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Abstract: Normal brain function is highly dependent on oxygen and nutrient supply and when the
demand for oxygen exceeds its supply, hypoxia is induced. Acute episodes of hypoxia may cause
a depression in synaptic activity in many brain regions, whilst prolonged exposure to hypoxia leads
to neuronal cell loss and death. Acute inadequate oxygen supply may cause anaerobic metabolism
and increased respiration in an attempt to increase oxygen intake whilst chronic hypoxia may give
rise to angiogenesis and erythropoiesis in order to promote oxygen delivery to peripheral tissues.
The effects of hypoxia on neuronal tissue are exacerbated by the release of many inflammatory agents
from glia and neuronal cells. Cytokines, such as TNF-α, and IL-1β are known to be released during
the early stages of hypoxia, causing either local or systemic inflammation, which can result in cell
death. Another growing body of evidence suggests that inflammation can result in neuroprotection,
such as preconditioning to cerebral ischemia, causing ischemic tolerance. In the following review we
discuss the effects of acute and chronic hypoxia and the release of pro-inflammatory cytokines on
synaptic transmission and plasticity in the central nervous system. Specifically we discuss the effects
of the pro-inflammatory agent TNF-α during a hypoxic event.

Keywords: hypoxia; TNF-α; adenosine; HIF-1α; hippocampus; long-term potentiation; prolyl
hydroxylase inhibitor

1. Introduction

In the central nervous system, hypoxia occurs when there is an inadequate supply of oxygen
to neuronal tissue. During acute hypoxia multiple oxygen sensors are deployed allowing neurons
to adapt to the response. These responses to hypoxia include synaptic signaling decreases usually
as a result of anerobic metabolism changes whilst chronic hypoxia may give rise to more severe
perturbations of synaptic transmission and the activation of transcription factors that regulate oxygen
homoestasis [1]. Different neurons adapt to a decreased oxygen supply to the brain in many ways,
reflecting the diverse role of neuronal functions and also the extent of the hypoxia experienced. It is
now known that an hypoxic event in brain tissue can cause ATP to drop by as much as 90% in less than
5 min. Additionally, oxygen-sensitive ion channals including Na+ and K+ are activated bringing about
changes in excitation and inhibition of neuronal and glial cells [2]. Depolarisation of cells may also
take place causing the uptake of Na+ and Cl´ into cells followed by passive influx of water, resulting
in swelling and oedema [2]. Hypoxic insults may also activate voltage-gated Ca2+ and K+ ion channels
and glutamate transporters, eventually causing excess glutamate to spill into the synaptic regions
causing excitotoxicity. On the other hand, many of the long-term hypoxic responses are mediated by
hypoxia inducible factors (HIF), such as HIF-1α [3,4]. HIF-1α is a universally expressed transcriptional
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mediator of the hypoxic response that is degraded in an oxygen-dependent manner. Under normoxic
conditions, HIF-1α has a half-life of approximately 8 min due to hydroxylation by prolyl hydroxyl
domains (PHDs) [5]. These PHDs exist in three different isoforms, PHD1, PHD2, and PHD3 and all
require oxygen, iron, ascorbate and 2-oxoglutarate, a product of the oxygen dependent Kreb cycle, to
hydroxylate HIF-1α. Under hypoxic conditions the Kreb cycle is inhbited leading to a reduction in
2-oxoglutarate, preventing the binding of PHDs to the targeting proline domains [4,6]. During hypoxia,
the HIF-1α protein stabilizes allowing it to recruit transcriptional co-activators, which are blocked
during normal conditions via factor inhibiting HIF (FIH) [7]. This complex then permits for the
transcription of hypoxia-related proteins through binding of the hypoxic responsive element (HRE).
HRE binding induces the expression of genes, such as erythropoietin, vascular endothelial growth
factor and insulin growth factor. These all play a neuroprotetive role in response to the hypoxic insult.

