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Abstract: Rapid neuronal inhibition in the brain is mediated by γ-aminobutyric acid (GABA) ac-
tivation of GABAA receptors. The GABRA5 gene, which encodes the α5 subunit of the GABAA

receptor, has been implicated in an aggressive subgroup of medulloblastoma (MB), a type of pediatric
brain tumor. However, the possible role of GABAA receptor subunits in glioma remains poorly
understood. Here, we examined the expression of genes encoding GABAA receptor subunits in
different types of glioma, and its possible association with patient prognosis assessed by overall
survival (OS). Data were obtained from the French and The Cancer Genome Atlas Brain Lower Grade
Glioma (TCGA-LGG) datasets and analyzed for expression of GABAA receptor subunit genes. OS
was calculated using the Kaplan–Meier estimate. We found that genes GABRA2, GABRA3, GABRB3,
GABRG1, and GABRG2 showed a significant association with OS, with higher gene expression in-
dicating better prognosis. In patients with GBM, high expression of GABRA2 was associated with
shorter OS, whereas, in contrast, higher levels of GABRB3 were associated with better prognosis
indicated by longer OS. In patients with lower grade gliomas, GABRA3, GABRB3, GABRG1, and
GABRG2, were associated with longer OS. High GABRB3 expression was related to longer survival
when low grade glioma types were analyzed separately. Our results suggest an overall association
between higher expression of most genes encoding GABAA receptor subunits and better prognosis
in different types of glioma. Our findings support the possibility that down-regulation of GABAA

receptors in glioma contributes to promoting tumor progression by reducing negative inhibition.
These findings might contribute to further evaluation of GABAA receptors as a therapeutic target
in glioma.

Keywords: GABAA receptor subunit gene; GABAA receptor; glioma; glioblastoma; brain tumor

1. Introduction

Gliomas are the most common malignant brain tumors, comprising about 80 percent
of central nervous system (CNS) cancers in adults. Glioma types are broadly classified into
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astrocytoma, oligodendroglioma and glioblastoma (GBM) [1]. According to current World
Health Organization (WHO) classification, glioma types spam from the least aggressive
grade 1 to the most aggressive grade 4 tumors, based on a range of cellular, histological,
and pathological features, including cellular morphological changes and proliferative
capacity [2]. Grade 1 and grade 2 gliomas are considered low-grade gliomas (LGGs),
which show relatively few cellular alterations, or grade 2 gliomas, which show cellular
atypia. Low-grade tumors include diffuse astrocytomas, pilomyxoid astrocytomas, pilocytic
astrocytomas, oligodendrogliomas, and oligoastrocytomas, among others [3]. The most
prevalent and lethal primary glioma type is grade 4 GBM, which accounts for about half of
newly diagnosed gliomas. GBM can be classified into three groups depending on the status
of the isocitrate dehydrogenase (IDH) gene: IDH wild-type GBM, which represents about
90% of cases, mutated IDH, or not specified GBM (NOS, unevaluated status). Tumors with
an IDH mutation arise from lower-grade gliomas [4]. Increasing evidence indicates that the
cells of origin of GBM are likely neural stem cells in the subventricular zone (SVZ) of the
adult human brain. The SVZ is a layer between the lateral ventricle, corpus callosum, and
striatum, which has the largest number of neural stem cells in the brain [5–7]. These cells
can contain many of the driver mutations that give rise to GBM, share molecular features
with GBM cells, and display migratory patterns from the SVZ to the tumor. In addition,
key genetic mutations in GBM are associated with genes that regulate neuronal function in
the SVZ [8–12].

Surgical treatment stands as the main therapeutic intervention in the management of
gliomas, including GBM. The extent of GBM tumor surgical resection strongly influences
the prognosis so that incomplete resections result in earlier worsening in neurological
function, and, for recurrent GBM, repeated surgical resection is usually recommended [13].
In addition to surgery, multimodal therapy for GBM included radiotherapy and chemother-
apy with temozolomide. Despite advances in therapy, prognosis remains dismal, with
most patients having a median overall survival of 12–15 months [4,14]. Thus, there is an
urgent need for novel biomarkers and molecularly targeted therapeutics that improve the
diagnostic and pharmacological treatment of GBM [15,16].

