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Abstract: CD157, also referred to as bone marrow stromal cell antigen-1 (BST-1), is a 

glycosylphosphatidylinositol-anchored molecule that promotes pre-B-cell growth. Previous 

studies have reported associations between single-nucleotide polymorphisms (SNPs) of the 

CD157/BST1 gene with Parkinson’s disease. In an attempt to determine whether SNPs or 

haplotypes in the CD157/BST1 are associated with other brain disorders, we performed a 

case-control study including 147 autism spectrum disorder (ASD) patients at Kanazawa 

University Hospital in Japan and 150 unselected Japanese volunteers by the sequence-specific 

primer-polymerase chain reaction method combined with fluorescence correlation 

spectroscopy. Of 93 SNPs examined, two SNPs showed significantly higher allele 

frequencies in cases with ASDs than in unaffected controls (rs4301112, OR = 6.4,  

95% CI = 1.9 to 22, p = 0.0007; and rs28532698, OR = 6.2, 95% CI = 1.8 to 21,  

p = 0.0012; Fisher’s exact test; p < 0.002 was considered significant after multiple testing 

correction). In addition, CT genotype in rs10001565 was more frequently observed in the 

ASD group than in the control group (OR = 15, 95% CI = 2.0 to 117, p = 0.0007; Fisher’s 
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exact test). The present data indicate that genetic variation of the CD157/BST1 gene might 

confer susceptibility to ASDs. 
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1. Introduction 

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social 

impairments, communication difficulties, and restricted repetitive behaviors [1]. As an animal model of 

ASD, we previously reported a mouse lacking CD38 gene, which encodes a transmembrane protein with 

ADP-ribosyl cyclase activity [2]. In this mouse, which exhibits impaired social behaviors such as social 

amnesia and neglect-like maternal behavior, we demonstrated that decreased formation of cyclic  

ADP-ribose (cADPR) results in dysfunctional calcium (Ca2+)-induced Ca2+-release for the secretion of 

oxytocin (OXT), a neurohypophyseal hormone essential for social recognition [2]. Since then, there 

have been reported associations between single-nucleotide polymorphisms (SNPs) in the human CD38 

gene with ASDs [3,4]. The SNP rs3796863 (C > A) of the CD38 gene was associated with 

high-functioning autism (HFA) in both samples from the Autism Gene Resource Exchange [3] and those 

from low-functioning autism subjects in Israel [4], but not in Japanese HFA subjects [3]. Another SNP 

rs1800561 (g.4693C > T; p.R140W) was found in three probands out of 29 ASD patients and in 10 

family members of three pedigrees with variable levels of ASD or ASD traits [3]. The plasma levels of 

OXT in ASD subjects bearing the R140W variant were lower than those in ASD subjects homozygous 

for the major R140 allele [3]. 

CD157, also referred to as bone marrow stromal antigen-1 (BST-1), belongs to the  

NADase/ADP-ribosyl cyclase family, which also includes CD38 [5–13]. These two molecules share 

36% of their amino-acid sequence, and serve as both a nicotinamide adenine dinucleotide  

(NAD)-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration,  

and diapedesis of human granulocytes has been documented. CD157/BST-1 was initially isolated as a 

cell-surface molecule that promotes the pre-B lymphocyte growth [8,14]. CD157/BST1 plays a variety 

of roles in humoral immune responses, neutrophil transmigration and hematopoietic stem cell  

support [8,10,15–17]. CD157/BST-1 is also involved in the pathogenesis of various diseases, such as the 

survival of B lymphocytes in rheumatoid arthritis, the progression of leukemia, and metastasis of human 

ovarian carcinoma cells [8,13,18–20]. 