These acute and chronic responses to hypoxia are clearly manifested during ischemic events
in the brain. An example of one such event with a hypoxic component is stroke, which is caused
by a reduction in blood flow as a result of an obstruction or rupture of blood vessels within the
brain and may cause both acute and chronic episodes of hypoxia. This leads to complex pathological
changes taking place, which may lead to tissue necrosis through increased inflammation and oxygen
deprivation [8]. During an ischemic stroke the eventual restriction of oxygen in the brain due to
an obstruction leads to a cascade of events including hypoxia, increased expression of pro-inflammatory
cytokines like tumor necrosis factor alpha (TNF-α) and interleukin-1beta (IL-1β), as well as increased
release of the excitatory neurotransmitter glutamate [9]. In this review we will discuss how hypoxia
and the release of pro-inflammatory cytokines can effect synaptic transmission and plasticity in the
central nervous system (CNS).

2. Hypoxia and Synaptic Signaling

Synaptic transmission in the CNS requires approximately 30% to 50% of cerebral oxygen.
Therefore many of the changes in the CNS related to acute hypoxia stem from modifications of
synaptic excitation and depression. The responses to hypoxia, which occur within seconds, most
likely do not involve a role for HIF-1α stabilization. Additionally, upon re-oxygenation after a short
period, synaptic transmission can recover to 100% in many brain regions [10]. This decrease in
synaptic signaling during acute hypoxia is thought to protect some neurons during ischemic events.
Adenosine is one of many neurotransmitters, which plays a vital role in the neuroprotective response
to hypoxia [11]. Adenosine A1 receptors (A1Rs), in particular, play a part in altering neurotransmitter
release [12] and have wide expression levels throughout the CNS [13]. This inhibitory neuromodulation
by A1Rs is coupled to inhibitory Gi or Go containing G-proteins [14]. Activation of the receptor
stimulates adenylyl cyclase, activates inwardly rectifying K+ channels, thus inhibiting Ca2+ channels
and activation of phospholipase C. This inhibits the release of a number of neurotransmitters including
glutamate, dopamine, serotonin and acetylcholine thus making it the primary neuroprotective receptor.
Adenosine forms through the enzymatic catabolism of adenosine triphosphate (ATP) into adenosine
monophosphate (AMP), which then is broken down by ecto’5 nucelotidases into adenosine (see
Figure 1). Adenosine kinase is mainly responsible for the removal of adenosine via phosphorylation
to AMP [15]. Under hypoxic conditions when there is a build-up of adenosine in the extracellular
space, hypoxia induced factors such as HIF-1α also cause an increase in the ecto’5 nucelotidases CD73,
allowing for a breakdown of extracellular ATP into adenosine [16,17].

It is now known that during hypoxia, HIF-1α inhibits the equilibrative nucleoside transporters
ent-1/2 located on the membranes of neurons and glia preventing adenosine reuptake into the neuronal
cell [18]. Extracellular adenosine binds to A1Rs located on both the postsynaptic and presynaptic
membranes. Postsynaptic A1R activation inhibits the activation of glutamatergic N-methyl-D-aspartate
receptors (NMDARs) and adenosine binding to A1Rs located presynaptically [14]. Inhibition of
neurotransmitter release can be suppressed by the addition of an A1R selective inhibitor, such as
8-cyclopentyl-1,3-dipropylxanthine (DPCPX), suggesting that adenosine binding is necessary for the
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reduction of post synaptic potentials [19]. It has also been shown that the A1R binding of adenosine
inhibits NMDA receptor activation [20]. Creation of knockout mice with the deletion of presynaptic
A1Rs, uncovered the neuroprotective role that adenosine receptor binding plays in the hypoxic
response [21]. Synaptic depression of the excitatory post-synaptic potential (EPSP) was attenuated
allowing activation of glutamatergic NMDA receptors and increasing the likelihood for excitotoxicity.
More importantly decreased extracellular levels of adenosine have been shown to lead to a loss of
hypoxia-induced neuroprotection after repeated exposure to hypoxia [22].
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role. For example during longer duration hypoxia, nicotinamide adenine dinucleotide phosphate-
oxidase oxidase production of reactive oxygen species (ROS) such as superoxides by microglial 
complement receptor 3 can activate protein phosphatase 2A (PP2A), which causes the 
internalization of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 
(AMPARs) through serine-threonine dephosphorlation [23]. This is similar to the discovery that the 
oxygen sensing C-elegans protein egl-9, which regulates HIF in an oxygen-dependent manner can 
also regulate C. elegans glutamate receptor-1 (GLR-1) trafficking through the generation of isoform-
specific transgenes which interact with the GLR-1 promoter [24,25]. In normoxic conditions, egl-9 
binds to Lin-10 preventing its phosphorylation, this complex then allows for the movement of 
glutamate receptors to the synapse. Under hypoxic conditions, Lin-10 is phosphorylated, thus 
preventing the formation of the EGL9/Lin-10 complex leading to a lack of synaptic GluR1 receptors 
[26]. 
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Figure 1. The effects of hypoxia on adenosine release in the CNS. Hypoxia causes a breakdown
of extracellular ATP and AMP along with activation of membrane-bound transporters such as
ectonucleotidases, leading to a build-up of extracellular adenosine. Adenosine binds presynaptically
to A1Rs attenuating voltage dependent calcium channel (VDCC) function and thus neurotransmitter
release and also binds postsynaptically to A1Rs receptors inactivating glutamatergic NMDARs.
Adenosine is released from astrocytes in response to chronic hypoxia.

