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Abstract: The polyglutamine (polyQ) diseases, such as Huntington’s disease and several types of
spinocerebellar ataxias, are a group of inherited neurodegenerative diseases that are caused by an
abnormal expansion of the polyQ tract in disease-causative proteins. Proteins with an abnormally
expanded polyQ stretch undergo a conformational transition to β-sheet rich structure, which
assemble into insoluble aggregates with β-sheet rich amyloid fibrillar structures and accumulate
as inclusion bodies in neurons, eventually leading to neurodegeneration. Since misfolding and
aggregation of the expanded polyQ proteins are the most upstream event in the most common
pathogenic cascade of the polyQ diseases, they are proposed to be one of the most ideal targets for
development of disease-modifying therapies for polyQ diseases. In this review, we summarize the
current understanding of the molecular pathogenic mechanisms of the polyQ diseases, and introduce
therapeutic approaches targeting misfolding and aggregation of the expanded polyQ proteins, which
are not only effective on a wide spectrum of polyQ diseases, but also broadly correct the functional
abnormalities of multiple downstream cellular processes affected in the aggregation process of polyQ
proteins. We hope that in the near future, effective therapies are developed, to bring hope to many
patients suffering from currently intractable polyQ diseases.
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1. The Polyglutamine Diseases

The polyglutamine (polyQ) diseases are a group of inherited neurodegenerative diseases
characterized by a genetic mutation of cytosine-adenine-guanine (CAG) triplet repeat expansion
in the coding regions of the disease-causative genes [1–3]. The CAG codon encodes the amino acid
glutamine (one-letter code, Q), and its expansion in the disease-causative genes, therefore results in
the production of mutated proteins with an abnormally expanded polyQ tract. In 1991, Fischbeck and
coworkers first reported the disease-associated expansion of CAG repeat in exon 1 of the androgen
receptor gene in patients of spinal and bulbar muscular atrophy (SBMA) [4]. Since then, similar genetic
mutations of the CAG repeat expansion in the coding regions of genes other than androgen receptor
gene have also been found in other inherited neurodegenerative disorders [5–7]. So far, nine disorders
are reported to belong to this type of diseases, including Huntington’s disease (HD), spinocerebeller
ataxia (SCA) types 1, 2, 3, 6, 7 and 17, and dentatorubral pallidoluysian atrophy (DRPLA) (Table 1) [2].
A common pathological feature of the polyQ diseases is progressive degeneration of neurons in the
distinct regions of the brain, which causes a variety of neurological and psychiatric symptoms such as
cognitive impairment and motor disturbance, depending on the brain regions affected in each disease.
Effective therapies to delay or prevent the onset and progression of the polyQ diseases have not yet
been established to date.
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Table 1. The polyglutamine diseases; CAG: cytosine-adenine-guanine.

Disease Gene
CAG Repeat

Normal Disease

Spinal and bulbar muscular atrophy (SBMA) androgen receptor 9–36 38–65
Huntington’s disease (HD) huntingtin 6–35 36–180

Spinocerebeller ataxia type 1 (SCA1) ataxin-1 6–39 39–83
Spinocerebeller ataxia type 2 (SCA2) ataxin-2 14–32 32–200
Spinocerebeller ataxia type 3 (SCA3) ataxin-3 12–41 55–84
Spinocerebeller ataxia type 6 (SCA6) α1A calcium channel 4–19 20–33
Spinocerebeller ataxia type 7 (SCA7) ataxin-7 4–35 37–306

Spinocerebeller ataxia type 17 (SCA17) TATA-binding protein 25–44 46–63
Dentatorubral pallidoluysian atrophy (DRPLA) atrophin-1 6–36 49–88

2. Pathogenic Mechanism of Polyglutamine Diseases

2.1. A Gain of Toxicity in PolyQ Diseases

The polyQ diseases are inherited in an autosomal-dominant manner, except for SBMA, which is
inherited in an X chromosome-linked recessive manner. In the case of HD, patients with homozygous
mutations are reported to show apparently no more severe clinical phenotypes than typical patients
with heterozygous mutation, suggesting that HD is caused by a true dominant mutation [8,9]. However,
in the later study, the disease-associated mutation in a double dose in homozygotes was reported to
likely affect the disease progression but not the age of onset [10]. Gene dose effects were also reported
in other polyQ diseases including SCA3 and SCA6 [11,12]. These facts indicate that a gain of toxic
function mechanism would be involved in the pathogenesis of polyQ diseases. Indeed, loss of the
disease-associated genes such as AR and huntingtin, a disease-causative gene of HD, shows no typical
disease phenotypes likely observed in the patients of the polyQ diseases, ruling out a loss of function
pathway for the disease pathogenesis [13,14]. A study using knock-out mice also demonstrated that
heterozygous disruption of Hdh gene, a mouse homologue of human huntingtin gene, did not show
apparent disease phenotypes, while homozygous disruption resulted in embryonic lethality, indicating
that huntingtin has essential roles in the embryonic development, and loss of huntingtin does not
mimic HD neuropathology [15]. Considering these facts, the polyQ diseases are caused mainly by a
gain of function mechanism attributed to a single genetic mutation of CAG repeat expansion.

