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Abstract: This study is the first to explore spontaneous eye blink rate (sEBR) in individuals with
post-traumatic stress disorder (PTSD). We investigated the connection between the magnitude of
flanker interference in PTSD participants and sEBR during performance on a modified version of the
Eriksen flanker task. As a peripheral measure of cognitive control and dopaminergic function, sEBR
may illuminate the relationship between PTSD and executive function. Findings revealed a positive
relationship between sEBR and flanker interference in participants diagnosed with PTSD, to both
threat-related and neutral stimuli, whereas this relationship was negative in participants exposed to
trauma but without PTSD and in healthy controls. Although our results are suggestive of sEBR as
a potential physiological index of emotional management in PTSD, most of the correlations were not
significant, indicating that further research with a larger sample is needed.

Keywords: post-traumatic stress disorder; spontaneous eye blink rate; trauma exposure; flanker
interference; cognitive control; inhibitory control

1. Introduction

Post-traumatic stress disorder (PTSD), affecting between 3.6% and 9.7% of the general
population [1], is a traumatic stress-related disorder characterized by intrusive thoughts and memories
of traumatic events, avoidance of thoughts and feelings associated with the trauma, emotional
numbing, and an amplified vigilance and alertness to environmental triggers following exposure to
a life-threatening stressor. Results of neuropsychological tests reveal compromise to executive control
functions in PTSD patients, particularly working memory (ability to maintain recent experiences in
memory) and inhibitory control (ability to suppress task-irrelevant memories and experiences) [2–5].
The aim of the current study was to investigate the relationship between working memory (as indexed
by spontaneous eye blink rate; sEBR) and inhibitory control of attentional interference (as measured
by behavioral performance on the temporal flanker paradigm) in (a) individuals with PTSD;
(b) individuals with trauma exposure but no PTSD (TE); and (c) healthy controls (HCs) with neither
trauma exposure nor PTSD. The relationships between sEBR and attentional interference in PTSD
and TE participants may help clarify underlying attentional processes that are thought to result from
trauma exposure.
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1.1. Spontaneous Eye Blink Rate (sEBR)

Spontaneous eye blinks represent a broad index of information processing functions spanning
attention and working memory and are distinct from both reflexive and voluntary eye blinks [6].
Neuroimaging analyses reveal the role of spontaneous eye blinks in modulating activity in
oculomotor regions—including the frontal eye-fields and the supplementary eye-fields [7]—and also
in higher-level cortical regions, including the parahippocampal gyrus and the medial frontal gyrus [8].
The parahippocampal gyrus is intimately involved in the updating of working memory to task-relevant
stimuli [9–11], whereas the medial frontal cortex has been linked to executive control of task-irrelevant
stimuli, most specifically during the monitoring and resolution of stimulus conflict in Stroop-like
tasks [12]. Both working memory and executive control are compromised in PTSD [2–5]. sEBR also has
been strongly associated with the dopaminergic system [13–15]: Pharmacological interventions reveal
close ties between sEBR and D2 dopamine receptor functioning [13–15]. Researchers hence have used
the eye blink rate as a non-invasive measure of dopamine functioning. Patients with disorders that
involve hyperdopaminergic states—including schizophrenia, Tourette’s syndrome, and Huntington’s
disease—show higher blink rates than healthy controls, whereas those with disorders that have
hypodopaminergic states—such as Parkinson’s disease—show lower blink rates [16]. In non-disease
states, sEBR serves as a gauge of cognitive load [14–16] independent of motor function.

In cognitive research, investigators have consistently found that high rates of spontaneous eye
blinks during cognitive task performance are associated with enhanced perceptual sensitivity [17–20].
One speculative hypothesis is that sEBR gauges the buildup [21] or release [22] from working memory
of task-related stimulus representations. In this view, enhanced perceptual sensitivity from high
sEBRs might yield better inhibitory control of distractors once working memory is freed up [23].
This interpretation is supported by findings of reduced flanker [24] or Stroop [25] interference
(i.e., greater inhibitory control of distractors) in healthy participants with greater sEBR. Inhibitory control
entails increased resistance to distracting information during the performance of a cognitive task [26].
This includes both inhibitory action control and inhibitory interference control. Inhibitory control
can be described by the ability to ignore the conflict between targets and distractors (flankers),
by concentrating only on the target. In a standard flanker task this represents inhibitory interference
control. Thus, decreased flanker interference indicates greater inhibitory control [27].