The depression of synaptic transmission in longer term hypoxia goes beyond a neuroprotective
role. For example during longer duration hypoxia, nicotinamide adenine dinucleotide
phosphate-oxidase oxidase production of reactive oxygen species (ROS) such as superoxides by
microglial complement receptor 3 can activate protein phosphatase 2A (PP2A), which causes the
internalization of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors
(AMPARs) through serine-threonine dephosphorlation [23]. This is similar to the discovery that the
oxygen sensing C-elegans protein egl-9, which regulates HIF in an oxygen-dependent manner can also
regulate C. elegans glutamate receptor-1 (GLR-1) trafficking through the generation of isoform-specific
transgenes which interact with the GLR-1 promoter [24,25]. In normoxic conditions, egl-9 binds
to Lin-10 preventing its phosphorylation, this complex then allows for the movement of glutamate
receptors to the synapse. Under hypoxic conditions, Lin-10 is phosphorylated, thus preventing the
formation of the EGL9/Lin-10 complex leading to a lack of synaptic GluR1 receptors [26].

One particular form of hypoxia, chronic intermittent hypoxia (CIH) may have specific detrimental
effects on CNS function. CIH can lead to the over-activation of NMDARs, leading to an overload
of intracellular Ca2+ and a dephosphorylation of extracellular signal-regulated kinases (ERK) [27].
The CA1 region of the hippocampus is thought to be selectively vulnerable to CIH damage due
to the high density of glutamate receptors located on its pyramidal neurons [28]. CIH also leads
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to a reduction in the levels of the transcription factor cAMP response element-binding protein
(CREB) in its phosphorylated form [29]. This reduction in activated CREB leads to a lowering of
CREB transcriptional targets, such as brain-derived neurotrophic factor (BDNF), causing cognitive
dysfunction [30]. The CIH-induced cognitive dysfunction was shown to be repaired through exogenous
application of BDNF to the hypoxic cell [30]. Perinatal hypoxic events may also lead to increases in
excitability in hippocampal regions. These events usually occur after asphyxia events just after birth
and can lead to long term synaptic changes. Changes in excitability in some local brain regions such
as the CA1 region have also been noted [31]. The pursuant neonatal seizures may be related to the
phosphorylation of the AMPA GLUA1 receptors on serine 183 and serine 845. This may enhance
AMPA receptor excitatory post synaptic currents (EPSCs) which allows for a decrease in the percentage
of silent synapses and an increase in AMPA receptor function [32]. This loss of silent synapses is
thought to be the mechanism, which attenuates synaptic plasticity in adult life [33]. In critical cases of
hypoxia-re-oxygenation the brain loses the ability to form new memories. This anterograde amnesia is
decoupled from the hippocampus and its primarily caused by adenosine up-regulation of caspase 1 and
then IL-1β in the amygdala [34]. These effects were shown to last up to five hours after re-oxygenation
with caspase inhibitors, such as YVAD-CMK, able to shorten the recovery time [34]. The links of
hypoxia to cognitive disorders, as well as ability to cause neuronal apoptosis through hyper-excitability,
displays the importance of understanding hypoxia and preventing its long-term effects.

