, PGO waves are usually highly correlated with REMs [26,38,79,81]. The
caudoventral pontine tegmentum has been shown to be responsible for the simultaneous
generation of the PGO waves and correlated REMs during REM sleep [28]. REMs have
experimentally revealed gaze shifts in the virtual world of REM sleep in mice, providing
an external readout of an internal cognitive process occurring during REM sleep and
manifesting the memory of a brief episode in life that is critical for survival [82,83]. In
addition, PGO waves and REMs tend to be phase-locked to hippocampal and neocortical
theta waves [84–86]. The PGO wave clusters during REM sleep have been shown to
coincide with hippocampal theta oscillations, which are thought to cause a permanent
enduring increase in synaptic strength, allowing for the consolidation of new memories
while maintaining existing ones [34]. Additionally, Boyce et al. [87] optogenetically silenced
medial septal GABAergic cells that drive hippocampal theta activity. This resulted in a
specific attenuation of the memory-associated theta rhythm during REM sleep without
disrupting sleep. They found that the selective silencing of these GABAergic neurons
during REM sleep impaired the subsequent recognition of novel object locations and fear-
conditioned contextual memory [87]. This suggests that theta activity during REM sleep
plays a critical role in memory consolidation. Therefore, PGO wave clusters coupled with
REMs and theta waves during REM sleep are involved in learning and memory functions
and may underlie the realistic and vivid experience of dreams.

Although evidence from a number of studies shows that PGO waves are closely
related to learning, cognition, dreaming, visual hallucination, sensorimotor integration,
and synaptic plasticity in the brain areas through which they pass [38], their functions are
still not fully understood.

3.2. Unlearning

One of the hypothesized functions of REM sleep is a process of “unlearning” [20,88].
These authors proposed that the function of dream sleep is the removal of certain unwanted
memories from the cerebral cortex. During REM sleep, the unconscious dream traces act to
weaken rather than strengthen memory. It is noteworthy that “we dream to forget” [20]
is not the same as normal forgetting. Dreams are not simply forgotten; they are actively
unlearned [80]. The unlearning mechanism modifies the cerebral cortex by changing the
strength of individual synapses. Because an increase in synaptic strength is necessary
to consolidate memory, unlearning weakens synaptic strength. Crick and Mitchison [20]
postulated that PGO waves are produced by this dream generator in the brainstem as a
random internal activation. In order to eliminate many of the unwanted memory traces,
the random internal activation must occur repeatedly because it is less effective if it occurs
only once. Thus, the PGO waves that occur repeatedly during REM sleep play a key role in
this process. Furthermore, PGO waves may determine which memories are retained and
which are erased. It has also been suggested that if this unlearning process does not work,
people experience hallucinations, delusions, and obsessions, leading to a state similar to
schizophrenia [20].
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The unlearning theory is supported by a growing number of studies. For example,
during REM sleep, the postsynaptic dendritic spines of layer V pyramidal cells in the
mouse motor cortex are eliminated during development and motor learning. On the
other hand, critical spines are strengthened and maintained [89]. The hypothalamic MCH
neurons are known to be involved in the control of REM sleep and mood [90]. An anatomi-
cal and functional study in cats found that MCH neurons project to cholinergic pontine
neurons [91]. When MCH was microinjected into the nucleus pontis oralis, there was a
significant decrease in latency to REM sleep and a significant increase in the amount of
REM sleep, accompanied by increased PGO wave activity and its duration. This suggests
that the MCH system is involved in the regulation of REM sleep by modulating neuronal
activity in cholinergic pontine neurons [91]. However, it has recently been shown that
MCH neurons are also involved in the unlearning mechanism of REM sleep [92]. The
activation or inhibition of MCH neurons by optogenetics and chemogenetics impaired or
improved hippocampal-dependent memory, respectively. The activation of MCH nerve
terminals in vitro reduced the firing of hippocampal pyramidal neurons by increasing
inhibitory inputs. These results strongly suggest that the activation of MCH projections
to the hippocampus during REM sleep actively contributes to forgetting [92]. The activ-
ity of hippocampal neurons during REM sleep has been suggested to play a key role in
unlearning [93]. REM sleep serves to maintain or strengthen memories until they are
transferred out of the hippocampus, whereupon they should be erased from this space-
restricted short-term memory factory so that these synapses can be used to encode new
associative memories [93]. PGO waves that are phase-locked to the theta oscillation of
the hippocampus during REM sleep may be involved in this process [94]. However, the
question of whether REM sleep plays a more critical role in the processing of emotional and
procedural memories than other types of memories remains unanswered. One attractive
hypothesis is that REM sleep is responsible for erasing negative emotional memories, and
that this function is dysfunctional in depressed patients [95].