In the context of exposure to trauma, sEBR may offer insight into distinct cognitive strategies for
handling threats, possibly leading to differential outcomes in inhibitory control to threats observed in
PTSD and TE individuals. Functional neuroimaging of PTSD participants during the performance
of cognitive control tasks reveals abnormal activity in the ventromedial prefrontal cortex, anterior
cingulate cortex, amygdala, and insula [28–32]. Inefficient prefrontal control mechanisms, combined
with hyperactive amydala sensitivity, may result in the reduced inhibitory control to threats observed
in PTSD [28,30,33].

The relatively greater sensitivity to threats seen in individuals with PTSD (e.g., [34]) may be
expressed as greater monitoring of threat-related cues during task performance. Here, sEBR could
gauge the accumulation of threat material in working memory (i.e., the filling up of working memory),
which would effectively undermine the inhibitory control of conflict between targets and distractors in
PTSD. In this case, higher sEBR would predict poorer inhibitory control (i.e., more interference) with
exposure to task-irrelevant threatening stimuli. In contrast, the sEBR of TE individuals to threat-related
stimuli may reflect the adaptive unburdening of emotional material from working memory (i.e., the
emptying out of working memory), thus enabling greater cognitive control of stimulus conflict. In this
case, higher sEBR would predict enhanced inhibitory control (i.e., less interference) with exposure to
task-irrelevant threatening stimuli (i.e., threat suppression) in TE.

1.2. The Present Study

We addressed two gaps in the literature concerning the relationship between the control of
working memory and the psychopathology of stress and PTSD. First, we evaluated in patients with
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PTSD predictive associations between the monitoring or control of working memory, measured here
as sEBR, and the magnitude of flanker interference, as an inverse measure of inhibitory control to
distractors. Second, we evaluated whether traumatic stress exposure per se influences inhibitory
control by examining whether participants with PTSD use control processes differently from those in
each of the two comparison groups (TE and healthy controls).

The current study was part of a larger study to examine inhibitory control in PTSD [35]. We used
a modified flanker conflict task [36] in which targets and distractors were separated temporally.
Participants were asked to make judgments of line orientation while ignoring task-irrelevant lines
and threatening or non-threatening images. We employed two sets of distracting images—a set of
faces and a set of International Affective Picture System (IAPS) scenes—to probe the generality of
task-irrelevant images in PTSD. We recorded behavioral performance and sEBRs across blocks of
threatening or non-threatening trials. Although the relationship between sEBR and symptomology
has been explored in other clinical populations, to the best of our knowledge our study is the first to
examine the link between sEBR and inhibitory control in the context of PTSD.

2. Methods

2.1. Participants

Fifty individuals were recruited via online and print advertisements and paid to participate in the
study. The nature of the procedures was explained fully, and informed consent was obtained from
each participant; the Institutional Review Board of the City University of New York approved the
protocol #298190. Following written consent, participants were given a breathalyzer/urine toxicology
screen and completed a demographics survey and a life events checklist (LEC [37]). Trained clinicians
administered the Structured Clinical Interview for the Diagnostic and Statistical Manual (SCID-IV [38];
DSM-IV). Inclusion criteria included: (1) physically healthy with no serious medical problems;
(2) normal or corrected normal visual acuity; (3) aged 18–65; and (4) able to provide informed consent.
Exclusion criteria included: (1) substance use disorder; (2) a major depressive episode; (3) suicidality;
(4) current or history of psychosis or bipolar disorder, and (5) lack of fluency in English. Participants
also were administered the Clinician-Administered PTSD Scale (CAPS [37]), and completed the
Multiscale Dissociation Inventory (MDI [39]), the Test of Nonverbal Intelligence (TONI-4 [40]), and
the Beck Depression Inventory®-II [41]. Three groups were created: (1) PTSD (n = 19, 10 males, mean
age = 35.3), participants who met all DSM-IV-TR [42] criteria for PTSD; (2) TE (n = 16, eight males,
mean age = 34.3), participants without PTSD or an Axis I diagnosis who had experienced a traumatic
event meeting Criterion A for PTSD; and (3) HC (n = 15, five males, mean age = 33.4), participants
without PTSD, an Axis I diagnosis, or Criterion A trauma exposure.