3. Hypoxia and Synaptic Plasticity

As previously mentioned, hippocampal neuron exposure to hypoxia may lead to cognitive deficits
due to synaptic plasticity impairments [35]. Many studies have investigated the relationship between
oxygen deprivation and synaptic plasticity. Early studies indicated that brief periods of hypoxia could
disrupt long-term potentiation (LTP) in the CA1 hippocampus and that this effect could be reproduced
with brief application of adenosine prior to the induction of LTP [36–38]. It was later discovered that
a brief anoxic episode, as opposed to hypoxia, applied to brain slices, could generate a new type of
LTP although still voltage-, NMDA- [39], protein kinase C (PKC)- and NO-dependent [40–42]. It is
proposed that it is the re-oxygenation and not initial de-oxygenation of neurons and the subsequent
high concentration of glutamate that in fact causes the excessive activation of NMDARs and subsequent
large influx of Ca2+ [43]. It has also been shown that chemically-induced hypoxia with the use of
PHD inhibitors, and thus hypoxia mimetics, whilst having no effect on synaptic signaling at low
concentrations per se, could inhibit LTP in the hippocampus [44,45]. Application of the iron chelator
deferoxamine mesylate (DFO) or dimethyloxaloglycine (DMOG), both non-specific pharmacological
inhibitors of PHD, and thus increasers of HIF-1α expression [46] could impair LTP in the CA1
hippocampus [4,44,45,47]. Interestingly the application of DMOG to the dentate gyrus region of
hippocampal slices did not impair LTP [29]. It is believed that these effects of PHD inhibitors are
not HIF-dependent. There is also increasing evidence for a role for CIH in synaptic plasticity and
specifically LTP. Initial reports in early 2000 demonstrated that CIH treated animals demonstrated
impaired LTP in isolated rat hippocampal slices [48,49]. More recently two reports have put forward
evidence for a role for BDNF in this impairment [30,50]. They found that application of BDNF reversed
the IH-induced impairment of LTP. In our own laboratories we have implicated a role for PHDs in this
inhibition of LTP by intermittent hypoxia [29].

4. Hypoxia and Neuroinflammation in the CNS

During an ischemic stroke and resulting hypoxia, inflammatory cytokines are released by
microglia, neurons and astrocytes with glutamate largely released by neurons. The up-regulation of
pro-inflammatory cytokines through the activation of microglia and astrocytes in the brain contribute
a great deal to ischemic brain damage [51]. During hypoxia, HIF-1α binds to HRE like binding
sites allowing for the up-regulation of cytokines, such as IL-β, IL-6, IL-8, and TNF-α. Mutations in
either the HIF-1α gene or its binding site at the promoter inhibit this cytokine up-regulation [46].
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Up-regulation of IL-1β is related to hypoxic hyperexcitability due to the fact that IL-1β can activate
tyrosine kinases, which then phosphorylate the NMDAR subunits, NR2A and NR2. This increase
in NMDAR potentiation leads to excessive flow of Ca2+ leading to hyperexcitability and neuronal
injury [52]. Hypoxia also leads to activation of nuclear factor κB (NFκB) signaling pathways whereby
HIF-1α has a molecular interaction with the inflammatory mediator NFκB. HRE binding, as seen in
Figure 2, allows for the expression of NFκB, which then activates the transcription of inflammatory
genes and HIF proteins [53]. NFκB expression is increased when hypoxia is followed by a period
of re-oxygenation [54]. Reactive oxygen species (ROS) have been shown to both activate and
inactivate NFκB, which could explain the importance of the re-oxygenation period. ROS can trigger
both apoptotic and necrotic cell death depending on the severity of the oxidative stress [55–57].
Another form of hypoxia, CIH, such as seen in sleep apnea can lead to neuronal cell death and one
of the mechanisms involved may be inflammation. Neural inflammation caused by CIH can be
region specific with the expression of microglial toll-like receptor-4 (TLR4) increased differentially
across areas of the CNS [58]. Hypoxia-re-oxygenation increases microglial levels of inducible nitric
oxide synthase (iNOS) leading to neuronal cell loss through apoptosis and memory impairment [59]
Many other insults such as bacterial, viral, cytokines and neurodegenerative insults induce iNOS in
microglia [60]. This increase in iNOS raises the levels of NO allowing for the inhibition of neuronal
respiration causing glutamate release [61]. Rho-associated protein kinase (ROCK) is thought to play
a vital role in this pathway as the introduction of the ROCK inhibitor, fasudil, attenuates the neuronal
apoptosis [62]. Thus inflammatory pathways and microglial activation are key components to the
hypoxic response whereby their activation allows for formation of ROS as well as having the ability to
modulate glutamatergic receptors. The important role they play in causing neuronal cell damage as
well their potential to be neuroprotective through hypoxic preconditioning makes the inflammatory
response a vital therapeutic target in hypoxia. Only recently has it been reported that patients with
obstructive sleep apnea (involving episodes of IH) were 1.37 times more likely to have Parkinson’s
disease than patients without the disease [63].
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5. TNF-α and Hypoxia