Recent genetic analysis identified the CD157/BST1 gene on human chromosome 4p15 as a 

susceptibility marker for Parkinson’s disease [21–30]. Ceroni et al. reported a patient with autism and 

asthma whose CD38 and CD157/BST1 genes were partially deleted [31]. In addition, we have recently 

demonstrated that mice deficient in the CD157/BST1 gene exhibited anxiety-related and depression-like 

behaviors [32]. It is unknown, however, whether variation of the CD157/BST1 gene is associated with 

other brain disorders. In this study, therefore, we performed a case-control study to test CD157/BST1 

genetic variation for association with ASDs. 
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2. Experimental Section 

2.1. Subjects 

We recruited 147 ASD subjects (113 males, 34 females; 15.6 ± 0.6 years) from the outpatient 

psychiatry department of the Kanazawa University Hospital as previously described [3,33]. All subjects 

fulfilled the DSM-IV criteria for pervasive developmental disorder. The diagnoses were made by two 

experienced child psychiatrists through interviews and clinical record reviews, as described previously [3], 

and the subjects had no apparent physical anomalies. The two experienced child psychiatrists 

independently confirmed the diagnosis of ASD for all patients by semi-structured behavior observations 

and interviews with the subjects and their parents. At the interviews with the parents, which were helpful 

in the evaluation of autism-specific behaviors and symptoms, the examiner used one of the following 

methods: the Asperger Syndrome Diagnostic Interview [34], Autism Diagnostic Interview-Revised 

(ADI-R) [35], Pervasive Developmental Disorders Autism Society Japan Rating Scale [36], Diagnostic 

Interview for Social and Communication Disorders [37], or Tokyo Autistic Behavior Scale [38]. The 

150 controls (115 males, 35 females; 23.8 ± 0.3 years) were unselected Japanese volunteers. All patients 

and controls were Japanese with no non-Japanese parents or grandparents. This study was approved by 

the ethics committees of Kanazawa University School of Medicine. All examinations were performed 

after informed consent according to the Declaration of Helsinki. 

2.2. Genotyping 

Genomic DNA was extracted as previously described [33] from venous blood samples using a kit 

(Wizard Genomic DNA Purification kit; Promega, Madison, WI, USA), or from nails using the 

(ISOHAIR DNA extraction kit; Nippon Gene, Tokyo, Japan). In some instances, genomic DNA samples 

were subjected to the whole-genome amplification method (the REPLI-g kit; Qiagen, Hilden, Germany). 

Then SNPs were determined at Kurabo Industries Ltd. (Osaka, Japan) by the sequence-specific primer 

(SSP)-PCR method combined with fluorescence correlation spectroscopy as described by  

Nishida et al. [39]. The SNPs selected for genotyping were mostly with a minor allele  

frequency (MAF) >0.1, as indicated by the dbSNP database [40], HapMap genome browser  

(release 27) [41], and 1000 Genomes Project database [42,43] in the JPT (Japanese in Tokyo, Japan), 

CHB (Han Chinese in Beijing, China) plus JPT, and global populations (Supplementary Table S1). 

These SNPs were located in a region covering the CD157/BST1 gene (chr4:15704573–15733796, based 

on the human genome assembly GRCh37/hg19 at the UCSC Genome Bioinformatics Site [44]. The 

most upstream and downstream SNPs were rs112044965 at chr4:15704603 and rs11934811 at 

chr4:15738253, respectively. Inter-SNP distance was less than 2 kb. 

Linkage disequilibrium (LD) blocks in our sample were analyzed by HaploView 4.2 [45]. 

2.3. Statistical Analysis 

Genotype and allele frequencies were analyzed using a contingency table and the Fisher exact  

test (GraphPad Prism 6; GraphPad Software Inc., San Diego, CA, USA), and p-values smaller than 0.05 

were considered to be statistically significant. Multiple-testing correction was performed after 
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controlling for LD between the selected SNPs by the method of Nyholt [46,47]. The estimated effective 

number for independent loci was 23 and α was estimated to be equal to 0.002. p-Values below 0.002 

were thus considered significant for single SNP association analysis. 

Hardy-Weinberg Equilibrium (HWE) was tested by both Pearson’s chi-square goodness-of-fit  

test [48] and likelihood ratio test [49]. 

