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Abstract: Subjects’ interaction is the core of most human activities. This is the reason why a lack
of coordination is often the cause of missing goals, more than individual failure. While there are
different subjective and objective measures to assess the level of mental effort required by subjects
while facing a situation that is getting harder, that is, mental workload, to define an objective measure
based on how and if team members are interacting is not so straightforward. In this study, behavioral,
subjective and synchronized electroencephalographic data were collected from couples involved in a
cooperative task to describe the relationship between task difficulty and team coordination, in the
sense of interaction aimed at cooperatively performing the assignment. Multiple-brain connectivity
analysis provided information about the whole interacting system. The results showed that averaged
local properties of a brain network were affected by task difficulty. In particular, strength changed
significantly with task difficulty and clustering coefficients strongly correlated with the workload
itself. In particular, a higher workload corresponded to lower clustering values over the central and
parietal brain areas. Such results has been interpreted as less efficient organization of the network
when the subjects’ activities, due to high workload tendencies, were less coordinated.

Keywords: mental workload; cooperation; hyperscanning; EEG; human interaction; multiple-brain
connectivity

1. Introduction

Most human activities are based on the interaction between two or more subjects, therefore the
success of a task is based not only on high individual performance, but also on the ability to do effective
teamwork. In this regard, during the last decade one of the aims of social neuroscience has been
to define objective measures, mainly based on neurophysiological signals, of successful social and
cooperative interaction [1,2].

During highly demanding tasks requiring cooperation among subjects, decreases in performance
could be due not only to the failure of a single subject, but also to a lack of coordination within the team.
In fact, it has been assessed that team coordination, defined as team members’ interaction aimed to
jointly perform a key function, has positive effects on performances and affects cognitive, physiological
and perceptual aspects of the involved subjects [3].
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Team coordination is usually evaluated using different subjective measures. In the aviation field,
for example, subject-matter experts (SMEs) are responsible for analyzing crewmembers’ interactions
by means of questionnaires during a mission preparation with the aim of predicting the success of the
mission itself [4]. Dodel et al. [5] measured team performance and coordination during a room cleaning
task (four subjects searching and identifying threats along predefined path into a room) by using
position and velocity information for three different skill levels (Novice, Intermediate and Expert).
They found that (i) team coordination decreased with performance, and that (ii) Novel and Expert
were significantly different in terms of team coordination and performance.

The combination of behavioral data and brain signals (electroencephalogram (EEG)) were used
to identify the presence of beta-gamma complex in coordinated activities [6] and a phy-complex
neuromarker of social coordination [7]. In a task as well controlled as finger movement,
Tognoli et al. [7] found brain activity reduction in the occipital EEG alpha band and in EEG sensory
motor rhythms during social interaction (while two subjects observed each other moving the
finger), whereas coordination correlated with particular EEG rhythms, called phy, in the right
centro-parietal brain area (increased phy indicates increased coordination). However, in a more
realistic context, subjects are usually faced with more complex movements performing tasks under
variable difficulty [8,9]. On the other hand, task difficulty could have effects on the amount of mental
resources employed by the subject to deal with the task demand, that is the definition of mental
workload. Mental workload can be estimate by means of behavioral and subjective measures [10], but
it has also been demonstrated that mental workload variations correlate with changes in EEG spectral
power, in particular an increase in the EEG theta band (4–7 Hz) over the frontal cortex, and a decrease
in the EEG alpha band (8–12 Hz) over the parietal cortex [11–13].

Therefore, an objective evaluation of the mental workload under which the team is working could
avoid a decrease in performance, which in cognitive psychology is known as the inverted “U-shape”
relation between workload and performance [14], and an objective assessment of team members
interaction could avoid failures due to impairment in team coordination.

