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Abstract: The efficacy of Deep Brain Stimulation (DBS) for an expanding array of neurological and
psychiatric disorders demonstrates directly that DBS affects the basic electroneurophysiological
mechanisms of the brain. The increasing array of active electrode configurations, stimulation
currents, pulse widths, frequencies, and pulse patterns provides valuable tools to probe
electroneurophysiological mechanisms. The extension of basic electroneurophysiological and
anatomical concepts using sophisticated computational modeling and simulation has provided
relatively straightforward explanations of all the DBS parameters except frequency. This article
summarizes current thought about frequency and relevant observations. Current methodological and
conceptual errors are critically examined in the hope that future work will not replicate these errors.
One possible alternative theory is presented to provide a contrast to many current theories. DBS,
conceptually, is a noisy discrete oscillator interacting with the basal ganglia–thalamic–cortical system
of multiple re-entrant, discrete oscillators. Implications for positive and negative resonance, stochastic
resonance and coherence, noisy synchronization, and holographic memory (related to movement
generation) are presented. The time course of DBS neuronal responses demonstrates evolution of
the DBS response consistent with the dynamics of re-entrant mechanisms. Finally, computational
modeling demonstrates identical dynamics as seen by neuronal activities recorded from human and
nonhuman primates, illustrating the differences of discrete from continuous harmonic oscillators
and the power of conceptualizing the nervous system as composed on interacting discrete
nonlinear oscillators.

Keywords: Deep Brain Stimulation (DBS); stimulation frequency; discrete nonlinear oscillators;
stochastic resonance; basal ganglia–thalamic–cortical system of oscillators; Principle of Causational
Synonymy; Principle of Informational Synonymy

1. The Conundrum of Deep Brain Stimulation (DBS) Frequency

The effects of specific electrode configurations, the set of active cathodes and anodes, can be
understood to relate to the regional anatomy and the volume of tissue activation. While the effects of
stimulation parameters, such as stimulation current (voltage) and pulse width, can be understood as
related to activation of neuronal axonal elements mediated by the presence or absence of myelin, axonal
diameter, and chronaxie, how DBS frequency controls the response is much more problematic [1].
From the perspective of information transfer between neurons, such as those activated directly by the
DBS pulse and the subsequent postsynaptic neurons, DBS frequency could have an effect on temporal
summation. Such temporal summation would be important in propagating the DBS effect through
a long sequence of interactions, ultimately affecting the orchestration of motor unit activities that
mediate the clinical motor responses to DBS. However, the frequencies used typically in DBS are not
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very effective at temporal summation [2], and thus the mechanisms by which DBS frequencies affect
motor control likely are through some other mechanism(s).

The neurophysiology of the DBS frequency effect is an enigma and likely will require novel
attempts to explicate. This article takes on this challenge, proceeding from the hypothesis that DBS can
be considered a nonlinear discrete noise oscillator that is interjected into the nonlinear polysynaptic
re-entrant discrete oscillators that comprise the basal ganglia–thalamic–cortical system. Whether this
will illuminate the issue of DBS frequency effects requires the test of time. However, the theory requires
the introduction of novel or, at the very least, unfamiliar concepts—hence the review-like nature of
the article; these will be in addition to novel observations, hence the presentation of experiments.
The format provides a significant advantage in the opportunity to make a full proposal with the mutual
reinforcement or consilience of the many parts not typically available in most journals.

The first effort is to demonstrate just how complex the effect of varying DBS frequencies is,
in this case the effect of various DBS frequencies in the vicinity of the subthalamic nucleus on
bradykinesia in patients with Parkinson’s disease, and to account for the failure of such complexity
to be appreciated previously. There is considerable experience that demonstrates benefits from
low-frequency DBS, for example of the STN for gait disturbances and for dystonia. Further, there may
be differences in the frequency-dependent responses for different symptoms and signs of Parkinson’s
disease. The failure to appreciate this complexity, although it has long been suspected by astute
clinicians, is both methodological and due to conceptual presuppositions. Thus, the review aspects
of this article necessarily have an epistemological and historical bent. Also, it will be necessary to
provide evidence of highly complex neural oscillators intrinsic to the basal ganglia–thalamic–cortical
systems. Further, these oscillations are tied to the orchestration of motor unit behaviors that necessarily
mediate the motoric effects of DBS. Next, the power of DBS to induce oscillations is discussed.
Finally, preliminary evidence of complex interactions between the DBS oscillator and intrinsic
oscillators in the subthalamic nucleus is presented.

The authors ask the indulgence of the reader. This is not a systematic review of all the publications
that address the issue of DBS frequency. Such an effort is far beyond the opportunity reasonably
offered by the editors. Thus, it is impossible to acknowledge the individual contributions made by
many clinicians and scientists. This should not be taken as a judgment of their contributions or as
a slight of any kind, rather a practical necessity. Second, this is a critique in the robust sense of the
term. The critique recognizes that the issue of DBS frequency-based mechanisms is far from a complete
understanding. Rather, considerable more research and scholarly efforts will be necessary. The strong
critique is not a matter of fault-finding but more an effort so that future scientists and clinicians do
not make the same mistakes that these authors and others have made. The term “error” as applied to
any finding, inference, or conclusion is not a pejorative term. It is a wise person who learns from their
mistakes; it a wiser person who learns from the mistakes of others. If one wants to change the future
then one must see the present and the best way to see the present is to clearly see the past.

No theory or hypothesis arises spontaneously but rather is the consequence of a long history of
reasoning. Reasoning laboriously worked through, perhaps centuries ago—for example by Aristotle
(384–322 B.C.E.), now may be forgotten or taken for granted as a presupposition but is no less
relevant. This fact was not lost on some of the greatest neuroscientists, such as Sir Charles Sherrington.
Any competent critique must trace the conceptual antecedents as far back as is necessary to fully
inform the review. It would be naïve, at best, or petulant, at worse, to discount analyses and wisdom
from any age.

2. Conceptual History

Historically, the study of the effects of DBS frequencies has dichotomized the frequencies into high
and low. This article demonstrates that such dichotomization is the result of a methodological error
reinforced by highly intuitive conceptual appeal, also probably in error. This is not to say that clinicians
did not see a difference when they stimulated at high frequencies compared to low frequencies. Rather,



Brain Sci. 2016, 6, 34 3 of 26

one error lies in undersampling in the frequency domain, resulting in aliasing. This is not a matter of
opinion but rather a direct consequence of the Nyquist theorem. Another error lies in the pooling of
results across subjects when the intersubject variability is high. The result is information loss according
to the Second Law of Thermodynamics. The study by Huang et al. [3] demonstrates the effects of
these errors.

Results of the study by Huang et al. [3] demonstrate that a number of DBS frequencies over
a wide range for any individual subject resulted in improved bradykinesia as measured by hand
opening–closing (Figure 1). If only a few DBS frequencies are studied, the result would likely
demonstrate aliasing, and it will appear as though the relationship between improvement and
DBS frequency is a monotonically increasing function, which it is not in reality. Further, there was
considerable intersubject variability, suggesting that pooling subjects would have obscured the true
relationship between improvement and DBS frequency.
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Figure 1. Patients with Parkinson’s disease executed rapid hand opening and closing while wearing 
a glove that recorded finger and thumb movements. Following an overnight fast, these patients 
received their first dose of medications used to treat Parkinson’s. Movements of the fingers were 
separated from those of the thumb. The movement amplitudes were normalized by scaling from 0 to 
1 where 1 represents the maximum amplitude. The mean over all the movements was analyzed: (A) 
for the thumb and (B) for the fingers (pooled across all the fingers) for each subject. Absence of a 
column indicates that the associated stimulation frequency was unavailable with the subject’s 
Implanted Pulse Generator (IPG). Multiple peaks in amplitude movements are found across multiple 
frequencies, including low frequencies. (Inserts) Amplitudes for the lower range of stimulation 
frequencies are shown in the expanded window [3]. 