TNF-α, a pro-inflammatory cytokine produced primarily by monocytes and macrophages in the
periphery and microglia and neurons in the CNS, is involved in the promotion of the inflammatory
response and cognitive dysfunction [64,65]. TNF-α is initially produced as a 212-amino acid-long type
II transmembrane that is stable as a homotrimer. The cleavage of the membrane-integrated form by
TNF-α converting enzyme produces a soluble homotrimer, which binds to either of two receptors,
TNF receptor type 1 (TNFR1) or TNF receptor type 2 (TNFR2). TNFR1 is constitutively expressed
throughout most tissues and is thought to be the main TNF signaling receptor. The activation of
TNF-R1 leads to either apoptotic cell death or the activation of either the caspase-8 pathway or c-Jun
NH2-terminal kinase (JNK) pathways, or neuroprotection through the binding of IκB kinase (IKK)
complex and the subsequent activation of the NFκB pathway [66]. The signaling network in TNF-R1 is
interesting due to the extensive crosstalk between the NFκB, and JNK signaling pathways. The cells
susceptibility to apoptosis increases in the absence of NFκB. The activation of TNFR2 leads to the
activation of the NFκB pathway, phosphatidyl-inositol-3 kinase (PI3K) and subsequent transcription of
neuroprotective mediators like calbindin and manganese superoxide dismutase [67,68]. Specifically in
microglia activation of TNFR2 anti-inflammatory pathways may be induced [69]. A putative role for
TNF-α has been shown in rats infused with lipopolysaccharide (LPS may promote the secretion of
pro-inflammatory cytokines including TNF-α and IL-1β) into the fourth ventricle to induce chronic
neuroinflammation [70]. TNF-α synthesis inhibition was found to restore the neuronal function as
well as reverse cognitive deficits induced by the chronic neuroinflammation [70].

It is becoming apparent that TNF-α is one of the most important inflammatory cytokines to be
studied in relation to neuronal damage caused by the absence of oxygen due to the fact that it actively
participates in the immune-mediated inflammation of stroke and other neurodegenerative diseases
with an hypoxia component [71]. The release of TNF-α is a result of the pathogenesis of disorders
such as stroke [72], Alzheimer’s disease [73], Parkinson’s disease [74] and severe infections such as
meningitis [75], yet its role during hypoxia is not fully understood. In severe ischemia TNF-α levels
appear to be elevated in affected brain tissue after 24 h [76]. One such critical role in neuroinflammation
has been illustrated whereby TNF-α can damage dopaminergic neurons and thus anti-TNF agents may
ameliorate Parkinson’s disease [74]. Despite many research papers in this field few laboratories have
investigated the effects of acute hypoxia and inflammatory mediators on synaptic transmission [77,78].
Recently our laboratory reported that recovery of synaptic transmission in CA1 neurons was impaired
post-hypoxia in the presence of TNF-α [77]. It also been shown that HIF-1α has a binding site for the
Fas Associated Death Domain promoter, which is an adapter molecule in TNFR1 mediated cell death.
Therefore it has a direct role in TNF-α mediated apoptosis which may help explain the poor recovery
of EPSPs following a hypoxic insult [79].

A growing body of evidence indicates that TNF-α may play a role in the regulation of tolerance to
chronic hypoxia such as occurs in ischemia yet it has a deleterious effect in ischemic brain injury after
stroke [80]. It seems that administration of a high dose of lipopolysaccharide (LPS) may induce a robust
inflammatory response that can result in lethal septic shock whereas administration of a low dose of
LPS may induce a protective state of tolerance to subsequent exposure to LPS at doses that might cause
serious injury [81,82]. In fact LPS preconditioning is known to exert neuroprotection from cerebral
ischemia [83,84]. In cerebellar granule neurons the neuroprotective effects of LPS preconditioning were
said to be independent of endogenous IL-1β but dependent on endogenous TNF-α and also IL-6 [85].
Our laboratories have recently provided evidence that TNF-α has a preconditioning effect following
a glutamate toxic insult 24 h later in the CA1 region of rat organotypic slices [65]. We suggested that
the preconditioning effects may be as a result of changing resting Ca2+ levels and Ca2+ influx in the
presence of TNF-α.
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6. TNF-α and Synaptic Plasticity