2.2. Expansion Mutation of the PolyQ Tract in Pathogenesis

Huntingtin has a polyQ tract at its amino-terminus with a repeat length ranging from 5–35 repeats
in normal subjects. In contrast, the polyQ tract of huntingtin in patients of HD is abnormally expanded
to longer than 40 repeats [5]. In general, there is a threshold length of polyQ repeats for disease
manifestation at around 35 to 40 repeats, and most importantly, longer repeats are associated with
earlier, sometimes juvenile, age of onset and increased disease severity [16–23]. Despite shared
clinical pathology of progressive loss of neurons among the polyQ diseases, there is no structural
homology in primary amino acid sequences and secondary/tertiary structures, as well as no common
biological functions among the disease-causative proteins. Abnormal expansion of the polyQ tract is
the only characteristic shared among the disease-associated proteins, suggesting the importance of
expansion mutation of the polyQ tract in disease pathogenesis. Indeed, studies on animal models using
mice [24,25], Drosophila [26] and C. elegans [27] have demonstrated that expression of the expanded
polyQ stretch alone, or artificial proteins fused with an expanded polyQ tract, results in progressive
degeneration of neurons and motor disturbance, suggesting that the expanded polyQ tract is sufficient
to cause typical phenotypes of the polyQ diseases. The polyQ-dependent pathogenesis has also recently
been confirmed in a common marmoset transgenic model of SCA3, which was generated as the first
primate model of the polyQ diseases [28]. These facts collectively indicate that the abnormal expansion
of the polyQ repeat in disease-causative proteins has a pivotal role in the pathogenic mechanism
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of the polyQ diseases: recent studies have suggested that repeat RNA transcripts produced from
sense/antisense sequences of the polyQ-disease genes, as well as proteins that are unconventionally
translated from their transcripts via repeat-associated non-ATG (RAN) translation, also contribute
to the pathogenesis of polyQ diseases [29–32]. Specific functions of each host protein are, therefore,
not considered to have a primary role in the pathogenesis of these diseases, although the expansion
mutation of the polyQ stretch may affect structure and function of each host protein, which results
in aberrant association with key proteins of essential cellular processes, leading to dysfunctions in
transcription, proteasomal degradation, synaptic transmission, axonal transport, and Ca2+ signaling
pathways in the downstream of the pathogenic cascades.

2.3. Inclusion Bodies and Aggregates of Proteins with Expanded PolyQ Tracts

In 1997, it was reported that the intranuclear inclusions of the expanded polyQ proteins
were formed in the patient brains of the polyQ diseases including HD, SCA3 and DRPLA [33–35].
These deposits were also observed in the experimental models, such as cultured cells, Drosophila,
and mice, in which the expanded polyQ proteins are ectopically expressed [26,36–38]. Wanker and
coworkers performed ultrastructural analysis of these abnormal structures, and revealed the presence
of amyloid-like fibrillar structures, not only in the aggregates formed in vitro, but also in the inclusion
bodies in the brains of the transgenic mice models [37]. These fibrillar structures are similar to those
observed for scrapie prions and amyloid-β fibrils in Alzheimer’s disease, implying that the polyQ
diseases may share pathogenic mechanisms with such amyloid diseases.

While abnormal accumulation of the polyQ proteins such as inclusion bodies is one of the major
pathological hallmarks commonly observed in the brains of the polyQ disease patients, the roles
of aggregate/inclusion formation in disease pathogenesis have been controversial. Since formation
of intranuclear inclusions in a transgenic mouse model of HD is followed by the onset of disease
phenotypes [38], and the level of inclusion bodies formed in brains apparently correlates with the
severity of polyQ disease phenotypes, they were considered to be responsible for neurodegeneration
in the polyQ diseases. A variety of cellular proteins, including molecular chaperones, cytoskeletons,
transcriptional factors and proteasomes, are found to be incorporated into the inclusion bodies [39–41],
implying that sequestration of these cellular proteins in inclusions may cause detrimental effects on
a wide range of essential cellular functions, which probably contribute to neuronal dysfunction and
eventual loss of neurons in various regions of the brain. However, the discrepancy between inclusion
body formation and neurodegeneration has been reported. For example, Li and colleagues examined
brain tissues of HD patients at different stages, and found that only 1%–4% of striatal neurons have
nuclear aggregates that are immunoreactive with the huntingtin antibody EM48, although the striatum
is the most affected region in HD [42,43]. Similar discrepancy was also reported in both patients and
a transgenic mouse model of SCA2, where intranuclear inclusions were undetectable while disease
phenotypes were exhibited [44]. Furthermore, in the cellular model of HD, Saudou et al. showed
that overexpression of mutant huntingtin results in similar levels of inclusions formed in striatal and
hippocampal neurons, but causes cell death with different efficiency [45]. These studies suggest that
although inclusion bodies are associated with the polyQ diseases, formation of inclusions may not be
correlated with the severity of neurodegeneration.