The implications of the study by Huang et al. [3] go beyond the methodological (epistemological) 
to the reality (ontology) of the physiology of relevant parts of the nervous system, such as the basal 
ganglia–thalamic–cortical system. It is at least interesting that many years have passed since Cooper 
and colleagues’ description of DBS as presently implemented in 1980 [4] and popularized by Benabid 
and colleagues in 1987 [5] before the issue of DBS frequency was evaluated systematically over a 
range of frequencies. One wonders why. 

Perhaps the need to study the range of frequencies systematically did not raise sufficient 
concern. However, this could only be the case if the prior concept of a dichotomous effect of DBS 
frequency was thought to be sufficient. Further, there is nothing in past observations that would be 
evidence that such a dichotomous effect is sufficient. At the very least, it could demonstrate the 
Fallacy of Limited Alternatives, where one explanation is considered more certain (falsely) when 
some alternatives are eliminated or not considered. However, for the one explanation to be certain, 

Figure 1. Patients with Parkinson’s disease executed rapid hand opening and closing while wearing
a glove that recorded finger and thumb movements. Following an overnight fast, these patients
received their first dose of medications used to treat Parkinson’s. Movements of the fingers were
separated from those of the thumb. The movement amplitudes were normalized by scaling from 0 to 1
where 1 represents the maximum amplitude. The mean over all the movements was analyzed: (A) for
the thumb and (B) for the fingers (pooled across all the fingers) for each subject. Absence of a column
indicates that the associated stimulation frequency was unavailable with the subject’s Implanted
Pulse Generator (IPG). Multiple peaks in amplitude movements are found across multiple frequencies,
including low frequencies. (Inserts) Amplitudes for the lower range of stimulation frequencies are
shown in the expanded window [3].

The implications of the study by Huang et al. [3] go beyond the methodological (epistemological)
to the reality (ontology) of the physiology of relevant parts of the nervous system, such as the basal
ganglia–thalamic–cortical system. It is at least interesting that many years have passed since Cooper
and colleagues’ description of DBS as presently implemented in 1980 [4] and popularized by Benabid
and colleagues in 1987 [5] before the issue of DBS frequency was evaluated systematically over a range
of frequencies. One wonders why.

Perhaps the need to study the range of frequencies systematically did not raise sufficient concern.
However, this could only be the case if the prior concept of a dichotomous effect of DBS frequency was
thought to be sufficient. Further, there is nothing in past observations that would be evidence that
such a dichotomous effect is sufficient. At the very least, it could demonstrate the Fallacy of Limited
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Alternatives, where one explanation is considered more certain (falsely) when some alternatives
are eliminated or not considered. However, for the one explanation to be certain, all reasonable
alternatives would have to be considered and excluded, which, in the case of the effects of DBS
frequencies, was not done.

Perhaps it was that the dichotomization of the effects of DBS frequencies seemed valid because of
the analogy between pallidotomy and DBS in the vicinity of the globus pallidus interna. The logical
fallacy of this analogy has been discussed elsewhere [6]. Interestingly, the contemporaneous theory of
the pathophysiology of movement disorders, at theory positing excessive or reduced activity in the
neurons of the globus pallidus interna (Globus Pallidus Interna (GPi Rate Theory)), was used to argue
in favor of the analogy [7]. Considerable evidence shows that this notion of pathophysiology is no
longer tenable [8].

The concerns raised here are more than historical. Successor theories likely share the same fatal
flaw as the GPi Rate theory and therefore are at risk of delaying better theories. Current theories that
posit excessive oscillations in the beta frequency range or excessive synchronization, along with the
GPi Rate theory, share one-dimensional push–pull dynamics. At the very least, alternative theories
that do not share these dynamics should be considered, particularly in view of the risks associated
with the Fallacy of Limited Alternatives.

Given the lack of direct evidence, the presupposition of a dichotomous effect of DBS frequency
then appears to be a default. Actually, dichotomization of phenomena and inferred causes marks
human reasoning for millennia. Dichotomization is a consequence of the human epistemic condition.
The inherent tendency to such a dichotomy, in appropriate circumstances, represents a pitfall only
avoided if appreciated. Below the case is made for the ubiquity of dichotomization and, ultimately,
its relevance to the consideration of DBS frequencies.

These dynamics were codified by Aristotle in his notion of contraries, where Aristotle wrote:

“The physicists ( . . . ) have two modes of explanation. The first set make the underlying
body one—either one of the three or something else which is denser than fire and rarer than
air—then generate everything else from this, and obtain in multiplicity by condensation
and rarefaction. Now these are contraries which may be generalized into ‘excess and defect’
(italics added)” [9].

Aristotle’s notion was extended by Galen (129–c. 200/c. 216, C.E.) in his notion of one-dimensional
push–pull dynamics of relative excess or deficiencies of the humors. Galen’s dynamics continue
underlying neurological and psychiatric therapeutics [10]. John Hughlings Jackson (1835–1911),
one of history’s preeminent and defining neurologists, held a notion of positive and negative
symptoms mediated by facilitation, inhibition, and inhibition of inhibition to release facilitation,
continues to underlie mainstream neurological thinking. As neurology was the source of neuroscience,
historically, it is not unexpected that the conceptual foundations of neurology would influence those
of neuroscience. This inheritance is evident in the facilitation and inhibition of a hierarchy of reflex
mechanisms in the work of Sir Charles Sherrington (1857–1952) in his Integrative Action of the Nervous
System [11]. The one-dimensional push–pull dynamics are apparent in the descriptions of Phineas
Gauge, where damage to the frontal lobes impaired the ability to suppress antisocial behavior, although
the source or mechanism that produces antisocial behavior, thought to be released, has never been
made clear.

Needed now is a Kuhnian paradigm shift [12] away from paradigms that presuppose
one-dimensional push–pull dynamics. Despite celebrations written in Science and Nature 50 years after
publication of The Structure of Scientific Revolutions [12], Kuhn’s work continues to invite critique, fairly,
but outright rejection by reasonable thinkers would be to make an oxymoron of the latter. Kuhn’s
work was first and foremost a historical analysis. The uneven progress of science, even to the point
of “getting stuck,” is a matter of historical fact. Such is the case as it relates to current theories of
the pathophysiology of the basal ganglia–thalamic–cortical system as it informs hypotheses of the
mechanisms of action of DBS, particularly as it relates to frequency.
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Thomas Kuhn (1922–1996) argued that a paradigm shift occurs when observations unexplainable
by the dominant paradigm—anomalies—accumulate to some breaking point. Kuhn left unexplained
what the dynamics of the breaking point were, but many critics of science argue that the breaking
point is a polemical issue. At what point do editors of scientific journals and grant administrators
stop being accepting of failed paradigms? For example, almost since the inception of the GPi
Rate theory, there have been contrary observations and anomalies, including the production of
Parkinsonism in nonhuman primates with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, that fail
to demonstrate predictions of the GPi Rate theory [13], as well as demonstrating that pallidotomy
improves hyperkinetic disorders contrary to the predictions. However, the GPi Rate theory persists
even today, attesting to the ability of an intuitively appealing theory to trump fact [14].

3. Some Principles for Developing Alternative Theories

This critique is written with an eye to the future in the hope that much better hypotheses and
theories will arise that, when vindicated, will extend our knowledge. There are some generic principles
that may be helpful. Any theory is more than a set of facts and includes hypotheses that bridge
gaps (interpolate) and extrapolate from observations to predictions. Hypotheses invoke notions
of necessity and causality that go beyond correlations. However, the generation and evaluation
of hypotheses in themselves are poorly understood and have been explained as happenstance,
psychological, or aesthetic. However, Aristotle and other ancient Greek philosophers offered
an important requirement called the Principle of Causational Synonymy that imposes constraints on
any hypothesis and theory that posits some causal mechanism, such as changes in neuronal activities
that cause, denigrate, or restore normal behavior. The Principle of Causational Synonymy holds that
the means by which a cause acts to generate an effect must match the means in the effect that generates
an effect. For example, when one pushes an object, the electrons in the outer orbit of the atoms on
the surface of the hand repel the electrons in the other orbit of the atoms on the surface of the object.
In the case of understanding the motor effects of DBS, these effects are through the recruitment and
de-recruitment of motor units, as is discussed latter. As per the Principle of Causational Synonymy,
no theory of the mechanisms of action of DBS can be considered complete or satisfactory without
full explication of motor unit activities. Indeed, the inability of any theory or explanation to do so is
evidence of serious shortcomings.