Neurotransmitters and their receptors in tumor cells or the tumor microenvironment
are increasingly recognized as regulators of cancer cells and neuron–tumor interactions that
contribute to tumor progression [17,18]. The major inhibitory neurotransmitter in the CNS
is γ-aminobutyric acid (GABA). Rapid neuronal inhibition is mediated by GABA-induced
activation of the GABAA type of receptor, which forms a ligand-gated chloride (Cl−) ion
channel. Upon GABA binding to the receptor, Cl− influx leads to membrane hyperpo-
larization and consequently neuronal inhibition. In addition to mediating fast neuronal
inhibition in the adult brain, GABA and its receptors regulate CNS development [19], prolif-
eration and differentiation of neural stem cells and neuronal progenitors [20–22], and adult
neurogenesis [20,23–25]. As discussed above, neural stem cells in the SVZ are proposed as
cells of origin in GBM [8–12]. GABA has been shown to depolarize neuronal progenitors in
the SVZ through activation of GABAA receptors [26]. GABAA activation increases cellular
calcium in neural progenitors and astrocyte-like cells in the SVZ [27,28], and modulates
maturation, differentiation, and migration of SVZ neuronal progenitors [29,30].

GABAA receptors consist of a combination of five proteins drawn from a repertoire
of 19 subunits (α1-6, β1-3, γ1-3, δ, ε, θ, π, ρ1-3). Most functional GABAA receptors consist
of two α, two β and one γ or δ subunit [31–33]. The GABRA5 gene encodes the α5
subunit of the GABAA receptor, and mutations in GABRA5 have been associated with
epilepsy [34,35]. In brain tumors, GABA transmission has been proposed to influence
seizures associated with GBM [36]. Also, increased levels of GABRA5 were described in
the most aggressive molecular subgroup, namely Group 3, of medulloblastoma (MB), the
main type of malignant brain cancer afflicting children. Experimental activation of GABAA
receptors containing the α5-subunit can reduce cell survival in MB [37]. However, it remains
unknown how GABAA receptors containing different subunit repertoires impact in GBM
tumor cells influences tumor progression and clinical prognosis. Here, we examined
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transcript levels of GABAA receptor subunits in different types of glioma and their possible
implications for patient survival.

2. Materials and Methods
2.1. Glioma Tumor and Patient Data

Gene expression data used in this study were acquired from the Gene Expression
Omnibus (GEO) [PMC4944384]. The French dataset (GSE16011, GPL570 Affymetrix Hu-
man Genome U133 Plus 2.0 Array) includes expression information from primary glioma
tumor biopsies and 8 non-tumoral neural tissue samples which were used as controls
[PMID: 19920198].

Normalization of raw microarray data was performed using the Robust Multichip
Average (RMA) method, and quality control was conducted through Affy Bioconductor/R
[PMID: 14960456]. GPL570 annotations were downloaded from the database: https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL570. Clinical information on patients
from the French cohort was obtained through the ‘geoquery’ package and the original
article describing processing of these data.

We also examined data from The Cancer Genome Atlas Brain Lower Grade Glioma
cohort (TCGA-LGG) [38,39]. Processed and normalized expression data were obtained
from the cBioPortal. Five hundred and thirteen primary tumor samples were used in
our analysis. Clinical information about patients in the TCGA-LGG cohort was acquired
through the cBioPortal.

2.2. Statistics

Nineteen GABAA receptor subunits are known (PMC8380214). The French dataset con-
tains includes 18 genes encoding GABAA receptor subunits. These 18 genes are represented
by 36 probes_id (GPL570). We investigated the relationship between gene expression level
in the 36 probes_id and overall survival (OS) of glioma patients. Eight control samples and
12 tumor samples in the French dataset that lacked information about patient status (‘alive’
or ‘dead’) were excluded from our analysis, resulting in a total of 266 analyzed samples.
Characteristics of patients in both the French and TCGA-LGG datasets have been previ-
ously described [38,39]. We used the “Survminer” package with ‘minprop = 0.2’ to classify
patients as “high” and “low” gene expression levels. Survival analysis was conducted
using the “Survival” package” (version 3.5-5, https://github.com/therneau/survival).