Interestingly, Saudou et al. also reported that expression of a dominant negative mutant of
ubiquitin-conjugating enzyme cell division cycle 34 (Cdc34) resulted in a significant decrease in
intracellular inclusions formed in the cellular model of HD, but increased cytotoxicity [45]. Muchowski
et al. found the essential role of microtubule networks in inclusion body formation in a yeast model
of HD, and demonstrated that treatment of yeast with chemicals that disrupt microtubule networks,
however, facilitates the polyQ-induced toxicity: perturbation of microtubule-dependent intracellular
trafficking results in suppression of inclusion body formation, leading to an increase in the levels of
huntingtin protein in a soluble, non-aggregated form [46]. These studies indicate that polyQ-induced
cell death is accelerated under certain conditions where inclusion body formation is suppressed.
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Intracellular inclusions are, indeed, thought to be less toxic structures, as formation of inclusion
body might be a cellular protective response to sequester abnormal protein species such as misfolded
proteins and aggregates [47–49]. In support of this idea, Arrasate et al. demonstrated that the levels
of diffused polyQ proteins, rather than those of inclusions, accurately predict an increased risk of
death [50]. These studies suggest that it is not inclusion bodies, but other soluble species produced
during the aggregation process before inclusion body formation, that likely show higher toxicity within
the cells expressing the expanded polyQ proteins.

2.4. Abnormal Conformational Changes of Expanded PolyQ Proteins

Since the abnormally expanded polyQ proteins would gain cytotoxicity during the aggregation
process, the molecular mechanisms as to how inclusions/aggregates are produced from the monomeric
form of the expanded polyQ proteins should be elucidated. Peruz et al. first reported that
the chemically synthesized polyQ peptide with a relatively short glutamine repeat (15 repeats
of glutamines), under certain conditions, forms aggregates with β-sheet rich structures [51].
Using synthetic polyQ peptides similar to those in the above report but with longer glutamine repeats,
Wetzel and coworkers demonstrated that the polyQ peptides gradually undergo a conformational
change from a solubilized form with random coil structure to insoluble amyloid-like fibrils with
β-sheet structures [52]. Poirier et al. examined the aggregation of huntingtin fragment, and found that
intermediate species such as oligomers and protofibrils are produced before amyloid formation of
the polyQ proteins, which are structurally similar to those of amyloid-β and α-synuclein formed in
Alzheimer’s disease and Parkinson’s disease, implying the pathogenic mechanism shared among the
neurodegenerative diseases associated with protein aggregation [53]. In the subsequent studies, various
techniques including atomic force microscopy (AFM), electron microscopy, and fluorescence correlation
microscopy (FCS) have then been employed, not only to characterize the oligomers of the expanded
polyQ proteins, but also to analyze the process of oligomer formation in vitro [54], in cells [55,56]
and their extracts [57], and in brain homogenates of model mice [58,59]. We also examined the
kinetics of aggregation formation using a model polyQ protein fused with thioredoxin (Thio-polyQ),
and confirmed that soluble Thio-polyQ proteins with the expanded polyQ repeat gradually form
insoluble aggregates in a time-, concentration-, and repeat length-dependent manner [60]. Importantly,
we demonstrated that conformational transition of Thio-polyQ protein to a β-sheet rich structure
occurs in its monomeric state, followed by assembly into oligomers and insoluble amyloid fibrils [61].
These studies indicate that proteins with the expanded polyQ tract undergo a conformational transition
from the native conformer to the β-sheet rich structure in a monomeric state, which assembles
into oligomers and insoluble aggregates with amyloid fibrillar structures, potentially leading to
accumulation as intracellular inclusions (Figure 1).
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Accumulating evidence suggest that abnormal intermediate species in a soluble state such as
oligomeric intermediates and even misfolded monomers of the expanded polyQ proteins could
be more toxic to neurons compared with insoluble aggregates/inclusion bodies [62]. Kayed et al.
reported that treatment of cells with soluble oligomers of the polyQ protein results in significant cell
death, which is inhibited by oligomer-specific antibodies, suggesting the potential cytotoxicity of
the soluble intermediate species formed during the aggregation process [63]. This is in agreement
with the results of our studies performed using cultured cells, where we employed two different
techniques, FCS and fluorescence resonance energy transfer (FRET) confocal microscopy, that enable
the presence and dynamics of intermediate soluble oligomers of the polyQ proteins in cells to be
analyzed [55,56], and demonstrated that cells with soluble oligomers died faster than those with
inclusions. In addition, we isolated in vitro the soluble oligomers and misfolded monomers of
the model polyQ protein Thio-polyQ, and tested their cytotoxicity by microinjecting these species
to the cultured cells, and found that a monomeric conformer with a β-sheet structure, as well as
oligomers, showed significant cytotoxicity [61]. These studies collectively indicate that cytotoxicity of
the expanded polyQ proteins would arise from an abnormal conformational transition to β-sheet rich
structure and oligomer formation, which occurs during the aggregation process of the polyQ proteins
before inclusion body formation.