The Principle of Causational Synonymy can be extended to a Principle of Informational Synonymy.
Considering information as nonrandom state changes, the nonrandom state changes, such as the
frequency by which electrostatic charges are placed, reversed, and then stopped on the electrical
contact of the DBS lead (the cause), must be synonymous with the neuronal changes in the vicinity of
the DBS target that generate the DBS effect. Thus, both with the Principle of Causational Synonymy
and the Principle of Informational Synonymy, there must be precise mapping of the dynamics of the
causal agent with the effector agent.

Consider the situation of a person pushing a child on a swing. In addition to the repulsive forces
in the appropriate electrons in the person and the child, there also is informational content in terms of
the movements of the person pushing and the child swing. This is evident in the fact that the person
pushing cannot push at any random time. Rather, the person pushing must be in phase with the
child’s swing. Further, the pushing and swinging must be at the same frequencies, consistent with the
Principle of Information Synonymy.

Applying these principles to the theories of DBS mechanisms of action, particularly as it relates
to the stimulation pattern, in this case frequency, shows that current concepts are inadequate. Start
with the effect, in this case the normalization of movement in the case of DBS for Parkinson’s disease.
Ultimately, any changes in the movement must be implemented by orchestrating the recruitment and
de-recruitment of motor units over a number of muscles. This orchestration is very complex and
operates over multiple levels over varying time scales. This includes the recruitment of motor units by
size. Reciprocal coordination exists between muscles agonistic and antagonistic to the intended joint
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rotation. Synergistic coordination of motor unit recruitments and de-recruitments in muscles spanning
the same joint can be extended to motor unit orchestration simultaneously over multiple joints. Each of
these operates at different time scales, and if related to oscillators in the nervous system (as will be
demonstrated), then each time scale implies multiple oscillators at corresponding frequencies. Further,
the operations at different frequencies are organized simultaneously. These issues are addressed in
detail in Montgomery [15].

The fact that DBS improves motor control at specific frequencies argues that the frequency of
the DBS is interacting in a nonrandom oscillatory manner with analogous oscillators within the basal
ganglia-thalamic-cortical system. Indeed, as will be argued for, DBS can be considered as introducing
an additional oscillator into the network of oscillators that comprises the basal ganglia-thalamic-cortical
system. As discussed later, these oscillators are a specific kind that endows them with very important
and interesting properties. The fact that multiple DBS frequencies exist shows that there are multiple
oscillators of corresponding frequencies within the basal ganglia-thalamic-cortical system.

A possible alternative theory is presented here. The purpose here is to highlight alternative
conceptions and not necessarily to champion any one particular theory. This is consistent with the
intent of providing a critique rather than a review. To the authors’ knowledge, the proposed theory is
rather novel, at least in literature searches of various databases, thus providing a study of contrast.
For example, there is no other publication searchable in PubMed that discusses motor unit recruitment
abnormalities in Parkinson’s disease or the effects of DBS. Nor are there any publications on discrete
neural oscillators. Understandably, research bearing on the alternative theory largely will be those
pursued by the authors. The theory advanced here includes the following:

1. The basal ganglia–thalamic–cortical system is involved in the recruitment and de-recruitment of
motor units through oscillators within the system that then drive the motor cortex and brainstem
structures that project to the lower motor neurons of the spinal cord and brainstem.

2. The basal ganglia-thalamic-cortical system is composed of multiple loosely coupled re-entrant,
nonlinear polysynaptic discrete oscillators (Figure 2). Note that the term “discrete” is emphasized,
as nearly all discussions of oscillators within the context of DBS, physiology, and pathophysiology
do not make a distinction between continuous harmonic oscillators and discrete oscillators.
These two types of oscillators have very different properties and dynamics. This theory was
described previously in general terms [16] and in more detail in Montgomery [1].
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Figure 2. Schematic representation of the various components of the basal ganglia–thalamic–cortical
system, demonstrating three oscillator architectures out of a greater number of possible oscillators.
Represented are the following various structures: 1, putamen (as representative of the striatum);
2, globus pallidus externa; 3, globus pallidus interna; 4, subthalamic nucleus; 5, substantia nigra
pars reticulata; 6, substantia nigra pars compacta (location of the cell bodies that utilize dopamine
as their neurotransmitter); 7, ventral thalamus pars oralis; 8, parafasicular and centromedian nuclei
of the thalamus; 9, supplementary motor area; and 10, primary motor cortex. Note that the GPi
participates in two different oscillators, each of which is associated with a different fundamental
frequency—a five-node loop and a six-node loop [1].
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3. Oscillatory states consist of oscillators representing different frequencies simultaneously and that
oscillatory states can shift dynamically, in the manner of a bifurcation in Complex Systems.

4. DBS acts as a noisy discrete oscillator when introduced into the basal ganglia-thalamic-cortical
system, which interacts with oscillators inherent to the basal ganglia-thalamic-cortical system.

5. Interaction of the DBS oscillator within the oscillatory network is a model of mechanisms inherent
in the basal ganglia-thalamic-cortical system, both in normal and in pathological circumstances.
These interactions include the following:

a. Positive and negative stochastic resonance
b. Noisy synchronization
c. Phase control such as advancement and entrainment

4. Evidence for a Role of the Basal Ganglia-Thalamic-Cortical System in Motor Unit Recruitment
and De-Recruitment

Oscillator activities in motor unit behaviors have been known, and perhaps underappreciated,
since described by Piper in 1907 [17]. At high muscle contractions, a 40-Hz signal can be appreciated,
not only by electromyographic (EMG) recordings but also by auscultation using a stethoscope [18].
The genesis of such oscillatory activity is not known but likely is of central nervous system origin [19,20].
The question arises whether the basal ganglia via the motor cortex plays a role in these motor unit
oscillations specifically, as suggested by abnormalities of the Piper rhythm in patients with Parkinson’s
and motor unit orchestration generally.

Motor unit recruitment normally is organized based on the muscular force at which a motor unit
becomes active. The phenomenology of motor unit recruitment order is the recruitment of small motor
units with low force requirements followed by a recruitment of larger motor units with a greater force
requirement and is known as the Henneman Size Principle. Small motor units generated are thought
to provide the small forces necessary for fine resolution of the forces generated, whereas large motor
units supply the strength.

Another important extrapolation from the phenomenology is to the underlying mechanisms.
Initially, it was hypothesized that motor unit recruitment was determined by the local biophysical
properties of the lower motor neuron with large lower motor neurons, corresponding to larger motor
units, being harder to excite. Subsequently, differential synaptic inputs with respect to lower motor
neuron size, particularly peripheral afferents, were postulated to play a role. Nevertheless, most
studies have not discussed or have discounted the role of descending inputs. Indeed, Enoka writes,
“The great advantage of a spinally based control scheme (recruitment order determined by motor
neuron biophysics—authors), such as orderly recruitment, is that it relieves higher centers (for example,
the basal ganglia—authors) of the responsibility to select the motor neurons that must be activated
for a specific task” [21]. Thus, it is not surprising that Parkinson’s disease’s effects on motor unit
recruitment order have not received much attention.