3.3. Brain Development and Plasticity

REM sleep is known to be particularly abundant during early development. At birth,
half or more of our sleep time is occupied by REM sleep, compared to <20% of sleep time
in adults [96]. PGO waves during REM sleep in development might be an important
central nervous system (CNS) stimulator during a period when wakefulness is limited in
time and scope and stimulation opportunities are few [94,97,98]. The ascending impulses
emanating from the brainstem during REM sleep may be required to promote neuronal
differentiation, maturation, and myelination in higher brain centers [17]; that is, REM sleep
deprivation during the early life of animals has been used to understand some functional
mechanisms of PGO waves in brain development. Selective REM sleep deprivation further
eliminates the endogenous stimulation of PGO waves [17]. For example, when REM sleep
is dramatically reduced in postnatal rats over the course of 2 weeks, these REM sleep-
deprived rats have a reduced brain size, hyperactivity, anxiety, attention, and learning
difficulties in adulthood [99,100]. In addition, selective REM sleep deprivation for 1 week
during the critical postnatal developmental period in kittens significantly reduces the size
of noradrenergic neurons in the locus coeruleus [101] and the number of parvalbumin
immunoreactive neurons in the LGN [102]. REM sleep deprivation in monocularly occluded
kittens reduces neuronal size in the monocular segment of the LGN [103] and ocular
dominance plasticity by inactivating a kinase critical for this plasticity [104]. The elimination
of phasic PGO waves in the LGN during REM sleep enhances plasticity effects on cell size
in the LGN [105]. This suggests that REM sleep neuronal activities may be necessary for
normal LGN development. The development of PGO waves is further thought to contribute
to the maturation of the thalamocortical pathway in early life [98,106]. Thus, the abundance
of REM sleep in early life and its subsequent decline to lower levels in adulthood strongly
suggests that REM sleep is an integral part of the activity-dependent processes that enable
normal physiological and structural brain development [100,102,106–108].
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Several lines of evidence have shown that PGO waves in REM sleep are associated
with the regulation of neural plasticity [109–111]. Brain plasticity allows for the preser-
vation of the ability to change, adapt, and learn in response to different environmental
experiences and new demands. These processes occur with sleep cycles throughout life
and begin in response to REM sleep in late fetal and early neonatal life [112]. PGO wave-
associated cells are good candidates for generating or modulating plasticity in various brain
structures [71], as they discharge high-frequency spike bursts during pre-REM and REM
sleep [34]. Indeed, the activation of PGO wave-generating cells by cholinergic agonism
induces changes to the electrical properties of PGO wave activity [113], accompanied by
prominent behavioral effects [74,114]. Furthermore, the activation of the PGO wave gen-
erator and the occurrence of PGO waves themselves are tightly correlated with increased
levels of cAMP response element binding (CREB) proteins, brain-derived nerve growth
factor (BDNF), and activity-regulated cytoskeletal protein (ARC) in structures including
the hippocampus and amygdala [72]. An investigation of the functions and underlying
mechanisms of REM sleep during postnatal development in mice revealed that REM sleep
plays a fundamental role in establishing the stable connectivity of synaptic circuits during
development. Almost all newly formed synapses cannot be maintained without REM
sleep [89]. In addition, REM sleep plays an important role in a developmentally regu-
lated form of in situ long-term potentiation (LPT) that coincides with the visual critical
period [115]. During the visual critical period, PGO waves, especially the migratory waves
of neural activity that can resemble evoked visual activity in sensory cortex [40], triggers a
series of intracellular cascades and the synthesis of several plasticity-related proteins that
promote cortical synaptic potentiation [100,116,117]. The long-term enhancement of PGO
waves by the microinjection of the cholinergic agonist carbachol into the LDT/PPT may
also lead to long-term changes in the regulatory systems of the brain [118]. Collectively,
these findings underscore the important functions of PGO waves during REM sleep in
the plasticity of the brain, in learning, and in the consolidation of memory during early
childhood development and throughout life.

3.4. Mood Regulation

Because REM sleep is thought to play an important role in emotional memory pro-
cessing, disrupted REM sleep may be an important contributor to the pathophysiology
of emotion-based disorders such as major depression and PTSD [119]. Major depression
is extremely common and is one of the leading causes of disability worldwide. Sleep
disturbances are typical of most patients with major depression and are a core symptom
of the disorder. Polysomnographic indices document objective changes in sleep conti-
nuity, slow-wave activity reduction, and REM sleep alterations, such as a shortening of
REM sleep latency, prolongation of the first REM sleep period, and increased REMs den-
sity [95,120]. In addition to neurotransmitter imbalances, anatomical changes in brain
structure and organization have recently been implicated as predisposing factors for major
depression [121].