Statistical power was calculated using the Genetic Power Calculator [50,51]; calculations were 

undertaken assuming a population prevalence of 0.015 for ASD [52], a false-positive rate (α) of 0.05, 

and a D′ value of 1 between the marker and disease, with a false positive rate of 5%. Alternatively, 

Chi-squared power calculation was done using the statistical package R; effect sizes were calculated 

following the method described by Chinn [53]. 

3. Results 

Of 121 SNPs examined (Supplementary Table S1), 93 with a high success rate (>95%) were further 

subjected to statistical analysis. Among them, three SNPs showed significantly higher allele frequencies 

in cases with ASDs than in unaffected controls (rs4301112, OR = 6.4, 95% CI = 1.9 to 22, p = 0.0007; 

rs28532698, OR = 6.2, 95% CI = 1.8 to 21, p = 0.0012 and rs10001565, OR = 5.5, 95% CI = 1.6 to 19,  

p = 0.0038; Fisher’s exact test; Table 1). rs4301112, rs28532698, and rs10001565 are located in introns 

4, 6, and 7, respectively (Figure 1). After multiple testing correction for effective total number of SNPs, 

significantly higher allele frequency was observed in rs4301112 and rs28532698, but not in rs10001565 

(Table 1). In rs10001565, only C/T genotype was significantly more frequent in the ASD group than in 

the unaffected control group (OR = 15, 95% CI = 2.0 to 117, p = 0.0007; Fisher’s exact test; Table 1). 

The SNPs analyzed in this study included the previously reported Parkinson’s disease-associated ones: 

rs11931532 [21,23]; rs12645693 [21,23]; rs4698412 [21,23,24]; rs4538475 [21,23,27];  

rs11724635 [27,28,30]; rs12502586 [25]; and rs4273468 [29] (Figure 1). However, these SNPs did not 

show significant association with ASD at all (Supplementary Table S2). 

We then analyzed the data based on three different genetic models. The three SNPs (rs4301112, 

rs28532698, and rs10001565) showed significant associations with ASD in a recessive model, but not in 

additive and dominant models (Supplementary Table S3). Recessive model exhibited low p-values 

(rs4301112, OR = 8.9, 95% CI = 2.0 to 39.6, p = 0.0005; rs28532698, OR = 8.7, 95% CI = 2.0 to 38.8, 

p = 0.0009 and rs10001565, OR = 8.1, 95% CI = 1.8 to 36.3, p = 0.0038; Fisher’s exact test; 

Supplementary Table S3). 

Deviations from HWE in the control group were observed in the three SNPs (p = 1.11E−15 for 

rs4301112, p = 2.19E−15 for both rs28532698 and rs10001565; Fisher’s exact test; Supplementary  

Table S4). In addition, we assessed HWE in three genetic models by the likelihood ratio test [49].  

Higher p-values (>0.05) were obtained in the recessive model (p = 0.0870 for rs4301112, p = 0.0876 for 

rs28532698, and p = 0.0993 for rs10001565; Supplementary Tables S4–S6). 

Using the Genetic Power Calculator [50,51], the power of a significance test (type I error rate of 0.05, 

Table 1) was calculated to be 1.0 for the three SNPs. In the three genetic model analysis; the highest 

statistical power was 1.0 under a recessive model for the three SNPs, with lowest value being 0.05 for 

rs1001565 under a dominant model (Supplementary Table S3). 
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Figure 1. Schematic genomic structure of the human CD157/BST1 gene and locations of 

single-nucleotide-polymorphisms (SNPs). The exon-intron organization is depicted based 

on GenBank accession numbers NM_004334 and NC_000004. Black and open boxes 

represent protein-coding regions and untranslated regions, respectively. The SNPs 

(indicated in bold type) are selected from those statistically analyzed in this study; 

rs12502586 was not tested (plain and italicized). Red lettering represents SNPs that showed 

significant association with ASD in allele and/or genotype frequencies in the present study; 

asterisks indicate those previously reported as Parkinson’s disease-associated  

markers [21,23–25,27–30]. The locations of the SNPs on human chromosome 4 (chr4) are 

indicated in parentheses; numbers after colons represent genomic positions based on the 

human genome assembly GRCh37/hg19 at the UCSC Genome Bioinformatics Site [44]. 