To investigate objectively the interaction by means of brain signals, we used the EEG
hyperscanning technique [15], which is the acquisition of EEG signals recorded in a synchronized
way from two or more people involved simultaneously in a task. The aim of this forefront approach
is defining how coupling in subjects’ brain activity is related to their interaction and, thanks to the
EEG system portability, social interaction can be reproduced and analyzed in natural environments as
required by Hari et al. [16] to investigate real social behavior. To obtain interaction-related information
it was necessary to carry out multiple brain connectivity analyses, and then to explore the variation
of brain network properties by means of graph analysis. The modulation of network indexes for
different levels of interaction has been demonstrated both in controlled and in more ecological settings.
Astolfi et al. [17] demonstrated that during a cooperative joint action task an increased number of
functional connections is associated with the will of subjects to reach the same goal, unlike the condition
during which the single subject was playing with the computer or alone. Moreover, functional
connectivity was found among card game players of the same team when they were interested in
coordinating their behavior with each other [18]. In operational environments during the landing
phase a higher number of functional links between pilots is associated with the necessity of greater
cooperation [19]. Sanger et al. [20] investigated the synchronization in activation during music playing:
they found strengthened frontal and central connections between subjects and higher small-word
network characteristic (i.e., low path length and high clustering coefficient) of both single and multiple
brain network while high demand in musical coordination was requested. Nevertheless, as assessed
in [21], the application of graph indexes to multiple brain networks is still an open issue.

In this work, we analyzed data gathered from couples of participants that shared collaborative
tasks in the NASA-Multi Attribute Task Battery under different difficulty levels with the aim to
investigate the relationship between workload and interaction effects. In particular, we hypothesized
that (i) the density of inter-brain connections, as it has been associated with different levels of
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cooperation, increases when there is more cooperation between subjects [17], and that (ii) the strength
index, necessary to assess the importance of the electrodes in the network consisting of the connections
between subjects, increases as the task become more demanding [20]. Finally, we also investigate the
segregation of a multiple-brain network by means of clustering coefficient to assess if there is any
relationship between information transfer in the network and the task demand.

2. Materials and Methods

2.1. Participants

The selection of the participants was done in order to ensure the homogeneity of the experimental
sample in terms of age, gender and educational background. In particular, informed consent was
obtained from 10 healthy male participants (25 ± 3 years old), recruited on a voluntary basis, from the
National University of Singapore (NUS), Centre for Life Sciences, after an explanation of the study.
The experiment was conducted following the principles outlined in the Declaration of Helsinki of
1975, as revised in 2000. The study protocol has been approved by the local Ethical Committee. All the
recruited participants accepted to participate to the study and each of them has been paid SG$200 to
attend the whole experimentation. Additionally, the participants have been instructed to avoid alcohol,
caffeine and heavy meals right before the experiments.

2.2. Multi Attribute Task Battery

The NASA-Multi Attribute Task Battery (MATB [22], freely available on the website reported
in [23]) is a computer-based task designed by NASA to evaluate cognitive operational capability, as it
could provide different tasks that have to be attended by the subjects in parallel, and each task could
also be modulated in difficulty (Figure 1). By such capabilities, it is possible to investigate different
cognitive phenomena requiring the simultaneous execution of actions, especially when a high level of
cooperation is required (e.g., piloting an aircraft).
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Figure 1. NASA-Multi Attribute Task Battery (MATB). (I) Interface: (a) Emergency lights task;
(b) Tracking task; (c) Auditory monitoring task, and; (d) Fuel managing task. (II) Participants shared
the MATB task. In particular, the Pilot (on the right) performed the tracking and emergency lights
tasks, while the Co-Pilot (on the left) dealt with the fuel managing and the auditory monitoring tasks.

The MATB consists in four subtasks (panel I in Figure 1): emergency lights task; tracking task;
auditory monitoring task, and; fuel managing task.
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The emergency lights task simulated the system monitoring: the subject has to monitor the gauges
and the warning lights by responding to the absence of the green light, to the presence of the red light,
and monitor the four moving pointer dials for deviation from the midpoint.

In the tracking task the participant has to keep the cursor inside a squared target by moving the
joystick. A communication task presents pre-recorded auditory messages at specific time intervals
during the simulation. The goal of this subtask is to determine which messages are relevant,
among irrelevant messages, and to respond by selecting the appropriate radio and frequency on
the communications task window. Finally the resource management task aim is to maintain the fuel
level of the main tanks at 2500 lbs by turning on or off any of the eight pumps. Pump failures occur
when they are red colored.

The participants were asked to practice and learn to execute correctly the MATB for three
consecutive weeks, and then the cooperation session was scheduled in the last day. During the
cooperation session the 10 participants were divided in five couples (panel II in Figure 1): one subject
was dealing with tracking and emergency lights task (Pilot), the other was in charge of the fuel
managing task and auditory monitoring task (Co-pilot). Synchronized EEG was recorded while the
couples were executing the MATB under two conditions according to the difficulty level: Easy and
Hard. In the Hard condition, the difficulty of the MATB was increased by enhancing the number of
events and reducing the available time to react to them with respect to the Easy condition. For example,
the Easy condition time-outs were 15 s for the emergency lights, 30 s for the radio communications,
pump rates of 1000 lbs/min and 500 lbs/min for the auxiliary and main tanks, respectively, and a total
of radio calls. Instead, the Hard condition was characterized by time-outs of 20 s for the communication
task, 5 s for the emergency lights, pump rates of 800 lbs/min and 600 lbs/min for the auxiliary and
main tanks, respectively, and a total of seven radio calls.