In a study of motor unit recruitment [22], subjects were recruited from patients implanted
previously with DBS systems in the vicinity of the subthalamic nucleus (STN). Following an overnight
fast from their usual medications used to treat Parkinson’s disease, subjects placed their extended
finger and wrists into a manipulandum through which they could exert an isometric flexor force about
the wrist. The task was to exert a force starting at rest to their maximum voluntary force over 60 s.
Fine wire hook electrodes were inserted into the flexor carpi ulnaris. An example is shown in Figure 3.
A raw EMG is shown in the top panel of Figure 3 under the condition of therapeutic DBS in the vicinity
of the subthalamic nucleus. The therapeutic DBS electrode configuration and stimulation parameters
were those determined optimal during prior routine clinical care with frequencies at least greater than
100 pps. As can be appreciated readily, there is a step-like increase in the amplitudes of the motor unit
potentials with increasing force, clearly consistent with the Henneman Size Principle. However, under
the condition of no DBS in the same subject, the step-like increase is not seen. Further, large amplitude
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motor unit potentials are seen early in the task at low forces, clearly inconsistent with the Henneman
Size Principle.Brain Sci. 2016, 6, 34 8 of 26 
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Figure 3. Representative example of raw intramuscular electromyographic (EMG) activities in a subject
with Parkinson’s disease under conditions of 160 pulses per second (pps) DBS (therapeutic) and 0 pps
DBS. The raw EMG under 160 pps DBS has a stair-step appearance. Each step is associated with
recruitment of a larger motor unit. The same six motor units were identified under both conditions
and their waveforms and size are shown. The waveform associated with each motor unit is distinct
and varies in size from its fellows. The size was determined by measuring the area under the curve.
The time of occurrence of a motor unit discharge appears in the raster, with one row for each motor
unit. The red arrow indicates onset of activities as the force generated increases progressively. In the
160-pps DBS condition, an orderly recruitment is shown (indicated by red arrows): Consistent with
the Henneman Size Principle, smaller units are recruited first, followed by progressively larger motor
units. Under the 0-pps DBS condition, the orderly recruitment of motor units is lost and the units are
recruited nearly simultaneously. Large motor units are recruited early in the task and at small forces.

The EMG signals associated with individual motor units were extracted using a template-matching
algorithm [23] to identify individual waveforms. Subsequently, another computer program used these
waveforms as the basis to decompose superimposed signals into the elemental waveforms, allowing
discrimination of individual motor units to higher percentages of maximal force production. Curve
fitting of a sigmoidal function to cumulative discharge histograms over the ramp force allowed
determination of the force at which the motor unit was recruited. The force at recruitment was
correlated with the motor unit size determined by the area under the curve of the motor unit potential
waveform (Figure 4). A positive slope indicates consistency with the Henneman Size Principle.

As can be seen in Figure 4 for a subject with Parkinson’s disease, the slopes are near or less
than 0 with the stimulator off or at 20 pps. With higher frequency DBS, the slopes become more
positive. Indeed, the therapeutic DBS frequency resulted in the greatest positive slope. The reasonable
conclusion is that the Henneman Size Principle is violated without treatment but is restored with
higher frequencies of DBS. Figure 5 shows results comparing slopes for patients in the DBS Off (0 pps)
and DBS On (therapeutic pps) for another patient. As can be seen, there was a near reversal of the
normal recruitment pattern. Large motor units were recruited at the lowest forces generated and the
small motor units only at the highest force. The motor recruitment changed to what would normally be
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expected with therapeutic DBS. Slopes under the different conditions for 14 subjects with Parkinson’s
disease and 10 normal subjects are shown in Figure 6.

The question is what accounts for restoration of the normal motor unit recruitment profile with
high-frequency therapeutic DBS and the dependence on frequency as shown in Figure 4. Changes in
the recruitment order may be mediated by the motor cortex, whose upper motor neurons project to the
lower motor neurons of the motor unit. Studies in nonhuman primates and in humans demonstrate
a short latency highly temporally consistent with antidromic activations in motor cortex neurons
in response to DBS pulses applied in the vicinity of the subthalamic nucleus. Evidence also shows
an antidromic activation of the cortex in response to DBS in the vicinity of the subthalamic nucleus in
humans with Parkinson’s disease [24]. However, there were subsequent responses at longer latencies
that suggest the possibility of re-entrant oscillations. Such an effect is demonstrated more clearly in
the recording of neurons in the ventral thalamus pars oralis in response to DBS in the vicinity of the
globus pallidus interna (Figure 7). The buildup of responses at approximately 5 ms following the DBS
pulse suggests a resonance effect.
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Figure 4. Relationship between percent of maximum force at which each of the seven motor units
were recruited and the size of the motor units for different DBS conditions for a representative subject
with Parkinson’s disease. The seven motor units (A–G) are ordered according to motor unit size: A is
the smallest and G is the largest. Different symbols and colors represent the various DBS conditions.
A flat or small slope indicates that the Henneman Size Principle did not hold under that DBS condition.
An initially relatively flat slope for the untreated patient (0 Hz DBS) increases greatly with therapeutic
(high) DBS, suggesting that motor unit recruitment has become normalized.
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Figure 5. An example of the relationship between the size of the motor units and the percentages
of maximum voluntary force at which the motor unit was recruited. In the DBS Off condition,
the recruitment is opposite that predicted by the Henneman Size Principle. The recruitment became
what would normally be expected by the principle.
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Figure 7. Some ventral thalamus pars oralis neurons (designated VL) demonstrate a remarkable
posthyperpolarization (postinhibitory) rebound increased excitability (C). A potential mechanism is
represented schematically (B); a nested two oscillator system is shown (A). The first oscillator is the
disynaptic feedback loop between the motor cortex (MC) and the ventral thalamus pars oralis, the basal
ganglia relay nucleus of the thalamus. The second loop consists of the MC to the subthalamic nucleus
(STN), globus pallidus interna (GPi), Vop, and motor cortex once again. Each numbered step (B) shows
subsequent activations, which begin with synchronized activation of the ventral thalamus pars oralis
and GPi neurons in step 1. The activity in Vop is then transmitted to MC, and the activity in GPi
is transmitted to the ventral thalamus pars oralis in step 2. This results in excitation of the MC and
inhibition of the ventral thalamus pars oralis (VL) in step 3. MC activity is then transmitted back to the
ventral thalamus pars oralis coincides with a posthyperpolarization rebound-increased activity in Vop
following GPi axonal influences on the thalamic neurons in step 4. Excitation from the MC in step 4
combines with the postinhibitory rebound-increased excitability in the ventral thalamus pars oralis to
produce a marked increase in activity, as shown in step 5 (modified from Montgomery [25]).
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One possible explanation is that an action potential generated in the axon of the thalamic neuron
passing in the vicinity of the DBS contact proceeds in an antidromic manner, as demonstrated in
the recording of extracellular action potentials (Figure 7), as well as orthodromically to the cortex.
There, the stimulated motor cortex neurons sent action potentials back to the thalamic neurons.
The timing is such that the action potentials generated in the thalamic neurons consequent to driving
by cortical neurons collided with the antidromic action potentials. This process could be modeled as
the activity traversing one-half of the pathway from the thalamus to the cortex and the entire pathway
from the cortex to the thalamus. Estimating from the latency of the resonant buildup of 5 ms, the total
transit time in the thalamic–cortical feedback loop would be on the order of 6.7 ms. This would
correspond to a frequency within the thalamic–cortical feedback loop of approximately 150 Hz.

These considerations suggest that one possible mechanism for motor improvements with DBS
in the vicinity of both the subthalamic nucleus and the globus pallidus interna may reflect resonance
interactions between the oscillator composed of the thalamic-cortical loop and the oscillator in the
manner of DBS. The resonant interactions between the DBS oscillator and the thalamic-cortical
oscillator are thought to improve the signal-to-noise ratio by stochastic resonance, thereby reducing
the misinformation exiting from the motor cortex to the lower motor neurons and restoring the normal
order of motor unit recruitment.

5. Stochastic Resonance

The next question is whether the model described here could account for the improvement in
bradykinesia at other DBS frequencies, as demonstrated in Figure 1. The basal ganglia-thalamic-cortical
system can be considered a network of interconnected polysynaptic re-entrant nonlinear discrete
oscillators (Figure 2). There are a number of different oscillators with differing numbers of nodes; thus,
the DBS at several different frequencies could interact via stochastic resonance with any of the multiple
oscillators. Evidence in support of this hypothesis is given here.