Table 1. Comparison of genotype and allele frequencies of rs4301112, rs28532698 and 

rs10001565 at Kanazawa University Hospital for autism spectrum disorders (ASDs). 

 Cases Control 
Odds Ratio 

p 
(95% CI) 

rs4301112 

Genotype (n = 145) (n = 146)   
A/A 129 (88.9%) 144 (98.6%) Referent  
A/G 14 (9.7%) 1 (0.7%) 16 (2.0, 121) 0.0004 
G/G 2 (1.4%) 1 (0.7%) 2.2 (0.20, 25) 0.6054 

Allele (n = 290) (n = 292)   
A 272 (93.8%) 289 (99%) Referent  
G 18 (6.2%) 3 (1.0%) 6.4 (1.9, 22) 0.0007 

  



Brain Sci. 2015, 5 193 

 

 

Table 1. Cont. 

 Cases Control 
Odds Ratio 

p 
(95% CI) 

rs28532698 

Genotype (n = 145) (n = 143)   
A/A 129 (88.9%) 141 (98.6%) Referent  
A/G 14 (9.7%) 1 (0.7%) 15 (2.0, 118) 0.0007 
G/G 2 (1.4%) 1 (0.7%) 2.2 (0.20, 24) 0.6090 

Allele (n = 290) (n = 286)   
A 272 (93.8%) 283 (99.0%) Referent  
G 18 (6.2%) 3 (1.0%) 6.2 (1.8, 21) 0.0012 

rs10001565 

Genotype (n = 145) (n = 143)   
C/C 130 (89.7%) 141 (98.6%) Referent  
C/T 14 (9.7%) 1 (0.7%) 15 (2.0, 117) 0.0007 
T/T 1 (0.7%) 1 (0.7%) 1.1 (0.067, 18) 1.0000 

Allele (n = 290) (n = 286)   
C 274 (94.5%) 283 (99%) Referent  
T 16 (5.5%) 3 (1%) 5.5 (1.6, 19) 0.0038 

CI, confidence interval; p-Values obtained by Fisher’s exact test are given; Significant p-values after multiple 

testing correction for effective total number of SNPs are written in bold and italicized. 

Haplotype analysis revealed that 13 cases (9.0%, n = 145) carried all the minor alleles of the  

three SNPs (AG/AG/CT for rs4301112-rs28532698-rs10001565), whereas only one (0.7%, n = 141) did 

in the control group (OR = 14.2, 95% CI = 1.4 to 110; Table 2). 

Table 2. Haplotype frequencies of the CD157/BST1 gene. 

Haplotype 
Combination * 

Cases Control Odds Ratio 
p 

(n = 145) (n = 146) (95% CI) 

AA/AA/CC 129 (89.0%) 141 (96.6%) Referent  
AG/AG/CT 13 (9.0%) 1 (0.7%) 14.2 (1.8, 110) 0.0014 
GG/GG/TT 1 (0.7%) 1 (0.7%) 1.1 (0.1, 17.7) 1.000 
AG/AG/CC 1 (0.7%) 0 (0.0%) 3.3 ** (0.1, 81.3) 0.480 
GG/GG/CT 1 (0.7%) 0 (0.0%) 3.3 ** (0.1, 81.3) 0.480 
Other types 0 (0.0%) 0 (0.0%) -  

Undetermined 0 (0.0%) 3 (2.1%) -  

CI, confidence interval; p-Values obtained by Fisher’s exact test are given; * Order of polymorphisms for the 

haplotypes is as follows: rs4301112, rs28532698 and rs10001565; ** Odds Ratios were calculated by adding 

0.5 to each value. 

LD analysis of these SNPs identified two haplotype blocks: a 5-kb one comprising the ASD-associated 

rs4301112, rs28532698 and rs10001565 (Block 1; Figure 2), and a 12-kb one including the SNPs 

associated with Parkinson’s disease (Block 2; Figure 2). 
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Figure 2. Linkage disequilibrium plot of the CD157/BST1 gene in the sample studied. 