3. Therapeutic Approaches for Polyglutamine Diseases: Targeting Misfolding and Aggregation of
Expanded Polyglutamine Proteins

As discussed above, the abnormally expanded polyQ tract is structurally unstable, and likely
undergoes a conformational change to the misfolded states, resulting in an assembly of its host protein
into insoluble aggregates with β-sheet rich amyloid fibrillar structures. The disease-causative proteins
with abnormally expanded polyQ tracts gain cytotoxicity during the aggregation process, although it is
still unclear which intermediate species appearing via this process are responsible for the pathogenesis
of the polyQ diseases. Since misfolding and aggregation of the expanded polyQ tract are thought to be
an initial event in the common pathogenic cascade of the polyQ diseases, suppression of the polyQ
aggregation is expected not only to operate on a wide spectrum of the polyQ diseases, but also to
broadly correct the functional abnormalities of multiple downstream cellular processes affected in
the aggregation process of the polyQ proteins (Figure 1). Taking these advantages, suppression of
misfolding and aggregation of the polyQ proteins has been extensively studied as an ideal therapeutic
approach for development of disease-modifying therapies for the polyQ diseases. In the following
subsections, we focus on two approaches targeting to the polyQ aggregation: one approach is to
develop potent inhibitors such as small chemical compounds and short peptides that are designed
or selected to bind specifically to the expanded polyQ tract, and suppress the aggregation process
of the polyQ proteins. The other approach is to activate cellular protective systems that prevent
aggregate formation and accumulation of the misfolded proteins. Both approaches are effective not
only to suppress the aggregation process of the expanded polyQ proteins, but also to suppress disease
progression and phenotypes in the animal models, showing the effectiveness of this therapeutic target
for drug development.

3.1. Suppression of Polyglutamine Aggregation by Inhibitor Peptides and Chemicals

It has been reported that an antibody against the polyQ tract, 1C2, binds preferentially to longer
polyQ repeats rather than shorter ones [64], implying that the polyQ tract would have different
structures depending on its repeat length [65]. This raises the possibility that molecules that selectively
bind to the expanded polyQ tract could be promising drug candidates, as they are expected to stabilize
the unique structure and to interfere with the aggregation processes of the polyQ proteins. Based on
this idea, we performed a phage display screening to develop short peptides that would bind to
the expanded polyQ proteins with high affinities, and identified several peptides that preferentially
bind to the abnormally expanded polyQ stretch [60]. Among them, polyQ binding peptide 1 (QBP1)
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effectively suppresses aggregation formation of the expanded polyQ proteins in vitro, and suppresses
polyQ-induced cytotoxicity in cultured cells. Importantly, QBP1 has been shown to inhibit β-sheet
conformational transition of the polyQ protein monomer as well as oligomer formation, which occurs at
an early stage of the aggregation cascade of the expanded polyQ proteins, and thus, would be one of the
most promising therapeutic targets in the aggregation process [55,61]. Expression of QBP1 effectively
suppresses polyQ inclusions as well as polyQ-induced neurodegeneration in Drosophila, supporting its
therapeutic potential for the polyQ diseases [66]. However, QBP1 shows limited therapeutic effects on
the mouse models of HD upon its peripheral administration [67], probably due to the poor efficiency
of peptide-based drugs to pass through the blood-brain barrier (BBB). These results suggest that
QBP1 is one of the ideal drug candidates that suppress the early events responsible for the polyQ
disease pathogenesis, but further structural optimization would be necessary to overcome the delivery
efficiency to the brain.

In parallel with our study, the antibody 1C2 was also shown to inhibit fibril formation of the
expanded polyQ proteins in vitro in a dose-dependent manner [68]. Similarly, single chain antibodies,
i.e., intrabodies, that have high affinity to the abnormally expanded polyQ proteins, have been reported
to suppress formation of the polyQ aggregation and the polyQ-induced toxicity in the polyQ disease
models of cells [69–71], Drosophila [72], and mice [73].