Improvement in motor control can be considered increased information in the effectors, which
is in the orchestration of motor unit recruitments and de-recruitments. Recordings of extracellular
action potentials were obtained as a nonhuman primate preformed an arm-reaching task. Peri-event
rasters and histograms show neuronal activities before and after a behavioral event (Figure 8). As can
be seen, under the condition of no stimulation, there is no change or modulation of the neuronal
activities. However, with DBS-like stimulation in the vicinity of the subthalamic nucleus at 150 pps,
there is a consistent modulation of the neuronal activities with the behavior. The modulation was
less at 100 pps and still less at 50 pps. Again, it is not likely that the information represented by the
modulation of neuronal activities at 150 pps DBS originated in the DBS pulse train (a violation of the
Principle of Informational Synonymy). Rather, modulation was present there, although not observable
over the “noise”. Thus, the signal, being the underlying modulation of neuronal activities, was not
seen above the noise; in other words, there was a poor signal-to-noise ratio. The reverse has been
observed, in which a signal in the neuronal responses with no DBS was progressively lost with higher
DBS frequencies (Figure 9). The DBS at 150 pps affects the signal relative to the noise, but in different
directions and dependent on DBS frequency.

If this model holds for DBS, then the observation that multiple but specific DBS frequencies
improve hand opening-closing bradykinesia argues for multiple oscillators involved in the hand
opening-closing behavior. Indeed, it is likely that there is an orchestration of motor unit recruitment
and that de-recruitment operates over multiple time scales, each related to an oscillator within the
basal ganglia-thalamic-cortical system [15].
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Figure 8. Peri-event rasters and histograms for a neuron recorded in the putamen of a non-human
primate. Each dot in the rasters represents a neuronal discharge and each row represents a trial.
Summing a column in the raster produces the histogram. There is no meaningful modulation of
neuronal activity with behavior (appearance of the commencement signal at time zero is indicated
by the up arrow) under the no stimulation condition. However, consistent modulation occurs at
130 pps and, to a lesser extent, at 100 pps DBS, suggesting that the DBS has enlisted the neuron into
being meaningfully related to the behavior. It bears noting that the baseline activity prior to the
commencement signal is reduced [25].
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Figure 9. Peri-event rasters and histogram showing activity of a caudate nucleus neuron before and
after onset of the commencement signal, indicated by the up arrow. Each dot in the rasters represents
a neuronal discharge and each row represents a trial. Summing a column in the raster produces the
histogram. With no stimulation, with 100 pps DBS, and, to a lesser degree, with 50 pps DBS, there is
an increase in neuronal discharge following the onset of the commencement signal. This dynamic
modulation is lost with the 130-pps DBS [25].
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6. Evidence for Oscillations in the Basal Ganglia–Thalamic–Cortical System

The Schuster periodogram [26] is an alternative to a Fourier transform of detecting periodic
(oscillatory) activity in a time series. A variant of the Schuster periodogram has been demonstrated as
mathematically equivalent to the Fourier transform but is easier to implement (Figure 10) [27]. This
method was used to analyze neuronal spike trains from neurons in the basal ganglia-thalamic-cortical
system from two nonhuman primates at rest [28]; an example of the spectrogram is shown in Figure 11.
The color of the pixels in the image represents the z-score difference from the same spike train where
the interspike intervals (ISI) were randomized. A 2-s window of the spike train was sampled and the
z-score change was calculated. The window was then moved over the entire spike train at 0.2-s steps.
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As can be seen, there are multiple and high-frequency oscillatory activities in the neuronal spike 
train simultaneously. This multiplicity of frequencies and changes in the sets of frequencies can be 
seen in the following: 24 neurons were recorded in the globus pallidus externa, 15 in the globus 
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Figure 10. Schematic representation of the Schuster periodogram utilizing circular statistics.
(A) A spike train is divided into segments; (B) each of the two segments is closed to form a circle, and
the time of occurrence of each action potential is plotted as a unit vector on the circumference. As can
be seen, the unit vectors are not distributed randomly over the circumference. A resultant vector is
determined (r1), which, in the situation depicted by B, will be nonzero. The magnitude of the resultant
vector indicates the statistical significance of the power at the frequency corresponding to the lengths
of the segments. The resultant vectors can be calculated for segments of any size, thus corresponding
to a specific frequency analogous to the power at any frequency in a Fourier transform. The angle,
θ indicates the phase of the periodic or oscillatory activity.
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Figure 11. Spectrogram relative power indicated as a z-score change over the randomized spike train
using a 2-s window moved through time in 0.2-s steps. As can be appreciated, many frequencies
are represented simultaneously in the neuronal spike train. Further, it appears that there are sets of
frequencies that change over time, suggesting bifurcations from metastable states associated with each
set of frequencies [25].

As can be seen, there are multiple and high-frequency oscillatory activities in the neuronal spike
train simultaneously. This multiplicity of frequencies and changes in the sets of frequencies can be seen
in the following: 24 neurons were recorded in the globus pallidus externa, 15 in the globus pallidus
interna, 16 in the putamen, 49 in the sensory cortex, 9 in the subthalamic nucleus, and 25 in the motor
cortex [28]. The average frequency for each structure ranged from 135 to 140 Hz. Mathematical
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modeling demonstrates that the individual spike trains in loosely coupled nonlinear oscillators
operating at noncommensurate frequencies can entrain multiple frequencies simultaneously [1,29].

The theory is offered that each oscillator of different frequencies affects different physiological
mechanisms over different time scales, for example, the orchestration of motor unit recruitment and
de-recruitment as described previously. Thus, it would not be unexpected that DBS at different
frequencies would have multiple effects on motor behavior as shown previously in Figure 1. However,
it is not just any frequencies but specific and precise frequencies, perhaps reflecting the specific
frequencies entrained in the neuronal spike trains of the basal ganglia-thalamic-cortical system.

7. Evidence for DBS-Induced Oscillations

7.1. Direct Observations

Studying the effects of DBS in the vicinity of the subthalamic nucleus in a nonhuman primate
on neuronal action potentials provided an example where DBS could induce oscillations in the basal
ganglia-thalamic-cortical system [28]. An example is shown in the peri-event raster and histogram of
the time interval between DBS pulses for a cortical neuron (Figure 12). As can be seen, there are three
peaks in the post-DBS response with 50 pps DBS. This would correspond to a frequency of oscillation
of 150 Hz. Two peaks are noted in the interval between pulses with stimulation at 100 and 130 pps.
Of note, the second peak at 100 pps occurs sooner that at 50 pps and the second peak is even earlier
at 130 pps. These findings could be explained if the DBS pulses induced an inherent oscillation of
approximately 150 Hz. Thus, the inherent frequency would resonate with DBS at 50 pps. However,
the effect at 100 and 130 pps would be a combination of the response driven by the DBS pulses at those
frequencies and the inherent oscillations phase entrained at 50 pps DBS. Nonetheless, this observation
supports the hypothesis that DBS can induce ongoing oscillations.
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Figure 12. (A) A post-stimulus raster and histogram of a cortical neuron recorded in a nonhuman
primate using a 50-pps DBS-like stimulation delivered in the vicinity of the STN. The stimulus pulse
occurred at time 0, and the raster and histogram show the periodic neuronal activities during the
interstimulus pulse intervals. Each dot in the raster represents the onset of an action potential. Each row
represents responses to a single DBS pulse. The number of dots in columns across the raster appears in
the histogram below each raster. The lengths of the raster and histogram represent the time interval
between DBS pulses. In the raster and histogram associated with the 50-pps DBS, a recurring peak of
increased neuronal activity is evident. The truncated appearance of the third peak suggests that the time
period associated with the frequency of the re-entrant oscillatory activity is not an integer multiple of
the time interval between the DBS pulses. This suggests an interaction between the oscillator generating
the recurrent activity and the oscillator composed of the DBS spike train (B). This observation may
be explained by an interaction between a 130-Hz DBS oscillator and a 150-Hz oscillator intrinsic to
the neuron.
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7.2. Resonance Effects to Pair-Pulse Stimulation