3. Results
3.1. GABAA Receptor Genes Influencing OS in Patients with Glioma

First, OS analyses were conducted using 266 glioma samples from the French dataset.
Patients were divided into two groups based on the expression level of each of the 36 probes
corresponding to 18 genes that compose the GABAA receptor, high or low. Eleven probes
representing five genes, namely GABRA2, GABRA3, GABRB3, GABRG1, and GABRG2,
showed a significant association with OS, with high expression indicating better prognosis
(Bonferroni-adjusted p < 0.05). For each of the five genes, when necessary, we selected the
probe with the lowest Bonferroni-adjusted p value and used that probe for the remaining
analyses (Table 1).

Table 1. Summary of patient OS analysis results conducted for all 36 probes corresponding to 18 genes
that encode GABAA subunit proteins in the French dataset.

Probe Subunit Gene p Value Adjusted p

206678_at GABAA receptor, alpha 1 GABRA1 1.72 × 10−1 1

244118_at GABAA receptor, alpha 1 GABRA1 1.68 × 10−1 1

1554308_s_at GABAA receptor, alpha 2 GABRA2 1.00 × 10−3 3.60 × 10−2

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL570
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL570
https://github.com/therneau/survival
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Table 1. Cont.

Probe Subunit Gene p Value Adjusted p

207014_at GABAA receptor, alpha 2 GABRA2 1.29 × 10−2 4.64 × 10−1

216039_at GABAA receptor, alpha 2 GABRA2 1.24 × 10−3 4.45 × 10−2

207210_at GABAA receptor, alpha 3 GABRA3 1.05 × 10−7 3.78 × 10−6

208463_at GABAA receptor, alpha 4 GABRA4 2.99 × 10−1 1

233437_at GABAA receptor, alpha 4 GABRA4 1.83 × 10−1 1

206456_at GABAA receptor, alpha 5 GABRA5 7.45 × 10−2 1

215531_s_at GABAA receptor, alpha 5 GABRA5 2.69 × 10−1 1

217280_x_at GABAA receptor, alpha 5 GABRA5 1.16 × 10−1 1

207182_at GABAA receptor, alpha 6 GABRA6 1.42 × 10−2 5.10 × 10−1

1557256_a_at GABAA receptor, beta 1 GABRB1 0.01 0.48

207010_at GABAA receptor, beta 1 GABRB1 2.03 × 10−2 7.31 × 10−1

1557122_s_at GABAA receptor, beta 2 GABRB2 9.31 × 10−3 3.35 × 10−1

207352_s_at GABAA receptor, beta 2 GABRB2 3.49 × 10−1 1

242344_at GABAA receptor, beta 2 GABRB2 3.62 × 10−2 1

1569689_s_at GABAA receptor, beta 3 GABRB3 1.51 × 10−2 5.45 × 10−1

205850_s_at GABAA receptor, beta 3 GABRB3 2.43 × 10−13 8.74 × 10−12

227690_at GABAA receptor, beta 3 GABRB3 1.21 × 10−14 4.36 × 1013

227830_at GABAA receptor, beta 3 GABRB3 5.55 × 10−16 2.00 × 10−14

229724_at GABAA receptor, beta 3 GABRB3 0 0

208457_at GABAA receptor, delta GABRD 2.04 × 10−2 7.35 × 10−1

230255_at GABAA receptor, delta GABRD 1.34 × 10−1 1

1552943_at GABAA receptor, gamma 1 GABRG1 8.35 × 10−6 3.01 × 10−4

241805_at GABAA receptor, gamma 1 GABRG1 1.43 × 10−6 5.16 × 10−5

1568612_at GABAA receptor, gamma 2 GABRG2 1.63 × 10−6 5.88 × 10−5

206849_at GABAA receptor, gamma 2 GABRG2 7.95 × 10−8 2.86 × 10−6

1555517_at GABAA receptor, gamma 3 GABRG3 1.44 × 10−2 5.18 × 10−1

216895_at GABAA receptor, gamma 3 GABRG3 1.65 × 10−1 1

205044_at GABAA receptor, pi GABRP 2.78 × 10−1 1

220886_at GABAA receptor, theta GABRQ 3.44 × 10−1 1

238123_at GABAA receptor, theta GABRQ 4.06 × 10−1 1

206525_at GABAA receptor, rho 1 GABRR1 4.44 × 10−3 1.60 × 10−1

208217_at GABAA receptor, rho 2 GABRR2 4.71 × 10−2 1

234410_at GABAA receptor, rho 3 GABRR3 1.34 × 10−2 4.84 × 10−1