A growing body of evidence has highlighted the role of TNF-α in glutamatergic synaptic plasticity
and scaling. It has been shown that TNF-α has an inhibitory effect on LTP in both the CA1 and dentate
gyrus [76,86–89]. Studies initially carried out by Tancredi et al. (1992) [90] showed an inhibitory effect
of TNF-α on LTP induction in the CA1 region, which was concentration-dependent. However, they
demonstrated that short-term application of TNF-α (>50 min) did not affect LTP. These findings and
others highlight the various parameters involved in the regulatory role that this cytokine plays in
synaptic plasticity. The inhibitory actions of TNF-α on LTP have been shown to be mediated through
the signaling pathways, P38 MAP kinase and JNK [91]. Butler et al. (2004) [88] reported that the
inhibition of LTP by TNF-α was in fact a biphasic response. SB203580, a P38 MAPK inhibitor, blocked
the early inhibition of LTP by TNF-α but did not reverse its late inhibition (3 h following induction),
possibly due to the requirement for new protein synthesis. Using antagonists for metabotropic
glutamate receptor 5 (mGluR5) and ryanodine, a potential role for metabotropic glutamate receptors
and ryanodine sensitive intracellular Ca2+ stores in TNF-α mediated inhibition of LTP have also been
proposed [87].

Other studies have provided evidence that exogenous application of TNF-α whilst not inhibiting
LTP in the CA1 region of the hippocampus may alter homeostatic plasticity (synaptic scaling) rather
than synaptic plasticity [92]. These studies have shown that glia released TNF-α is required for
synaptic scaling through AMPAR trafficking to the membrane [92–94]. Others have reported that
the increase in AMPAR expression on the cell surface is mediated through the P13 kinase pathway
and the AMPARs trafficked were lacking the GLR-2 subunit. Since LTP is dependent on synaptic
glutamate it is also interesting to note that TNF-α has been shown to increase glutamate release
from astrocytes [95], block glutamate transporters [96], and also may have a modulatory effect on
the expression of GLT-1 and GLT-2. These effects combined may result in increased glutamate
concentrations in the synaptic cleft [97,98]. TNFR1, but not TNFR2, may play an important role
in AMPAR localization on the membrane of cortical neurons. Deletion of TNFR1 resulted in a decrease
of AMPAR clustering on the synaptic membrane, which was not rescued by exogenous application
of TNF-α [99]. These observations indicate a potential therapeutic approach for TNF-α via TNFR1 in
mediating AMPAR excitotoxicity. Glutamatergic gliotransmission is an important stimulatory input to
excitatory synapses and it has been shown that TNF-α is a modulator of this process in the dentate
gyrus [100]. Many of the discrepancies observed with regard to the effects of TNF-α on LTP may be
region specific or indeed depend on the induction protocol used to induce LTP. There are many factors
regulating the magnitude of LTP induced by different parameters such as high frequency stimulation
and theta burst stimulation [101] (Figure 3). Recently, we have shown that the stimulation parameters
used to induce LTP may have an influence on TNF-α’s ability to inhibit LTP [102]. TNF-α has no
inhibitory effect on LTP when induced with prolonged high frequency stimulation (HFS) whereas full
inhibition was observed when LTP was induced by theta burst stimulation (TBS). Figure 3 illustrates
a potential mechanism that might explain this discrepancy whereby TBS may trigger alternative
signaling cascades to HFS that can be modulated by TNF-α.