Chen et al. also performed combinatorial screening to search for potential inhibitors of polyQ
aggregation using a combinatorial library consisting of peptoids, which are oligomers of N-substituted
glycines, and have superior advantages in stability to protease degradation, cell permeability, and
structural diversity. From 60,000 unique peptoid library, they isolated a peptoid HQP09 (Huntingtin
poly-Q binding Peptoid 09), which binds with high specificity to the expanded polyQ proteins
of huntingtin and ataxin-3, a causative protein of SCA3 [74]. HQP09 effectively suppress polyQ
aggregation in vitro, reduced cytotoxicity in primary cultured neurons and decreased polyQ inclusion
bodies in a mouse model of HD upon its intracerebroventricular injection. Importantly, they
successfully identified the pharmacophore of HQP09 based on a structure-activity relationship study,
and developed the minimal derivative peptoid HQP09-9 (4-mer, MW = 585) without significant loss of
activity. Although subcutaneous injection of HQP09-9 failed to exert therapeutic effects on a mouse
model probably due to poor BBB permeability, this could be a promising lead compound for the
development of drugs against a broad spectrum of the polyQ diseases.

Small chemical compounds that have inhibitory activities for polyQ aggregation have also
been developed. Wanker and coworkers first reported that several compounds including Congo
red effectively suppress the polyQ aggregation in vitro [68]. Congo red was shown to reduce
polyQ inclusions and improve motor deficits and survival in the model mice of HD via systemic
administration [75], although the improvement has not been reproduced by other groups, probably
due to the inability of this compound to cross the BBB [76]. Wanker’s group also developed an
automated filter retardation assay and performed high-throughput screening using a large-scale
chemical library (~184,000 compounds) to identify compounds that prevent aggregation formation of
the expanded polyQ proteins [77]. Using this method, they identified about 300 chemical compounds
that suppress the polyQ aggregation in a dose-dependent manner. Among them, benzothiazoles
were thought to be quite promising, as benzothiazole and its related structures appeared commonly
in 25 hit compounds, which efficiently suppressed aggregation formation of the polyQ proteins not
only in vitro, but also in cultured cells. However, therapeutic effects of PGL-135, the most promising
benzothiazole compound, was not able to be confirmed using mouse models, as this compound was
metabolically unstable with an extremely short half-life after intraperitoneal injection, although this
compound was able to cross the BBB [78]. Wanker’s group also found that epigallocatechingallate
(EGCG), a green tea polyphenol, modulates misfolding and oligomerization of the expanded polyQ
proteins, resulting in efficient suppression of polyQ aggregation in vitro [79]. EGCG suppressed
aggregation formation of the polyQ proteins and polyQ-induced cytotoxicity in HD models of yeast
and Drosophila [79], and the SCA3 model of C. elegans [80,81]. Importantly, EGCG was shown to
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redirect amyloid-like fibril formation of the polyQ proteins toward less-toxic off-pathway species that
are poor in β-sheet structures with increasing solubility [80]. We have also performed chemical library
screening to find compounds that suppress aggregation formation of the polyQ proteins using model
polyQ protein Thio-polyQ. From 46,000 compounds, we identified about 100 compounds that potently
inhibit the polyQ aggregation in vitro (unpublished), some of which have currently been tested for
their therapeutic effects using the polyQ models of Drosophila and mice.

3.2. Suppression of Polyglutamine Aggregation by Activation of Cellular Proteostasis Networks

Proteins have essential roles in cell survival as one of the major components of living organisms,
and therefore quality control of cellular protein production, folding, and degradation must be tightly
regulated. To prevent aberrant accumulation of misfolded proteins that would be otherwise toxic, cells
have a highly conserved and integrated protective system that maintains cellular protein homeostasis
(proteostasis), which includes molecular chaperones, autophagy, and the ubiquitin-proteasome system
(UPS). Among them, molecular chaperones have central roles in maintaining cellular proteostasis
that assist refolding of misfolded proteins, and mediate degradation through autophagy and
proteasome machinery [82]. Since the polyQ diseases are caused by misfolding and aggregation of the
disease-associated proteins, activation of cellular protective mechanisms that maintain proteostasis
including molecular chaperones is expected to be one of the therapeutic approaches used to treat
polyQ diseases.

In 1998, Commings et al. found that overexpression of human DnaJ homolog 2 (Hdj-2), one
of Heat shock protein 40 (Hsp40) family proteins, in the cellular model of SCA1 resulted in a
significant reduction in inclusion body formation of ataxin-1, a disease-causative protein of SCA1 [39].
Subsequently, several groups revealed that overexpression of molecular chaperones including Hsp70
and Hsp40 in animal models such as Drosophila and mice expressing the expanded polyQ proteins, led
to the suppression of inclusion formation, as well as to improvement of the typical disease-associated
phenotypes, including motor disturbance [83,84]. Moreover, it has been reported that the carboxy
terminus of Hsc70-interacting protein (CHIP), a co-chaperone of Hsp70 that works as a E3 ubiquitin
ligase, also suppresses polyQ aggregation and improves viability in the cells expressing polyQ
proteins [85,86], and suppresses neurodegeneration in animal models of SCA1 and SBMA [87,88].
These reports strongly suggest that the activation of chaperone functions is indeed an effective approach
to develop molecular therapies for the polyQ diseases. Other molecular chaperones including Hsp84,
Hsp105, and small Hsps such as HspB1 (Hsp27), HspB7, and HspB8 (Hsp22), have also been reported
to suppress polyQ-induced cytotoxicity in the cell culture models [89–93].