The basic concept is that if the basal ganglia-thalamic-cortical system represents a closed loop or
feedback system of oscillators, then a single pulse might reverberate in an oscillatory manner through
the loop. If a second pulse is timed precisely to the returning effect from the prior pulse, these effects
should be additive (Figure 13). Thus, an experiment was conducted using pairs of DBS pulses. The first
pulse was hypothesized to initiate a re-entrant oscillation, and the second pulse was timed to interact
with the re-entrant activity generated by the first pulse. The time interval between the first and the
second pulse of the pair corresponds to the cycle time of the oscillator.
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Figure 13. (A) A schematic representation of the resonance effect. The first stimulation (conditioning
pulse) causes an excitation to traverse the closed loop. If the second stimulation (test pulse) is delivered
just as the excitation effect from the first or conditioning pulse returns to the original site, the temporal
summation on the neuronal cell membrane will amplify the response. (B) Paired-pulse stimulus trains
represented schematically. The interstimulus interval represents a specific frequency (1/interval).
This study examined the frequencies represented by the intervals from 1 to 10 ms (1000 Hz to 100 Hz)
at 1-ms increments.

Two nonhuman primates (Macaca mulatta) were trained using only positive reinforcement to sit
quietly in a loosely restraining chair and to allow passive movement of their arms. After training,
a recording chamber was implanted surgically over a craniotomy site such that microelectrodes could
be passed through the intact dura into the basal ganglia as described previously [30]. The protocol
received prior approval by the Institutional Animal Care and Use Committee of the Cleveland
Clinic Foundation.

A reduced scale model of the human DBS lead (NuMed Inc., 2880 Main St. Hopkinton, NY, USA)
was placed such that the deepest contact was at the bottom of the subthalamic nucleus using stereotactic
methods confirmed by microelectrode recordings of extracellular action potentials. Locations of the
DBS-like leads, as well as other microelectrode recordings, were later confirmed by histological
analyses. The leads had four contacts, each 0.525 mm in diameter, 0.5 mm long, and with a 0.5-mm
space between contacts, giving a total surface area of 0.82 mm2 per contact. Using biphasic square-wave
pulses, constant current electrical stimulations, using biphasic square-wave pulses, were delivered
using the most distal contact (contact No. 0) referenced to the most proximal contact (contact No. 3).
The morphology of the pulses was such that, at contact No. 0, the cathodic phase preceded the
anodic phase. The reverse was true at contact No. 3. A pulse width of 90 µs per phase was used.
The amplitude selected was 80% of the current that produced tonic contraction, presumably from the
current spread to the internal capsule.
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Standard methods of microelectrode recordings of neuronal extracellular action potentials were
used. As is standard in electrophysiological studies, autocorrelograms for all neurons were inspected
for the absence of a refractory period as evidenced by a high probability of a neuronal discharge
within 3 ms of the index discharge. Lack of a refractory period would indicate that the waveforms
isolated and attributed to a single neuron were an admixture of two or more neurons. Data from these
neurons were discarded. Also, all pair-wise cross-correlograms for neurons isolated from a single
microelectrode recording site were constructed. Any cross-correlograms showing a refractory period
effect were interpreted as the two neurons actually represented a single neuron that was isolated
incorrectly. If found, data for these pairs of neurons were pooled. Loss of signal related to the effects of
the stimulator artifact was accounted for and corrected.

Continuous recordings of neuronal activity before and during trains of paired-pulse stimuli were
made. Resonance effects were demonstrated by constructing post-stimulus rasters, and histograms
that were indexed to the second of the pulse pair, test pulse. Rasters and histograms were constructed
by taking segments of data immediately after the second or test pulse for 20 ms (Figure 14).
This corresponds to the period between each pair of pulses. Post-stimulus histograms were constructed
where each sequential time bin (0.4 ms) contained counts of neuronal discharge for the 20 ms that
followed the second test pulse. These time bins were then averaged across the number of stimulus
pairs applied, giving a neuronal discharge probability in 0.4-ms time increments following the second
test pulse.
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Figure 14. Schematic representation of analysis methods for detecting a resonance effect for
paired-pulse stimulation. A set of virtual stimulus pulse pairs was created during the prestimulation
period by translating the timing of the actual stimulation pulse pairs into the prestimulation period (A).
Post-stimulus rasters and histograms were constructed indexed to the second pulse of the actual (B)
and virtual (C) stimulation pulses. The rasters were collapsed across rows into the time bins (0.4 ms) of
the histograms, resulting in counts of extracellular action potentials. This was normalized by dividing
by the number of sets of paired pulse stimuli, resulting in probabilities of neuronal discharge in each
time interval following the second stimulus pair. The mean probabilities per bin and the standard
deviation were calculated for the virtual stimulation histograms (C). The mean was then subtracted
from each time bin probability during the actual stimulation and divided by the standard deviation,
resulting in a z score (B).

For comparison across different neurons and different structures, these post-stimulus histograms
of neuronal discharge probabilities were normalized by expressing the neuronal discharge counts
in bins as a z score based on the mean and standard deviation of neuronal discharges during the
baseline prior to stimulation. Because of the short interstimulus intervals, it was not possible to
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compare neuronal activities following the first pulse to activities following the second pulse. Sampling
of the prestimulation period values was determined by creating virtual stimulation pulses so that
neuronal activity during the prestimulation period could be analyzed exactly as the neuronal activity
during the stimulation period (Figure 14). This was chosen as a means to sample the prestimulation
baseline randomly.

Although the interstimulation pulse intervals were not random and therefore the virtual
stimulation train was not random, neuronal activity in the prestimulation period is independent of the
subsequent virtual stimulation pulse train and therefore can be considered random with respect to the
time of neuronal discharge. The mean and standard deviation of the neuronal discharge probability
in the time bins during the prestimulation baseline were calculated as described previously for the
stimulation period. In this case, histograms were indexed to the second virtual pulse. The probability
of neuronal discharge in each time bin in the post-actual stimulus histogram was converted to a z score
by subtracting the mean discharge probability per bin in the post-virtual stimulation histogram and
dividing the difference by the standard deviation of the bin probabilities in the post-virtual stimulation
histogram. This method was chosen over other techniques such as absolute or percent change in
discharge frequency because (1) the z score normalizes data, thus allowing comparisons between
different neurons in different structures; and (2) the z score accounts for the variability of neuronal
discharge activity, thus allowing inferences as to statistical significance.

One hundred and eighteen neurons were recorded in the basal ganglia-thalamic-cortical system in
two nonhuman primates (in one nonhuman primate, only 15 neurons studied were in the motor cortex).
Forty neurons were recorded in the motor cortex, 25 in the somatosensory cortex, 16 in the caudate and
putamen, 14 in the globus pallidus internal segment, and 23 in the globus pallidus external segment.
While the number of neurons analyzed within each structure was relatively small, the intent was to
study the dynamics of the basal ganglia-thalamic-cortical system such that consistency of observations
across different nuclei was the primary interest. As such, the number of neurons for the system studied
is similar to other published studies. Analyses within each structure were secondary.

An example of a response in a motor cortex neuron is shown in Figure 15. Each colored bar
represents a change in the probability of a neuronal discharge after the second or test pulse compared
to the prestimulation baseline associated with a z score equal to or greater than 1.96. As can be seen,
the significant resonance effects for longer interstimulus intervals had different latencies than the
response to the interstimulus interval of 1 ms. Consequently, it is not likely that these other responses
were mediated by the same mechanism or that they represent a direct response to the second pulse.
Figure 15 also shows that this neuron had multiple resonance effects at longer latencies that were
associated with 4-, 5-, 7-, and 8-ms interstimulus intervals, corresponding to a resonance frequency of
250, 200, 143, and 125 Hz, respectively. Interestingly, such high-frequency oscillations also have been
noted in local field potential recordings in the subthalamic nucleus of patients with Parkinson’s disease
through implanted DBS leads [31]. However, inferences from local field potentials are problematic
given that these represent the summed activities of a large number of dendrites, some of which may
be irrelevant yet interact to affect the local field potential in any event.