It has been proposed that PGO waves enhance synaptic plasticity in the areas that
they pass through [70]. This includes the hippocampus and the amygdala [69,122]. Several
studies have found that high amygdala reactivity is associated with an increased risk for
the development of major depression [123]. The pons receives amygdala axonal projec-
tions [124], and the electrical stimulation of the amygdala increases the density of the PGO
wave during REM sleep [125]. The antidepressant drugs (norepinephrine or serotonin
reuptake inhibitors) reduce the density of the PGO waves [126]. The inhibition of the gen-
eration of PGO waves may have an antidepressant effect [126]. The hippocampus, which
plays a central role in mood dysregulation and neurogenesis, appears to be associated
with the behavioral symptoms of major depression. The negative effects of REM sleep
disruption on hippocampus-dependent cognitive functions may be due to a decrease in
adult hippocampal neurogenesis in humans [127]. Decreased functional connectivity at
limbic cortical levels, particularly in the prefrontal, anterior cingulate, and insula, altered



Brain Sci. 2023, 13, 1350 10 of 15

amygdala microstructure, and decreased claustrum volume have been reported following
major depression [121,128–130].

Sleep complaints are virtually universal in PTSD patients. Although variations in the
timing and/or amount of REM sleep have not been consistently observed in PTSD patients,
other subtle differences in REM sleep are emerging, including an increased REMs density
and REM sleep fragmentation [131,132]. Although restoring normal REM sleep may benefit
extinction learning in PTSD [133], REM sleep may also have the opposite effect on the
subsequent expression of learned fear during memory consolidation after trauma [119]. In
other words, during the initial formation of traumatic memories, it is possible that REM
sleep suppression could have a therapeutic effect on learned fear in the early stages of
memory consolidation, while having a detrimental effect when applied at later stages of
the disorder. The medial prefrontal inhibitory pathways that mediate fear circuitry in the
amygdala likely play a key role in this effect [119].

The interconnectivity of amygdala and brainstem regions associated with REM sleep
activity suggests reciprocal roles for emotion regulation and REM sleep onset, and wak-
ing exposure to emotional stimuli significantly affects subsequent REM sleep [119]. One
study [134] found that fear conditioning enhanced PGO waves while suppressing REM
sleep in rodents. It is likely that learning-dependent amygdala activity also influences
REM sleep, as activity in the central amygdaloid nucleus enhances PGO waves. Presenting
fear-related cues following fear conditioning also leads to significant increases in Fos ex-
pression in the amygdala and brainstem [135], while also leading to significant reductions
in subsequent REM sleep. It has also been hypothesized that PTSD-related amygdala hyper-
responsivity, such as PGO wave activity, may be a factor in PTSD-related sleep disturbances
due to the reciprocal role of emotion regulation and REM [136]. Thus, abnormal REM sleep
activity following trauma exposure may predict the subsequent development of PTSD.
Enhanced REM sleep would bias memory consolidation toward an increased storage of
negative content, suggesting a dysfunctional attenuation of emotional tone [95].

An interesting hypothesis that REM sleep constitutes a programming system that
helps to maintain the process of psychological individuation was proposed by Jouvet [94].
As such, the PGO wave system can be compared to an internal programming system.
Namely, during REM sleep, the brain is subjected to the endogenous programming of the
PGO system. This programming would either reinforce or erase the synaptic circuitry
related to emotional memory that was established during the previous waking state and
can only be inferred by the theta rhythm that occurs during REM sleep. However, the role of
PGO wave density during REM sleep in the development of mood disorders needs further
exploration. We further speculate that processes related to this internal programming
system during REM sleep may enhance memory after an aversive emotional experience in
mood disorders.

4. Conclusions

Numerous studies suggest that the function of PGO waves extends beyond sleep
physiology alone, and their role in REM sleep and visual perception more broadly may
be a promising avenue for further study, including dreams. The activation–synthesis and
AIM theories can be seen as attempts to map animal models of REM sleep biology onto the
phenomenology of human dreaming. Regardless, the current validity of biopsychological
concepts in cats and other animal models for the human does not fully elucidate PGO’s
role in these dream theories. Nevertheless, they are the most widely cited and published
neurobiological theories of dreaming today. Recent theoretical models, such as that recently
proposed by Gott et al. [38], in which PGO waves are expected to play a central role,
could relate to the existence of a synthetic imagination marker. This would be experienced
exclusively during dreaming, which would correlate with physiological brain mechanisms
that effectively facilitate the brain’s ability to override its own retinal input. Next, PGO
waves relevance may be further supported by reflecting on the evolution of the proposed
mechanism of REM sleep regulation and related structural functions such as emotion,
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memory, and learning. For the nonpharmacological treatment of depression, stress, and
PTSD, this has potentially far-reaching implications.

This review may assist the vastly growing interest in REM sleep, after the pioneering
article entitled “Regularly occurring periods of eye motility and concomitant phenomena
during sleep” by Aserisnky and Kleitman [2]. Indeed, the phenomenon of PGO waves in
pre-clinical and clinical research is still a dream to be fulfilled.
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