Heat shock factor 1 (HSF1) is a transcriptional factor that regulates the transcription of most
of heat shock proteins, including Hsp70, Hsp90 and Hsp40 [94]. Since transcriptional activity of
HSF1 is negatively regulated by Hsp90, inhibition of Hsp90 is expected to activate HSF1 function,
leading to the induction of various heat shock proteins. Sittler et al. found that treatment of a Hsp90
inhibitor geldanamycin with the polyQ expressing cells led to induction of chaperones such as Hsp70,
Hsp90, and Hsp40, resulting in significant inhibition of aggregation formation of the polyQ proteins,
demonstrating for the first time that pharmacological induction of multiple chaperones is an effective
therapeutic approach for drug development of the polyQ diseases [95]. Radicicol, a fungal macrocyclic
antibiotic that induces heat shock chaperones by a mechanism similar to that of geldanamycin, has also
been shown to suppress polyQ aggregation in slice cultures from HD model mice (R6/2) [96]. The other
Hsp90 inhibitor, dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), is shown to
reduce nuclear accumulation of mutant androgen receptor (AR), and ameliorate motor impairment
in the transgenic mouse model of SBMA by oral administration, although the therapeutic outcomes
are considered to be attributed to enhanced degradation of mutant AR through ubiquitin-proteasome
system, rather than by chaperone induction: Hsp90 inhibitors enhance the proteosomal degradation of
Hsp90 client proteins [97]. In this line of research, Katsuno et al. demonstrated that oral administration
of geranylgeranylacetone, a compound that potently induces chaperones, into SBMA transgenic
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mice, resulted in the up-regulation of various heat shock proteins in the central nervous system,
leading to suppression of aberrant nuclear accumulation of the disease-associated androgen receptor
and to amelioration of the polyQ-dependent neuromuscular phenotypes [98]. We also tested a
series of chaperone-inducing compounds in the fly models of the polyQ diseases, and found that
17-(allylamino)-17-demethoxygeldanamycin (17-AAG), a less toxic derivative of geldanamycin, has a
high potency to suppress inclusion body formation as well as to inhibit progressive neuronal loss [99].

To explore the possibility of gene therapy using molecular chaperones for treatment of the polyQ
diseases, we introduced Hsp40 gene using the adeno-associated virus (AAV) in the brain of the mouse
model of HD. We found that viral vector-mediated overexpression of Hsp40 in mouse brain results
in improvement of motor disturbance and survival, as well as a significant reduction in inclusion
body formation of polyQ proteins, demonstrating the effectiveness of a gene therapy approach using
molecular chaperones for polyQ diseases [100]. Interestingly, we found that, in the brains of the
HD mice that were injected with the Hsp40-expressing AAV, inclusion body formation was broadly
suppressed, not only in virus-infected cells, but also in the non-infected cells, suggesting the non-cell
autonomous therapeutic effects of Hsp40 in vivo. Using cellular and Drosophila models of polyQ
diseases, we examined the molecular basis underlying this non-cell autonomous effect of Hsp40,
and found that molecular chaperones including Hsp40 and Hsp70 are secreted via exosomes, one
of the extracellular vesicles, and transmitted to the other cells, where they suppress aggregation
formation of the polyQ proteins [101]. These findings indicate that molecular chaperones function
not only in a cell-autonomous manner, but also in a non-cell autonomous manner at the multicellular
organismal levels, both of which contribute to maintenance of proteostasis. Thus, activation of
molecular chaperones is expected to be a highly effective approach for treatment of polyQ diseases.