Before starting with the experiment, a baseline condition was recorded by asking the participants
to look at the MATB interface for 2 min without reacting to the events.

2.3. Subjective Measures

At the end of each condition, the participants were asked to fill the NASA-TLX questionnaire [24],
with the aim of collecting the subjective workload perceptions across the different cooperation
conditions. The NASA-Task Load Index (NASA-TLX) is a widely-used assessment tool that rates
perceived workload in order to assess a task, a system, a team’s effectiveness or other performance
aspects. The total workload score, ranging from 0 to 100, was calculated as a weighted combination
of the six factors of the questionnaire (Mental Demand, Physical Demand, Temporal Demand,
Performance, Effort and Frustration) in order to take into account all the possible aspects interplaying
in the workload level definition.

2.4. Performance Indexes

Four performance indexes have been defined, one for each subtask. In particular, the index for
the tracking task has been defined by considering the complement of the ratio between the cursor’s
distance got by the subject and the maximum of this distance (fixed) from the center of the screen, as
reported in the following formula:

Tracking Task Index =

(
1− Cursor Position

Max Distance

)
× 100 (1)

The indexes of the auditory monitoring task and emergency light task have been defined as a
linear combination of accuracies in terms of correct answers (e.g., correct radio or frequency selected)
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and the ratio between the subject’s reaction time and the maximum time for answering; then, the results
have been multiplied by 100 in order to obtain a percentage, as reported in the following formulas:

Auditory Task Index =

(
% Correct Communication +

Mean RT
Available RT

)
× 100 (2)

Emergency Light Task Index =

(
% Correct Lights +

Mean RT
Available RT

)
× 100 (3)

Finally, the index for the fuel managing task has been defined as the mean value of the fuel level
in the main tanks and then multiplied by 100, as reported in the following formula:

Fuel Managing Index = (% Fuel Stability Tank A + % Fuel Stability Tank B)× 100 (4)

In order to get a global Performance Index, the average of the previous indexes has been calculated.

2.5. EEG Signal Pre-Processing

The EEG was recorded by a digital monitoring system (ANT Waveguard system, ANT Neuro,
Enschede, Netherlands) with a sampling frequency of 256 Hz. All the 30 EEG electrodes for each
subject were referred to both earlobes, grounded to the AFz channel, their impedances were kept below
10 kΩ, and the recording systems was synchronized to avoid delay between the signals recorded from
two different subjects.

The EEG signal was firstly band-pass filtered with a fifth-order Butterworth filter (low-pass
filter cut-off frequency: 45 Hz, high-pass filter cut-off frequency: 1 Hz), and then it was segmented
into epochs of 1 s. Each EEG epoch with amplitude higher than ±80 µV was removed in order to
have an artifact-free EEG dataset from which compute the workload and estimate the parameters for
connectivity analysis. All the analysis tools have been implemented in Mathworks MATLAB.

2.6. EEG—Based Workload Index

From the artifact-free EEG dataset, the power spectral density (PSD) was calculated for each EEG
epoch using a Hanning window of the same length of the considered epoch (1-s length means 1 Hz of
frequency resolution). Then, the EEG frequency bands were defined accordingly with the individual
alpha frequency (IAF) value estimated for each subject [25]. Since the alpha peak is mainly prominent
during rest conditions, the participants were asked to keep their eyes closed for a minute before starting
with the experiment. Such condition was then used to estimate the IAF value specifically for each
subject. In particular, the theta [(IAF − 6), (IAF − 2)] and alpha brain activities [(IAF − 2), (IAF + 2)]
were considered over the EEG frontal (F7, F3, Fz, F4, and F8) and parietal (P7, P3, Pz, P4, and P8)
channels in order to assess the workload. In fact, it was widely demonstrated how such EEG bands
are the most correlated to mental workload variations [9,11,26,27]. In this regard, a mental workload
index (MWI) is defined as:

MWI =
PSDθF

PSDαP

(5)

where the PSDθF represents the PSD in the theta band estimated over the frontal brain areas and the
PSDαP is the PSD in the alpha band estimated over the parietal brain areas. The mental workload
index in Easy and Hard condition have then been normalized on the baseline condition.