206678_at GABAA receptor, alpha 1 GABRA1 1.72 × 10−1 1

3.2. GABRA2 and GABRB3 Genes Display Opposite Patterns of Association with OS in Patients
with GBM

We then selected the samples within the French cohort classified as glioblastoma (GBM)
(n = 153). Genes GABRA2 and GABRB3 had a Bonferroni-adjusted p value < 0.05 in these
tumor samples (Table 2). High expression of GABRA2 was associated with worse prognosis
(Figure 1A,C), whereas, in contrast, high levels of GABRB3 transcripts were associated with
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better prognosis indicated by longer OS (Figure 1B,D). It is worth highlighting that GABRA2
was the only GABAA receptor gene associated with worse prognosis in GBM patients.

Table 2. Summary of the patient OS analysis results carried for five GABAA receptor subunit genes
in GBM patients from the French cohort.

Probe Subunit Gene p Value Adjusted p

1554308_s_at GABAA receptor, alpha 2 GABRA2 5.34 × 10−3 2.67 × 10−2

207210_at GABAA receptor, alpha 3 GABRA3 2.02 × 10−2 1.01 × 10−1

229724_at GABAA receptor, beta 3 GABRB3 4.39 × 10−3 2.19 × 10−2

206849_at GABAA receptor, gamma 1 GABRG1 1.57 × 10−1 7.83 × 10−1

241805_at GABAA receptor, gamma 2 GABRG2 8.95 × 10−2 4.48 × 10−1
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3.3. GABAA Receptor Genes and OS in Patients with Lower Grade Glioma Types

We next analyzed glioma tumors from the TCGA-LGG cohort containing 513 samples
distributed across glioma subtypes astrocytoma, oligoastrocytoma, and oligodendroglioma.
Using all samples in the dataset (n = 513), we carried out OS analyses for GABRA2, GABRA3,
GABRB3, GABRG1, and GABRG2 genes. All genes except for GABRA2 showed significant
association with OS, where higher gene expression was related to longer OS (Bonferroni-
adjusted p < 0.05) (Table 3).

Table 3. Summary of the patient OS analysis results carried for GABAA receptor subunit genes in
lower grade glioma patients from the TCGA-LGG cohort.

Subunit Gene p Value Adjusted p

GABAA receptor, alpha 2 GABRA2 5.37 × 10−2 2.69 × 10−1

GABAA receptor, alpha 3 GABRA3 6.25 × 10−14 3.13 × 10−13

GABAA receptor, beta 3 GABRB3 1.63 × 10−11 8.13 × 10−11

GABAA receptor, gamma 1 GABRG1 4.13 × 10−7 2.07 × 10−6

GABAA receptor, gamma 2 GABRG2 1.96 × 10−5 9.78 × 10−5

We went on to verify whether the GABRB3 gene, which showed significant associations
with OS in GBM patients from the French cohort and also for TCGA-LGG patients when
all tumor types were pooled together, would show influences on OS when lower grade
tumors are analyzed separately. Higher GABRB3 expression levels were significantly
associated with OS in all glioma subtypes, namely astrocytoma, oligoastrocytoma, and
oligodendroglioma (Bonferroni-adjusted p < 0.05) (Figure 2).

Brain Sci. 2024, 14, x FOR PEER REVIEW 6 of 11 
 

3.3. GABAA Receptor Genes and OS in Patients with Lower Grade Glioma Types 
We next analyzed glioma tumors from the TCGA-LGG cohort containing 513 

samples distributed across glioma subtypes astrocytoma, oligoastrocytoma, and 
oligodendroglioma. Using all samples in the dataset (n = 513), we carried out OS analyses 
for GABRA2, GABRA3, GABRB3, GABRG1, and GABRG2 genes. All genes except for 
GABRA2 showed significant association with OS, where higher gene expression was 
related to longer OS (Bonferroni-adjusted p < 0.05) (Table 3). 