It has also been reported that activation of the cellular degradation systems such as autophagy
and proteasome systems is effective for the treatment of polyQ diseases [102,103], as they can
facilitate degradation of the expanded polyQ proteins and suppress polyQ-induced toxicity [104–106].
Rubinsztein and colleagues demonstrated that rapamycin, a specific mTOR inhibitor that potently
induces autophagy, suppressed polyQ aggregation and polyQ-induced cell death in cell culture
models of the polyQ diseases, and suppressed progressive neurodegeneration in fly models [107].
They also showed that intraperitoneal injection of CCI-779, a rapamycin analog, reduced aggregation
formation and improved disease phenotypes in mouse models of HD and SCA3 [107,108]. Trehalose,
a natural disaccharide with chemical chaperone activity that binds to unfolded proteins and stabilizes
their structure, has been reported to inhibit polyQ aggregation in vitro, and effectively improves
disease phenotypes in HD model mice by oral administration [109]. Interestingly, it has been
found that trehalose can also work as a potent activator of autophagy, and facilitates clearance of
mutant huntingtin [110] and other aggregation-prone proteins associated with the neurodegenerative
diseases [110–113]. Considering that trehalose has reduced toxicity and the superior water solubility,
coupled with its dual functions as a chemical chaperone and an autophagy inducer, trehalose is
a promising drug candidate, not only for polyQ diseases, but also for other neurodegenerative
diseases. Shoji-Kawata et al. found that a peptide derived from the autophagy-related protein
Beclin1 is a potent inducer of autophagy, and decreases the accumulation of polyQ proteins in the
cellular disease models [114]. Paeoniflorin, a major component of Paeonia plants, has been also
shown to facilitate clearance of pathogenic AR by enhancing both autophagy and UPS, resulting in
therapeutic improvement in behavioral and pathological impairments in SBMA model mice [115].
These results indicate that the therapeutic approach focusing on degradation of expanded polyQ
proteins through induction of autophagy is also highly effective for treatment of polyQ diseases.
However, due to the non-selective nature of autophagy, activation of autophagy results not only
in degradation of the disease-associated polyQ proteins, but also in sequestration of other cellular
proteins, which might lead to detrimental effects on cellular activity and survival. To accomplish
selective degradation of the expanded polyQ proteins without affecting levels of other proteins,
Bauer et al. designed an adaptor peptide comprising QBP1 for polyQ binding and Hsc70-binding
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motifs, which is expected to specifically bind to proteins with the expanded polyQ tract and direct
them to lysosomes through chaperone-mediated autophagy [116]. Expression of this adaptor peptide
resulted in selective degradation of the expanded polyQ proteins in cell culture models of HD, and
reduced polyQ aggregates and ameliorated the disease phenotypes in the HD mice, indicating the
effectiveness of induction of selective autophagy on therapies for polyQ diseases.

4. Gene Silencing: An Emerging Approach Targeting Upstream of Pathological
Protein Accumulation

Currently, gene silencing strategies have attracted much attention as a promising therapeutic
approach for dominantly inherited neurodegenerative diseases including polyQ diseases [117,118].
Yamamoto et al. generated a conditional model mice where expression of the expanded polyQ protein
could be regulated through the control of a tetracyclin-based regulatory system, and demonstrated that
turning off the expression of the polyQ protein in the symptomatic mice reduces inclusion bodies and
ameliorates motor disturbance [119]. This result indicates that neuropathology and disease phenotypes
of the polyQ diseases can be reversed, at least at the early stage of disease progression, raising the
possibility that reducing the intracellular levels of aberrant polyQ proteins would be a promising
approach for treatment of the polyQ diseases. Indeed, transcriptional suppression of gene expression
of the disease-causative proteins by the use of endogenous mRNA degradation systems such as RNA
interference (RNAi) has been shown to be effective for reducing polyQ aggregation/inclusion and
improving disease phenotypes [120–122]. So far, antisense oligonucleotides (ASO), short interfering
RNAs (siRNA), and short hairpin RNAs (shRNA) have been employed to decrease the level of the
disease-associated proteins of the polyQ diseases, including HD, SBMA, and several types of SCAs,
and thus, to improve phenotypes of animal models for such diseases [123–127]. In addition, several
miRNAs have been identified that are able to reduce the expression level of the polyQ proteins by
directly binding to 3’ untranslated regions of their mRNAs [128–130], or by indirect mechanisms [131,132].

Despite recent progress in gene silencing strategies for treatment of the polyQ diseases, there
are still some challenges to be overcome for practical use. One of these challenges, especially in
comparison with the strategy targeting misfolded proteins, includes the technical difficulty in targeting
only the mutant alleles without affecting the normal allele. Therefore, most gene silencing strategies
have utilized a ‘partial reduction’ approach, in which mutant and normal alleles are both targeted
in a non-specific manner, and gene transcription in both alleles are not completely, but partially
suppressed. Because host proteins harboring the polyQ tract should possess some functional roles
in cells, as exemplified by huntingtin's essential role in development [15], lack of allele specificity in
gene suppression possibly causes detrimental effects on normal cellular functions. Methods to allow
allele-specific silencing by targeting disease-linked single-nucleotide polymorphisms (SNPs) [133–135]
and specific conformations formed in abnormally expanded CAG repeats [136] have recently been
tested, but these are still being developed (see review: [137]). Although other issues including brain
delivery of nucleic acids and off-target effects, which are general issues on nucleic acid therapeutics,
also remain to be solved for clinical application, gene silencing strategies are expected to be a promising
approach for polyQ diseases; indeed, an ASO that targets the huntingtin gene has been clinically tested
in Phase 1/2 studies in early stage patients of HD, initiated from July 2015 by Ionis Pharmaceuticals in
collaboration with Roche.