Results shown in Figure 15 suggest evidence of a periodic excitability arising within the single
neuron. The first response with the 1-ms interstimulus interval pulses occurs 3.8 ms after the test
pulse, suggesting that this was not a direct antidromic effect, but probably that the neuron being
analyzed was at least one synapse from the neuron being stimulated. Interestingly, after the 1-ms
interstimulus interval test pulse, the neuronal discharge probability increased significantly at 7.6 and
15.2 ms during the 20 ms after the test pulse; these probably are harmonics of the initial latency of
3.8 ms. Analyses were conducted on 118 neurons, all of which showed at least one resonance effect
with paired-pulse stimulation at different interstimulus intervals. The median number of significant
resonance frequencies (25th to 75th percentile; number of neurons) in the pooled caudate and putamen
was five (2 to 7.5, n = 16); globus pallidus externa, 9 (5.5 to 11.75, n = 23); globus pallidus interna,
6 (1 to 9, n = 14); somatosensory cortex, 7 (3.5 to 8.5, n = 25); and motor cortex, 7 (4.5 to 12, n = 40).
Thus, most neurons had multiple resonance effects at different frequencies.
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Figure 15. Results from paired-pulse experiments for a neuron recorded in the motor cortex of
a nonhuman primate. Each row represents changes in the probability of a neuronal discharge from
baseline for each interstimulus interval of the paired-pulse stimuli. Colored bars represent any change
that has a z score greater than 1.96 compared to baseline. The horizontal axis represents the latency of
the resonance effect after the second or test pulse of the pair.

8. Evidence of DBS Oscillatory Interactions with Intrinsic Oscillators within the Basal
Ganglia-Thalamic-Cortical System

Recent studies demonstrate antidromic action potentials in the subthalamic nucleus neuronal
in response to DBS in the vicinity of the contralateral STN [32]. Interestingly, only a small
percentage of DBS pulses resulted in antidromic action potentials. This result is consistent with
other studies [32–36]. One wonders whether this result indicates a purely stochastic process or
some underlying determining mechanism such as the specific dynamics in the neuronal membrane
potentials in the soma. STN neuronal microelectrode recordings were used in subjects with Parkinson’s
disease made during DBS in the vicinity of the contralateral STN in a manner described elsewhere [32].
Stimulation was at 160 and 30 pps. Fifty-eight neurons were recorded from eight STNs in eight subjects.

Spike trains containing only antidromic action potentials (antidromic-only spike trains) were
constructed from the original spike trains by retaining only those time stamps of antidromic action
potentials. Fifty-two of the 58 neurons demonstrated antidromic action potentials. Randomized
antidromic-only spike trains were created by shuffling the order of the antidromic action potentials in
the antidromic-only spike trains. This was accomplished by dividing the antidromic-only spike trains
into segments between successive stimulation pulses. Each interstimulus pulse interval may or may
not have an antidromic action potential.

The hypothesis to be addressed is that sequence of antidromic action potentials are not random.
Thus, it is necessary to compare the actual sequence of antidromic action potentials to what would
be a random sequence. The orders of the consecutive interstimulus pulse intervals were randomized
(shuffled) in order to affect a breaking up of any periodicity in intervals containing an antidromic
action potential, creating a randomized antidromic-only spike train. If the probability of an antidromic
action potential is not random, the interspike interval histogram of the randomized antidromic-only
spike train would differ from the ISI of the corresponding antidromic-only spike train.

Periodicity in the antidromic-only spike train was examined by comparing the antidromic-only
spike train to the randomized antidromic-only spike train using power spectral densities (PSDs).
It is important to note that the antidromic action potentials are time-locked to the stimulation
pulse. The frequencies of the antidromic action potentials thus stand in complex relation to the
DBS frequencies.

Figures 16 and 17 show representative antidromic-only spike trains and randomized antidromic-only
spike train ISI histograms for two neurons for DBS at 160 and 30 pps, respectively. As can be seen,
an antidromic action potential occurs only after a stimulation pulse. The time resolution is thus the
interstimulus pulse interval. Importantly, the varying magnitude of the peaks suggests that different
probabilities of an antidromic action potential follow different stimulation pulses. Such would not
be the case, however, if every stimulation pulse was associated with an antidromic action potential
or if the probability of an antidromic action potential was random relative to the stimulation pulses.
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Rather, there appears to be “structure” in the probabilities of an antidromic action potential. This is
further supported by the lack of peaks at such times when the sequential order of the antidromic
action potentials is randomized. Of the 52 neurons demonstrating antidromic action potentials studied,
24 showed a significant difference between the antidromic-only spike train and the randomized
antidromic spike train ISI. These latter neurons received additional study.
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Power spectral densities (PSDs) were constructed on antidromic spike trains from antidromic-only
spike train and randomized antidromic-only spike train data. Figure 18 shows a representative example.
A strong peak appears at 66 Hz, a lesser peak at 26 Hz, and a small peak appears at 92 Hz in the
antidromic-only spike trains. This latter peak is not present in the randomized antidromic-only spike
train. The clear distinction in these peaks from the rest of the frequencies in the PSD attests to their
significance. Figure 19 shows the PSD for the same neuron that appears in Figure 6 but does not appear
under the 30-pps DBS condition. Peaks are observed at 30 Hz (DBS frequency), 26 Hz, 22 Hz, 6 Hz,
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and 3 Hz. Original spike trains demonstrated no peaks in the PSD of neuronal activity during the
baseline before DBS; a representative example is shown in Figure 20.Brain Sci. 2016, 6, 34 20 of 26 
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The various peaks are listed in Table 1. Oscillations at 66 and 26 Hz occurred independently of
other frequencies, which suggests that these oscillators are fundamental to the subthalamic nucleus.
In addition, the 26-Hz oscillations were seen at both 160 and 30 pps DBS. These are not a consequence
of the stimulation frequency. They likely represent, rather, a fundamental oscillator involving the
subthalamic nucleus. Also, the peaks at 26 and 66 Hz are not harmonics of the DBS frequencies.
Interestingly, several neurons had both 66- and 26-Hz oscillators. Other peaks probably represent beat
frequencies that result from the interaction of the fundamental frequencies and the DBS frequency.
For example, peaks detected at 92 Hz probably are the result of interactions between the 66-Hz
fundamental oscillator and the 160-pps DBS (the actual stimulation frequency was measured at
157.5 pps). As can be seen, the 92-Hz peak was never present without the peak at 66 Hz. Similarly,
the 3-Hz peak likely represents the beat frequency from the interaction of the fundamental 26-Hz
frequency and the 30-pps DBS, as the 3-Hz peak was never seen at the 160-pps DBS and was never
independent of the 26-Hz peak under the 30-pps DBS. By virtue of the fact that the 30-pps DBS is closer
to the fundamental frequency at 26 Hz than the 160-pps DBS, which would produce high-frequency
harmonics and beat interactions, other peaks under the 30-pps DBS likely represent beat interactions
among harmonics of the DBS and the fundamental frequencies.

Table 1. Results of power spectral densities on antidromic-only-spike trains. Frequencies associated
with the peaks are reported (in Hz).