Table 3. Summary of the patient OS analysis results carried for GABAA receptor subunit genes in 
lower grade glioma patients from the TCGA-LGG cohort. 

Subunit Gene p Value Adjusted p 
GABAA receptor, alpha 2 GABRA2 5.37 × 10−2 2.69 × 10−1 
GABAA receptor, alpha 3 GABRA3 6.25 × 10−14 3.13 × 10−13 
GABAA receptor, beta 3 GABRB3 1.63 × 10−11 8.13 × 10−11 

GABAA receptor, gamma 1 GABRG1 4.13 × 10−7 2.07 × 10−6 
GABAA receptor, gamma 2 GABRG2 1.96 × 10−5 9.78 × 10−5 

We went on to verify whether the GABRB3 gene, which showed significant 
associations with OS in GBM patients from the French cohort and also for TCGA-LGG 
patients when all tumor types were pooled together, would show influences on OS when 
lower grade tumors are analyzed separately. Higher GABRB3 expression levels were 
significantly associated with OS in all glioma subtypes, namely astrocytoma, 
oligoastrocytoma, and oligodendroglioma (Bonferroni-adjusted p < 0.05) (Figure 2). 

 
Figure 2. Analysis of OS in patients bearing high or low tumor levels of GABRB3 in the TCGA-LGG 
cohort. (A) All glioma types pooled together (n = 513), (B) astrocytoma (n = 194), (C) 
oligoastrocytoma (n = 130), and (D) oligodendroglioma (n = 189). 

Figure 2. Analysis of OS in patients bearing high or low tumor levels of GABRB3 in the TCGA-LGG
cohort. (A) All glioma types pooled together (n = 513), (B) astrocytoma (n = 194), (C) oligoastrocytoma
(n = 130), and (D) oligodendroglioma (n = 189).
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4. Discussion

Functional GABAA receptors were initially identified in cells derived from lower grade
gliomas, namely astrocytoma and oligodendroglioma, whereas GBM-derived primary cells
and glioma cell lines showed no functional receptors. In tumor-derived glioma cells in
acute slices or primary culture, most cells from oligodendroglioma and astrocytoma re-
sponded to GABA when responses were measured in whole-cell voltage clamp assays as
inward currents under high Cl− concentration. GBM-derived cells, in contrast, showed no
response to GABA. The currents observed in lower grade gliomas were induced specifically
by GABA through activation of GABAA receptors, given that the GABAA agonist musci-
mol mimicked the GABA responses, the benzodiazepine receptor agonist flunitrazepam
augmented GABA-induced currents, a benzodiazepine inverse agonist reduced the cur-
rents, and the GABAA antagonists bicuculline and picrotoxin blocked GABA-induced
currents. It is also noteworthy that, in this experimental setting, GABA-elicited currents
could induce either hyperpolarization or depolarization, depending on the cell tested [40].
Functional GABAA receptor-activated currents in GBM cells were later demonstrated, as
were findings showing that endogenous GABA continuously released by GBM cells could
reduce proliferation of cells expressing progenitor and stem cells markers and negatively
regulate experimental tumor growth in mouse models. Thus, shunting cellular Cl− chloride
ions through sustained local GABAA receptor activity reduced proliferation and tumor
growth and prolonged mouse survival. These results strongly suggest that increasing
GABAA receptor activity may inhibit GBM progression [41]. In U3047MG human GBM
cells, GABAA currents could be pharmacologically stimulated by etomidate, propofol, or
diazepam, indicating that GABA-induced currents in GBM can be enhanced by classical
GABAA receptor-stimulating drugs. Expression of nRNAs for the α2, α3, α5, β1, β2, β3, δ,
γ3, π, and θ GABAA receptor subunits was confirmed in U3047MG cells [37,42]. Together,
these findings indicate that glioma tumors of different grades can express GABAA receptors
capable of responding to endogenous GABA and other ligands to affect glioma progression.