2.2. Stimulus, Apparatus, and Procedure

Each participant completed 24 blocks of experimental trials (and one or more blocks of practice
trials) in a modified version of the visual flanker task [36] called the temporal flanker paradigm.
The study was carried out in an electrically and acoustically shielded Industrial Acoustics Company
(New York, NY, USA) chamber. Stimuli were created in Presentation® version 16.0 software
(Neurobehavioral Systems, Berkeley, CA, USA) on a Dimension 5150 Dell desktop computer and
appeared to participants as they sat at a distance of 60 cm from a 17-inch Dell Model P1130 RGB
computer monitor with a refresh rate of 75 Hz. Each task in the paradigm comprised a block of
80 trials. Each trial consisted of a fixation square (0.67◦) followed by three stimulus displays presented
sequentially: (1) First Flanker; (2) Target; and (3) Second Flanker (see Figure 1). Each display appeared
for 150 ms separated by an inter-stimulus interval varying between 153 ms and 390 ms in random
distribution. The first and second flankers were identical on each trial: a vertical line, a horizontal line,
or a cross. Each target was a vertical or horizontal line superimposed on an image, either a grayscale
threatening (i.e., fearful) or non-threatening face from the NimStim set [43] or a colored threatening
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or non-threatening picture from the International Affective Picture System (IAPS [44]). Line stimuli,
subtending a visual angle of 0.57◦, appeared in gray on a black background; face and IAPS stimuli
subtended 9.93◦ (V) × 7.13◦ (H) and 10.85◦ (V) × 9.74◦ (H) of visual angle, respectively. We included
two types of threat cues in the current study—faces and IAPS images—to evaluate the generality of
the relationship between sEBR and flanker interference in PTSD when confronted with threatening
versus non-threatening material.

On each trial of each task participants were asked to respond by mouse key as quickly and
accurately as possible to the orientation of the target line, ignoring the flanker lines and the surrounding
image. To mitigate eye movement artifacts during EEG recording participants were asked to blink
only before or after, but not during, stimulus presentation, as needed. The duration of stimuli was
1265 ms on average within a trial that lasted approximately 3665 ms. Assignment of line orientation
to response keys was counterbalanced across participants. Tasks were divided into baseline tasks
(distractor constant) and filtering tasks (distractor random) [45]; for purposes of the present study,
only performance on filtering tasks was analyzed. In each filtering task distractors appeared randomly
on each trial: On 40% of trials (32 of 80) target and flanker lines matched in orientation (congruent
trials), on 40% they mismatched (incongruent trials), and on 20% (16 of 80) flankers were crosses
(neutral trials). All eight images from one of the four sets (threat faces, non-threat faces, threat IAPS,
non-threat IAPS) appeared randomly an equal number of times with the target line, creating four
different filtering tasks. Each task set was repeated three times in a session; task order was balanced
across participants. The entire experiment, including EEG preparation, lasted approximately 3 h.
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Figure 1. The modified flanker task. This example is of a fearful face incongruent trial.

2.3. Data Recording and Analysis

Reaction times (RTs) to correct response trials of each participant were averaged for each of two
trial types (i.e., congruent, incongruent) in each of four conditions (i.e., threat faces, non-threat faces,
threat IAPS, non-threat IAPS). Our measure of inhibitory control (i.e., flanker interference) was defined
as the difference between congruent and incongruent trials in each condition.