Numbers in the squares indicate D′ values. Rs numbers in red represent SNPs that showed 

significant association with ASD in this study; asterisks denote those previously reported as 

Parkinson’s disease-associated markers [21,23–25,27–30]. 

4. Discussion 

In this study, we performed a case-control study in a Japanese population to test for genetic 

association between 93 SNPs in the CD157/BST1 gene and ASDs. Our results show three possible risk 

SNPs for ASDs. As these SNPs are in high LD, it is likely that the results represent only one effect. 

Functional annotation using HaploReg [54,55] suggests that genetic variations at rs4301112, 

rs28532698, and rs10001565 could alter binding sites for neural development-related transcription 

factors, histone deacetylase C2 (HDAC2 [56]), POU class 6 homeobox 1 (POU6F1 [57]), and 

HES-related family bHLH transcription factor with YRPW motif 1 (HEY1 [58]), respectively. 

Additionally, in the UCSC (GRCh37/hg19) track “Transcription Factor ChIP-seq (161 factors) from 

ENCODE [59,60] with Factorbook Motifs”, the LD block 1 between rs4301112 and rs10001565 (Chr4: 

15717226–15722573) includes predicted binding sites for c-Jun, STAT3 (signal transducer and activator 

of transcription 3), FOXP2 (forkhead box protein P2), PolR2a (Polκ RNA polymerase II polypeptide A), 

Elf-1 (E74-like factor 1), HNF4G (hepatocyte nuclear factor 4 gamma), HNF4A (hepatocyte nuclear 

factor 4 alpha), JunD, and C/EBPβ (CCAAT/enhancer binding protein beta). These sites are also 

overlapped with a peak of H3K27Ac Mark track, where acetylation of lysine 27 of the H3 histone 

protein is thought to enhance transcription [61] and possibly regulates brain development [61,62]. Of 

these transcription factors, FOXP2 is of particular interest, because its genetic abnormalities have been 

implicated in speech and language disorders [63,64]. A chromosomal translocation disrupting the 

FOXP2 gene and a point mutation causing an amino-acid substitution in its forkhead domain have been 

identified in patients with severe developmental disorders of speech and language [63]. FOXP2 mRNA 

is expressed in the developing human brain, in good concordance with anomalous sites identified by 

brain imaging in adult speech and language disorders [64]. In this study, ASD-associated SNPs were 
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located separately from Parkinson’s disease-associated ones. It is tempting to postulate that, during early 

brain development, CD157/BST-1 expression is under FOXP2-mediated transcriptional control, which 

may not involve the region containing Parkinson disease-associated SNPs. Future studies will be 

directed to explore these possibilities experimentally. 

The limitation of this study is that sample size is small. In particular, the heterozygote numbers 

observed were small in both case and control groups, resulting in deviation from HWE and limited 

reliability and usefulness of the three SNPs as biomarkers. Although our results favor a recessive model, 

effect size of the CD157/BST1 genetic variants should be carefully estimated. We tested HWE in 

unselected Japanese populations deposited in the HapMap [41], 1000 Genomes Project database [42], 

and human genome variation database [65], but did not detect any deviation in all seven available entries 

(one for rs4301112, one for rs28532698 and five for rs10001565; Supplementary Table S7). The reason 

for this discrepancy remains unknown: we have not recognized population stratification, admixture and 

cryptic relatedness among the subjects in this study. Future studies with larger sample size and/or 

family-based association testing are needed. Additionally, there are ethnic differences in allele 

frequencies; global MAFs for rs4301112, rs28532698 and rs10001565 are nearly 16%, whereas those in 

unselected Japanese populations are as low as 3% (the 1000 Genomes Project database [42,43], 

Supplementary Table S1). Therefore, replication in independent populations with various ethnic 

backgrounds is necessary. 

5. Conclusions 

We report association between SNPs (rs4301112, rs28532698, and rs10001565) located in the 

CD157/BST1 gene with ASD. Our results warrant further analysis of CD157/BST1 variants in  

ASD patients. 
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