7. TNF-α, Hypoxia and Synaptic Plasticity

Hippocampal slices exposed to acute hypoxia may recover when oxygen is re-introduced. Recently
it has been shown that in the presence of TNF-α there is an impairment in the recovery of synaptic
transmission in the CA1 region post-hypoxia [77]. Conversely, hypoxia has also been shown to
increase intercellular Ca2+ levels and activate calmodulin-dependent protein kinase II (CaMKII)
through a TNF-α independent mechanism [103]. However CaMKII is also capable of activating
the PI3K-PKCλ-AMPAR signaling pathway. TNF-α has been found to play roles in cell adhesion
up-regulation, disruption of the blood brain barrier and is a key component for the participation of
glial cells in the physiological control of synaptic transmission and plasticity through the release of
glutamate, a process known as glutamatergic gliotranmission [100,104]. TNF-α has been shown to
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increase the release of glutamate from astrocytes, maintain glutamate levels through the blocking of
glutamate transporters [96] and modulate the expression of Glut-1 and Glut-2. All these effects by
TNF-α result in the increase in the concentration of glutamate in the synaptic cleft, which may have
an influence on the magnitude of LTP post-hypoxia. Using a robust LTP-inducing stimulus protocol we
have been able to demonstrate a significant enhancing effect of TNF-α on LTP post hypoxia but only in
the dentate gyrus of the hippocampus [102]. In the presence of DMOG (a non-specific PHD inhibitor)
this enhancement of LTP was still evident perhaps indicating a novel HIF/PHD-independent effect of
TNF-α [102].
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indicating a novel HIF/PHD-independent effect of TNF-α [102]. 
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HFS-induced LTP but not TBS. 
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Hypoxia is one of the key components, which can arise from neuropathological conditions 
such as stroke, Parkinson’s or Alzheimer’s disease. Hypoxic events can cause the release of pro-
inflammatory cytokines from neurons and glial cells, such as TNF-α, which can lead to further 
neurotoxicity or indeed neuroprotection in the brain. However, the effects of TNF-α on neurons 
during de- and re-oxygenation of neurons is largely unknown. Many studies have now shown that 
pro-inflammatory cytokines, such as TNF-α, play a key role in the regulation of synaptic 
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Figure 3. Putative signaling pathways activated after HFS- and TBS-induced LTP. HFS-induced LTP
may be dependent on the breakdown of 51 AMP into adenosine. Adenosine activates the A2AR receptor
leading to cAMP and PKA activation. TBS-induced LTP involves the influx of Ca2+ and subsequent
activation of calpain-1. The activation of calpain-1 leads to a calapin-1-mediated suprachiasmatic
nucleus circadian oscillatory protein degradation and ERK activation. Exogenous TNF-α inhibits LTP
induced by TBS only. During hypoxia, TNF-α may have potentiating effect on HFS-induced LTP but
not TBS.

8. Conclusions

Hypoxia is one of the key components, which can arise from neuropathological conditions such as
stroke, Parkinson’s or Alzheimer’s disease. Hypoxic events can cause the release of pro-inflammatory
cytokines from neurons and glial cells, such as TNF-α, which can lead to further neurotoxicity or
indeed neuroprotection in the brain. However, the effects of TNF-α on neurons during de- and
re-oxygenation of neurons is largely unknown. Many studies have now shown that pro-inflammatory
cytokines, such as TNF-α, play a key role in the regulation of synaptic transmission and plasticity in
the absence and presence of acute hypoxia, especially within the hippocampus. The mechanisms by
which elevated levels of TNF-α have an enhancing or detrimental effect on synaptic signaling and
synaptic plasticity in the presence or after a hypoxic event remains to be elucidated.
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Abbreviations

A1Rs Adenosine A1 receptors
AMP adenosine monophosphate
AMPARs α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors
ATP adenosine triphosphate
BDNF brain-derived neurotrophic factor
CaMKII calmodulin-dependent protein kinase II
CIH chronic intermittent hypoxia
CNS central nervous system
CREB cAMP response element-binding protein
DMOG dimethyloxaloglycine
DPCPX 8-cyclopentyl-1,3-dipropylxanthine
EPSP excitatory post-synaptic potential
ERK extracellular signal-regulated kinases
HIF hypoxia inducible factors
HRE hypoxic responsive element
IL-1β interleukin-1beta
iNOS inducible nitric oxide synthase
LPS lipopolysaccharide
LTP long-term potentiation
NFkB nuclear factor kB
NMDAR N-methyl-D-aspartate receptors
PHDs prolyl hydroxyl domains
PI3K phosphatidyl-inositol-3 kinase
ROCK Rho-associated protein kinase
ROS reactive oxygen species
TNF-α tumor necrosis factor alpha
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