This study was part of a larger EEG study using a BioSemi Active-Two system in a high-density
(160 electrodes) montage arranged in an elastic cap with blinks and other eye movements monitored
by electrooculogram (EOG) at a sampling rate of 512 Hz from two electrode montages, one on the infra-
and supra-orbital ridges of the right eye (VEOG), the other on the outer canthi of each eye (HEOG)
(see [35]). For purposes of the present study, only VEOG recordings were analyzed. An automated
Matlab function called Peakfinder [46] was used to identify and count blinks in the VEOG channel.
Peakfinder implements a user-defined magnitude threshold to compare temporally adjacent peaks
within a noisy unidimensional vector. Blinks were defined as peaks with a magnitude greater than
100 µV [47]. Blink frequency was summed across the three repetitions of each condition and divided
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by condition duration (in minutes) to determine average blink rate per minute (EBR) for each of
the four conditions. The automated blink detector was checked for accuracy by two trained raters
independently scoring a random selection of 30 blocks. No blinks were detected at a threshold lower
than 100 µV (no false positives). The raters revealed 98% agreement in identifying blinks; the manual
counts were 92% similar to the automated ones.

Two-tailed correlations were carried out within each of the three groups (i.e., PTSD, TE, HC)
to examine the relationship between sEBR and inhibitory control in each condition. Additionally,
we conducted exploratory analyses to examine whether specific clinical domains are related to sEBR.
Correlational analyses were performed on clinical measures by separately regressing each subscale
of the CAPS, BDI, and MDI on sEBR in the PTSD and TE groups. Fisher r-to-z transformations were
performed to evaluate differences in the magnitude of correlations between groups (p < 0.05 for
all tests).

3. Results

3.1. Demographic, Clinical, Physiological, and Behavioral Data

Table 1 contains a tally and statistical analysis of demographic and clinical data. PTSD and TE
showed significantly higher rates of trauma than HC. PTSD revealed higher scores on the BDI than
TE or HC. The three groups did not differ significantly in gender, age, education or race/ethnicity.
The three groups did not differ significantly in sEBR or flanker interference.

Table 1. Demographic, clinical, physiological, and behavioral information and comparisons
among participants.

PTSD (n = 19) TE (n = 16) HC (n = 15) Test Statistic p

Gender

Male 10 8 5
χ2(2, N = 50) = 1.38 0.50Female 9 8 10

Age M (SD) 35.3 (10.1) 34.3 (12.0) 33.4 (9.7) F(2, 47) = 0.129 0.88
Education (years) M (SD) 14.7 (1.9) 14.3 (1.8) 14.1 (4.7) F(2, 47) = 0.151 0.86

Race/Ethnicity

White 3 3 3

χ2(2, N = 50) = 2.61 0.27
Black 8 5 6
Latino 6 3 4
Asian 1 4 1
Other 1 1 1

Trauma type (LEC)

Physical Abuse/Assault 16 11 3

χ2(2, N = 50) = 5.93 0.00
Sexual Trauma 17 11 1

Natural Disaster 6 6 7
War/Combat 2 2 2

Other 36 44 24
BDI 11.3 (7.9) 3.8 (5.4) 0.47 (0.92) F(2, 47) = 15.8 0.00

Blink rate (mean) M (SD)

Non-threat faces 15.9 (8.5) 20.8 (9.2) 19.4 (15.4) F(2, 47) = 0.898 0.41
Threat faces 15.2 (9.1) 20.1 (8.5) 19.6 (12.2) F(2, 47) = 1.292 0.28

Non-threat IAPS 17.3 (9.4) 19.4 (11.3) 17.6 (11.1) F(2, 47) = 0.200 0.82
Threat IAPS 16.3 (8.4) 17.5 (12.2) 17.3 (10.1) F(2, 47) = 0.066 0.94

Overall 16.3 (8.4) 19.2 (9.5) 18.2 (11.3) F(2, 47) = 0.408 0.67

Flanker interference M (SD)

Non-threat faces 112.1 (100.0) 133.1 (102.0) 111.8 (89.8) F(2, 47) = 0.923 0.41
Threat faces 98.7 (86.3) 114.9 (110.4) 119.2 (108.3) F(2, 47) = 0.999 0.38

Non-threat IAPS 119.4 (97.3) 142.5 (105.9) 97.8 (63.9) F(2, 47) = 0.200 0.82
Threat IAPS 94.0 (83.7) 140.2 (129.7) 109.2 (69.2) F(2, 47) = 0.254 0.78

Overall 106.0 (84.2) 132.7 (104.0) 109.4 (78.2) F(2, 47) = 0.436 0.65

PTSD = Post-traumatic Stress Disorder, TE = Trauma Exposed, HC = Healthy Controls, LEC = Life Events Checklist,
BDI = Beck Depression Inventory, IAPS = International Affective Picture System.