Expression of mRNA for all 19 GABAA subunits in human glioma (n = 29) and peri-
tumoral tissue (n = 5) was previously detected. Consistently with the possibility that lower
GABAA receptor activity occurs in more malignant gliomas, GBM tumors showed reduced
subunit levels compared to lower grade gliomas, except for the θ subunit. Expression was
also found in peritumoral tissue. A consistent co-expression of ρ2 and θ subunits occurred
in both astrocytomas and oligodendroglial tumors. Expression of the ρ2 subunit but not the
θ subunit was shown by Kaplan–Meier analysis and Cox proportional hazards modeling
to be an independent predictor of better survival in patients with astrocytomas, together
with other prognostic factors [43].

Isocitrate dehydrogenase (IDH) enzymes, encoded by IDH genes, regulate cellular
metabolism and homeostasis by catalyzing the oxidative decarboxylation of isocitrate.
Accumulating evidence shows that IDH genes can be mutated in many human malignant
cancers, gliomas, and these mutations can impact oncogenesis, tumor progression, and
clinical outcome. In gliomas, IDH mutation-associated abnormal changes in cancer cell
metabolism, gene expression profile and chromatin structure can lead to disruptions in
normal epigenetic programming and, ultimately, resistance to therapy. Thus, increasing
research efforts focus on therapeutic strategies designed to specifically target IDH-mutant
gliomas [44–47]. Some IDH1 mutations in glioma are proposed as prognostic markers, with
patients bearing mutated tumors showing improved survival [48]. Analysis of tumors from
TCGA showed eight subunit genes significantly expressed in IDH wild-type compared with
IDH-mutated tumors. Higher expression of the GABRD gene, which encodes the GABAA
receptor δ subunit, was independently associated with longer patient OS in IDH wild-type
LGGs. GABRD expression was negatively correlated with the extent of tumor infiltration by
macrophages. These results suggest that GABRD may be a potential independent prognostic
marker in patients with IDH wild-type LGG [49]. Our findings indicating that expression
of most GABAA receptor subunit genes is reduced in patients with longer OS may be
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considered consistent with previous evidence that GABAA receptors can act as inhibitors
of glioma growth [41] that display lower expression as glioma grade increases [43].

Also, consistently with an inhibitory role for GABAA receptors in brain tumors, re-
ceptor pharmacological stimulation with benzodiazepine derivatives promotes cell death
in experimental MB [50]. Current consensus classifies MB tumors into four molecular
subgroups, namely wingless activated (WNT), sonic hedgehog (SHH), Group 3, and Group
4, with Group 3 and Group 4 tumors being particularly aggressive [51,52]. GABRA5 and
the α5 subunit are found and contribute to the assembly of functional GABAA receptors
in patient-derived Group 3 MB cells and tumor tissue. In addition, a benzodiazepine
preferentially targeting α5-GABAA hinders Group 3’s MB cell viability [37] with greater
potency than standard-of-care chemotherapy used to treat MB patients [53]. Stimulation of
GABAA receptors containing the α5 subunit with a selective agonist reduces cell survival
through a mechanism involving membrane depolarization and apoptosis induction [37],
highlighting the potential of the α5-GABAA receptor as a therapeutic target [54]. There is a
significant correlation between expression of GABRA5 and the MYC oncogene in a subset
of Group 3 and WNT MB tumors, and the same study indicated GABRA5 expression as a
possible diagnostic marker for Group 3 MB [50].

5. Conclusions

In summary, the present study is the first to characterize gene expression of the differ-
ent protein subunits composing the GABAA receptor in distinct types of glioma, showing
that most genes are associated with better prognosis assessed by patient OS, which is con-
sistent with an inhibitory role of GABA in glioma growth. In light of the evidence reviewed
above, our findings raise the possibility that glioma tumors show a down-regulation of
GABAA receptors as a mechanism to stimulate tumor growth by reducing inhibitory mod-
ulation. It should be pointed out, however, that additional functional studies are required
to further validate this hypothesis, given that our findings are limited to gene expression
and do not confirm that GABAA are directly implicated in determining patient outcomes.
Drugs that act by stimulating GABAA receptors should be further investigated as targeted
therapies for glioma.
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