Subject Neuron 160 pps DBS 30 pps DBS

15a

N001 66
N002 66
N003 66
N004 66, 92
N006 66, 92
N007 66, 92
N008 66, 92
N009 26, 66, 92, 136
N014 26, 66, 92, 136

p10a

N001 26, 66, 92, 136 3, 26, 23
N002 26, 66, 92, 136 3, 26, 23,6
N004 26
N005 26, 66, 92, 136 3, 26
N006 26, 66, 92, 136 3, 26, 22, 6, 10, 19
N011 26, 66, 92, 136 3, 26, 6, 22
N019 26, 66, 92, 136 3, 26, 6, 22

p03a

N001 26, 66, 92 3, 26
N005 26, 66, 92 136 3, 26
N008 66, 92
N016 26, 66, 92 136 3, 26

The relatively few neurons available for analyses mean that any conclusions are tentative,
and the difficulty of these experiments makes it unlikely that significantly more data are forthcoming.
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As one awaits future confirmation or refutation, these remarkable findings—their implications in
particular—warrant reporting, albeit with the appropriate caveats kept in mind.

The study led to the following conclusions: For many neurons, occurrence of an antidromic action
potential is not random. The probability of an antidromic action potential reflects the underlying
state of the neuronal excitability, which means that the antidromic action potential can be used as
a probe of the underlying neuronal dynamics. The probability of an antidromic action potential and the
underlying neuronal state of excitability appear periodic or oscillatory. Not simple harmonics of the
DBS frequency, the frequencies of the underlying oscillatory neuronal states are, rather, independent of
the latter. One cannot exclude the possibility that the actual frequency of these oscillators is not some
integer multiple of the 26- or 66-Hz oscillators. The beat frequencies of 3 and 92 Hz for some of the
neurons suggest that 26 and 66 Hz are the fundamental frequencies for the involved oscillators. The key
finding for the purpose of this article is that DBS can be considered a discrete nonlinear oscillator,
which interacts with independent oscillators within the subthalamic nucleus, possibly arising from
oscillators intrinsic to the basal ganglia-thalamic-cortical system.

9. Computational Simulations of the Basal Ganglia-Thalamic-Cortical System as a Network of
Loosely Coupled, Nonlinear Re-Entrant Discrete Oscillators

As a proof of concept, although not of biological fact, computational simulations were conducted
using an architecture derived from the theory that the basal ganglia-thalamic-cortical system is
organized as large, loosely coupled, nonlinear polysynaptic discrete re-entrant oscillators (Figure 21),
details of which are discussed elsewhere [1,16]. A detailed description of discrete neural oscillators can
be found in Montgomery [1]. Briefly, a node is defined as a collection of local neurons that generally
share the same inputs and project to same neurons in another node. For example, a node may be
confined to a single anatomical structure and each anatomical nucleus (and region of cortex) consists
of a number of nodes. An oscillator consists of a set of nodes whose neurons are connected with
previous and subsequent nodes of neurons. During any cycle of reentrant activities within the oscillator,
a subset of neurons within each node may discharge sufficient to maintain the oscillations yet not
leading to saturation or collapse of the oscillator. The simulations are designed to determine whether
neural oscillators of the general architecture shown in Figure 21 are capable of sustained oscillatory
activities, what would be the nature of those activities and what if any similarity of the oscillations in
the simulation to analyses of neuronal activities recorded in human and non-human primates.
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Figure 21. Schematic representation of the basic architecture of the computer simulations. Represented
is one oscillator to show the structure of neurons within each node and how information is transmitted
via subsets of neurons within each node. A four-node oscillator (nodes 1–4) whose nodes contain five
neurons each is illustrated. A series of time intervals (A–H) are represented. Neurons become active in
node 1 at time A. The activity then propagates to neurons in subsequent nodes. For any part of the
cycle, a subset of neurons in each node becomes active and the specific neurons that are active vary
with each cycle. Thus the neurons active at time B in node 2 are different than the neurons active in
node 2 at time F. Multiple oscillators of different numbers of nodes, thus different inherent fundamental
frequencies, can be linked [1].
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The operations of neurons in the simulation are depicted in Figure 22. Each neuron is of
the integrate-and-fire type. Postsynaptic potentials resulting from synaptic inputs are modeled as
decaying exponential functions. The output is a discrete pulse representing an action potential
based on the summed synaptic inputs exceeding a threshold. The threshold is dynamic so as to
account for changes in ionic conductances with subthreshold changes in the neuronal membrane
potential, for example, depolarization blockade (elevated threshold) and post-hyperpolarization
rebound (decreased threshold). A probability function determines whether an action potential arriving
at the presynaptic terminal induces a postsynaptic potential change and reflects the known inefficiency
of synaptic transmission. Conduction times and synaptic delays were established based on studies
described previously.
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Figure 22. Model neurons consist of multiple dendritic inputs affecting the postsynaptic
transmembrane electrical potentials. These inputs are summed at the action potential-initiating segment.
If the summed potentials exceed a dynamic threshold, an action potential is generated. The postsynaptic
potentials are modeled on as either a depolarizing or a hyperpolarizing decaying exponential function.
The threshold, for example, at time ti, varies with the previous transmembrane electrical potential
just prior at time ti-1. This allows changes in Na+ voltage-gated ionic conductance channel activation
and inactivation. In this manner, post-hyperpolarization excitation and depolarization blockade are
modeled [1].

One instantiation of the computational modeling is shown in Figure 23. There are three
interconnected oscillators with different numbers of nodes and thus different inherent fundamental
frequencies. The inherent frequency is defined as number of times a “bit of information”, such as
an action potential, can traverse the oscillator in one second and depends on the number of nodes
within the oscillator. A spectrogram showing the frequency contents over time for a representative
neuron in the computational network is shown in Figure 24, along with spectrograms obtained from
a globus pallidus externa of a nonhuman primate and from a neuron recorded in the subthalamic
nucleus of a human with Parkinson’s disease. As can be seen, the outputs are very similar and consist
of multiple frequencies entrained simultaneously, sets of frequencies that are stable over brief periods
of time between bifurcations.
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frequency content and then change (bifurcate) to other sets of frequencies. Spectrograms of actual 
recordings in the globus pallidus externa of a nonhuman primate, the subthalamic nucleus in a 
human, and a neuron in the computer model of the network are shown. 

10. Conclusions 

The physiological mechanism underlying the effect of DBS frequency remains an enigma, 
particularly as the complexities of the relationship between the DBS frequencies and motor effects 
are more fully recognized. However, addressing the enigma is a great opportunity because, typically, 
new knowledge is needed in order to solve it. New knowledge can only come from new hypotheses, 
which most often require new perspectives. New perspectives require letting go of old perspectives, 

Figure 23. One instantiation of the four-oscillator network. There are three oscillators that consist of
four, five, and six nodes, respectively. Each node contains 100 neurons. In each oscillator, a designative
node is also connected to the corresponding node in the other oscillators, creating a loosely coupled
network. The neurons in each node received inputs from all neurons in the previous node and sent
outputs to each neuron in the subsequent node [1].
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Figure 24. Spectrograms showing the amount of activity (power) at different frequencies over time.
The power is represented as the z-score difference (color scale) over a randomized train of action
potentials (spike train). At each point in time, the train of action potentials has a specific set of
frequencies over a range of frequencies. Also, the train of action potentials appears to be stable in their
frequency content and then change (bifurcate) to other sets of frequencies. Spectrograms of actual
recordings in the globus pallidus externa of a nonhuman primate, the subthalamic nucleus in a human,
and a neuron in the computer model of the network are shown.

10. Conclusions

The physiological mechanism underlying the effect of DBS frequency remains an enigma,
particularly as the complexities of the relationship between the DBS frequencies and motor effects are
more fully recognized. However, addressing the enigma is a great opportunity because, typically, new
knowledge is needed in order to solve it. New knowledge can only come from new hypotheses, which
most often require new perspectives. New perspectives require letting go of old perspectives, at least
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those aspects that are counterproductive. This requires exercise in epistemological analysis as well
as experiments.

It is likely that the effects of DBS frequency have a great deal to say about the underlying
dynamics of the pathophysiology and physiology of the basal ganglia-thalamic-cortical system.
A better understanding of those dynamics could provide a metaphor for research that extends beyond
the basal ganglia-thalamic-cortical system.
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