Brain Sci. 2017, 7, 16 6 of 10

3.2. Inhibitory Control

Table 2 summarizes correlation coefficients between sEBR and flanker interference scores
(incongruent RT minus congruent RT) for each group in each of the four conditions. A pattern
of correlations emerged in which sEBR and flanker interference consistently correlated positively in
the PTSD group and consistently correlated negatively in the TE and HC groups. At an overall level
(across conditions), the correlation coefficients were not statistically significant in two-tailed tests:
r = 0.43, p = 0.067 (PTSD); r = −0.25, p = 0.37 (TE); r = −0.28, p = 0.30 (HC). However, there was
a significant difference in the correlation coefficients between the PTSD and TE groups, z = −1.98,
p < 0.05. Moreover, the PTSD group showed a significant positive association between sEBR and
flanker interference in the threat IAPS condition, r = 0.51, p < 0.05, which differed significantly from
the (nonsignificant) negative correlations between sEBR and flanker interference in the TE (r = −0.20;
z = −2.29, p < 0.05) and HC (r = −0.29; z = −2.01, p < 0.05) groups.

Table 2. Correlation coefficients between sEBR and inhibitory control scores (incongruent RT minus
congruent RT) for PTSD, TE, and healthy control participants in each of four conditions: threat faces,
non-threat faces, threat IAPS, and non-threat IAPS.

Interference Condition
PTSD Blink Rate (n = 19) TE Blink Rate (n = 16) HC Blink Rate (n = 15)

NF TF NI TI NF TF NI TI NF TF NI TI

Non-threat Faces 0.363 −0.225 −0.295
Threat Faces 0.284 −0.201 −0.196

Non-threat IAPS 0.415 † −0.219 −0.158
Threat IAPS 0.510 * −0.201 −0.286

PTSD = Post-traumatic Stress Disorder, TE = Trauma Exposed, HC = Healthy Controls, NF = Non-threat Faces,
TF = Threat Faces, NI = Non-threat IAPS, TI = Threat IAPS; † p < 0.1, * p < 0.05.

3.3. Clinical Subscales

Exploratory two-tailed correlations were carried out in the PTSD and TE groups between sEBR
and clinical subscales of the CAPS (four subscales) and MDI (six subscales), and the overall BDI.
The blink rate correlated negatively only with the emotional constriction subscale of the MDI in the
PTSD group, r = −0.48, p < 0.05. (The five items from the emotional constriction subscale are: “Not
being able to feel emotions”; “Feeling frozen inside without feelings”; “Knowing you should be mad
or sad about something, but not having any feelings”; “Not having emotions or feelings at a time when
you should have been upset”; “Knowing you must be upset, but not being able to feel it”).

4. Discussion

The current study investigated links between the magnitude of inhibitory control in PTSD
participants and their rate of eye blinks during performance of a temporal flanker task. We found
that sEBR in participants diagnosed with PTSD was associated positively with flanker interference:
Participants evinced a higher blink rate as the difference in RT between congruent and incongruent
stimuli increased in the face of both threatening and non-threatening IAPS images. Thus, higher sEBR
was associated with poorer attentional performance in PTSD. In contrast, in healthy control participants,
as well as in participants who had been exposed during their lifetime to traumatic stressors but did not
have PTSD, there was no significant association between blink rates and inhibitory control; at most,
they exhibited a trend towards the usual relationship of sEBR with better attentional performance.
Importantly, the correlations between PTSD and TE differed significantly from each other, suggesting
that sEBR may help elucidate differences in underlying cognitive processes between the two groups.