5. Future Perspectives

Here we reviewed the current understanding of molecular pathogenic mechanisms of the
polyQ diseases, and introduced therapeutic approaches that have been developed, focusing on
the pathomechanisms of the diseases. As discussed, polyQ proteins are thought to change their
conformation to β-sheet rich structures in a monomeric state, which initiates an aggregation cascade
to assemble into soluble oligomers and aggregates, eventually leading to accumulation as inclusion
bodies. Several key questions however, still remain elusive. Which intermediate species are responsible
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for the pathogenesis of polyQ diseases, and how do these abnormal species gain cytotoxicity? How
does conformational transition into a β-sheet structure at the monomer level lead to formation of
oligomers and aggregates with β-sheet-dominant structures? Is there any possibility of conformational
propagation of the polyQ proteins, such as scrapie prion propagation, where a misfolded monomer
with β-sheet structure would induce conformational transition of other natively-folded polyQ
proteins? Further elucidation of polyQ aggregation and its cytotoxicity not only would lead to
better understanding of the molecular mechanisms underlying polyQ disease pathogenesis, but would
also provide an important insight into therapeutic targets effective for treating these diseases.

Although detailed mechanisms on polyQ aggregation are yet to be elucidated, it is clear that the
early events during the aggregation process, such as abnormal conformational transition to β-sheet
structure and oligomer formation, are at this moment the most ideal therapeutic target for development
of the disease-modifying therapy of the polyQ diseases. Our results show that QBP1 recognizes and
inhibits β-sheet transition of a polyQ protein monomer, indicating that QBP1 would be a promising
seed peptide targeting the most upstream event in the aggregation cascade. Peripheral administration
of QBP1 into the mouse model of the polyQ disease, however, resulted in limited therapeutic effects,
which is probably attributed to poor efficiency for passing through the BBB. Considering the fact that
HQP09-9, a peptoid-based drug candidate screened by Chen et al., similarly failed to show the expected
therapeutic effects on the polyQ mouse model by subcutaneous injection, brain delivery methods that
enable the improvement of the BBB-permeability of drug candidates, should be developed as a top
priority issue. Based on structure-function relationship studies [138,139], together with the solution
structure of polyQ proteins determined by NMR measurement [140], we are currently working on
sequence optimization and derivatization of QBP1, as well as development of its small chemical
analogues that are expected to efficiently pass through the BBB. In addition, brain delivery vectors that
allow cargo molecules to efficiently translocate across the BBB are also being developed, which will be
reported in due course.

So far, several disease-modifying therapies for the polyQ diseases have been clinically tested.
One of the representative trials includes leuprorelin, a luteinizing hormone-releasing hormone (LHRH)
peptide agonist, which reduces testosterone-dependent AR accumulation in the nucleus and is expected
to be effective for SBMA treatment. Subcutaneous injection of leuprorelin in a transgenic mouse
model of SBMA decreased nuclear accumulation of mutant AR in muscle and spinal cord improved
disease phenotypes such as motor dysfunction, and extended life span [141]. However, a series of
clinical trials of a randomized, placebo-controlled study for 48 weeks in SBMA patients showed no
significant improvement in motor dysfunction, despite limited outcomes including suppression of
AR accumulation and reduced serum level of testosterone [142,143]. Similarly, 5α-reductase inhibitor
dutasteride, which is also expected to decrease AR toxicity, has been evaluated clinically in SBMA
patients for 24 months, but showed no significant improvement in treatment of SBMA [144]. Although
both trials have failed to prove clinical efficacy, subgroup analysis revealed that leuprorelin shows
improvement of swallowing function in the early phase patients of SBMA with disease duration less
than 10 years, indicating that disease duration is important for clinical evaluation of therapeutics for
these diseases. Indeed, long-term treatment with this agent appears to delay functional decline, and
shows effectiveness for patients [145]. Leuprorelin has very recently been approved for suppression of
disease progression for SBMA patients in Japan.

The other important issue is clinical evaluation of the efficacy of newly developed drug candidates
in human patients. Because neurological and psychiatric symptoms of polyQ diseases gradually
progress over several years, it would be quite difficult to evaluate the therapeutic outcome of drug
candidates during a short period of clinical study. This fact strongly indicates that not only effective
drugs, but also disease-linked biomarkers that would faithfully reflect the severity and progression of
the disease phenotypes with high sensitivity, are necessary for the development of disease-modifying
therapies for polyQ diseases. Much effort has been made to identify proteins and RNAs that can be
utilized as biomarkers, by examining body fluids such as cerebrospinal fluid (CSF) and blood from
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patients, as well as animal models of the polyQ diseases. We hope that in the near future, therapeutic
approaches that are widely effective against polyQ diseases are developed, and to bring hope to many
patients suffering from the currently intractable polyQ diseases.
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