In the PTSD group the IAPS stimuli yielded numerically higher correlation coefficients than the
face stimuli (see Table 2). Interestingly, the difference between stimulus sets was particularly robust
to threat stimuli. The effect cannot be understood merely as a weaker response in PTSD to facial
processing because faces also appeared in many of the IAPS images. Perhaps IAPS images are more
potent stimuli for eliciting threat because, in depicting threatening scenes, they are more directly
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threatening to PTSD participants, whereas, in expressing fear, NimStim faces depict only the aftermath
of (i.e., the response to) threat. We believe this tentative explanation merits further investigation (see
Shin and Liberzon [48]). In any case, we conclude that in our cue reactivity paradigm, the PTSD
participants only weakly experienced the fearful faces as trauma cues compared with the IAPS images.

Hester and Garavan [23] hypothesized that sEBR predicts the success of cognitive processes
responsible for inhibiting the influence of task-irrelevant stimuli on performance. At high rates of
spontaneous blinking, the contents of working memory are dispersed [22], thus enabling frontal
executive mechanisms to exert top-down control over distractors. Here, blinks are linked closely to
cognitive control [24,25]. This perspective fits with our findings in the TE and HC groups. The negative
correlations between sEBR and flanker interference in these groups suggest that greater sEBR is related
to greater cognitive control. We speculate that there may be an emotional component to this process:
Individuals in these two groups may be able to release threatening and neutral material equally well
from working memory, enabling executive control of stimulus conflict across all incongruent trials.

A different understanding of the role of sEBR is desirable in explaining the performance
of our participants with PTSD. Optimal levels of dopamine during the performance of conflict
tasks [49] correspond to the peak of an inverted U-shaped function [50]. PTSD has been linked
to abnormally elevated release of presynaptic dopamine [51,52] in both the amygdala [50] and dorsal
anterior cingulate cortex (dACC) [53], implying inefficient inhibitory control of hypersensitive limbic
regions [54]. To the extent that sEBR gauges hyperactivation in these regions, the positive correlation
of the blink rate with flanker interference found in the current study may represent poor overall
inhibitory control in PTSD.

What cognitive or clinical functions might be served by a positive correlation between sEBR and
interference in PTSD? It is conceivable that sEBR acts as a check on the flow of information entering
working memory [21]. A diagnostic feature of PTSD is heightened sensitivity to environmental
threat [55,56]. On this account, blinks in individuals with PTSD may serve as a proxy for the threat
monitoring processes that these patients engage in automatically to complete everyday tasks [57].
In particular, sEBR in this population could gauge the buildup of threat material within working
memory, a process at cross-purposes with the cognitive control needed to ameliorate stimulus conflict.
sEBR in those with PTSD may reflect the output of a hypersensitive emotion management system,
rather than a cognitive control system. Emotional management involves both emotion monitoring,
observed here in the positive correlation in PTSD between sEBR and flanker interference, and emotion
control, observed in our exploratory findings indicating a negative correlation in PTSD between sEBR
and the dissociative symptom of emotional constriction. Importantly, we found correlations of nearly
equal magnitude to both threat and non-threat images. Responsivity under conditions of low threat
in PTSD has also been reported elsewhere [58,59]. An explanation favored by previous investigators,
and in concert with our emotional management account, is that in assessing risk patients with PTSD,
vigilantly monitor both safety and danger. Still, at present our explanations are speculative and our
results are in need of replication.

5. Conclusions

The current study is the first to explore sEBR in individuals with PTSD. We showed that whereas
increasing rates of spontaneous eye blinks are associated negatively with flanker interference in TE
and HC, sEBR and flanker interference are actually associated positively in PTSD. One implication
is that sEBR represents the engagement of differential functions for individuals with and without
PTSD, enabling either improved cognitive control (TE) or more effective emotion management (PTSD).
To probe these differential uses, in future research sEBR could serve as the dependent measure in
manipulations of working memory load with threatening or non-threatening material in participants
from PTSD and TE populations.
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