2.7. Multiple-Brain Connectivity

Artifacts-free epochs acquired simultaneously from each couple underwent a multiple-brain
connectivity analysis. This analysis provide the information flows exchanged between scalp areas
within each single subject (intra-connections) and between the couple (inter-connections), namely,
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scalp areas belonging to the two subjects in pair. Multiple-brain connectivity estimation is computed
through the partial directed coherence (PDC) estimator adapted to the multi-subject case [18].

PDC is a full multivariate spectral measure used to determine the directed influences among any
given pairs of signals in a multivariate data set. This estimator represents a frequency version of the
concept of Granger causality [28].

Let Y be a set of signals, obtained from non-invasive EEG recordings:

Y = [y1(t), y2(t), . . . , yN(t)] (6)

where t refers to time and N is the number of considered signals. Supposing that the following
multivariate autoregressive (MVAR) process is an adequate description of the dataset Y:

p

∑
k=0

A(k)Y(n− k) = E(n), with A(0) = I (7)

where Y(t) is the data vector in time, E(t) = [e1(t), . . . , en(t)] is a vector of multivariate zero-mean
uncorrelated white noise processes, A(1), A(2), . . . , A(p) are the NxN matrices of model coefficients
and p is the model order, usually chosen by means of the Akaike Information Criteria (AIC) for
MVAR processes [29]. Equation (7) can be transformed to a frequency domain by implementing the
z-transformation of each term:

A( f )Y( f ) = E( f ) (8)

where A( f ) represents the frequency version of A(k) along the p lags considered in the estimation.
It is possible to define the PDC estimator as follows:

πij( f ) =

∣∣Aij( f )
∣∣2

∑N
m=1

∣∣Amj( f )
∣∣2 (9)

where Aij( f ) represents the frequency version of ij coefficient of multivariate autoregressive (MVAR)
model used for modeling the dataset under investigation.

In the present paper, we employed a different normalization of PDC estimator called generalized
PDC (gPDC) recently introduced to circumvent the numerical problem associated with time series
scaling [30]. gPDC can be defined as follows:

gπij( f ) =

∣∣Aij( f )
∣∣2σ−2

i

∑N
m=1

1
σ2

m

∣∣Amj( f )
∣∣2 (10)

where σi refers to the variances of the residuals E. The choice of gPDC was justified by results obtained
in [31] where the insensitivity of gPDC to scale differences in the amplitude of signals to be fed into
the MVAR model was highlighted.

Multiple-brain connectivity patterns were estimated for each experimental condition (Baseline,
Easy, Hard) and each pair included in the study on 20 electrodes (F3, F4, F7, Fz, F8, FC5, FC6, C3, Cz,
C4, CP5, CP6, T7, T8, P3, Pz, P4, O1, O2, Oz). The obtained gPDC values were averaged within three
frequency bands (Theta: 4–8 Hz, Alpha: 8–12 Hz, Beta: 12–25 Hz).

In order to obtain Grand Average Statistical Connectivity Maps, we performed a paired t-test
between connectivity patterns related to the target experimental conditions (Easy and Hard) and those
referring to the corresponding baseline. The statistical comparison was repeated for each of the three
frequency bands.
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2.8. Multiple-Brain Graph Theory

Connectivity matrices estimated for each subjects pair in Easy and Hard condition were
statistically compared, at single-subject level, with threshold values extracted by applying the
95th percentile on the baseline-related gPDC distribution built among the experimental group.
Such comparison made it possible to obtain for each couple, each experimental condition and each
EEG band, an adjacency matrix on which graph theory indices were calculated.

The density of inter-brain connections in each condition was computed as the ratio between the
number of existing inter-connections, and the number of all possible connections between subjects.

Furthermore, we decided to consider indices providing local information about the level
of interaction between the two subjects: strength and clustering coefficients. According to [32]
strength values are informative about the brain processes and clustering coefficients about the local
information transfer.

The strength is defines as [33]:
kw

i = ∑
j∈N

wij (11)

where N is the set of all nodes in the network; wij is the connection weight. According to gPDC
normalization, values of weights are ranging between 0 and 1. The weight represent the value of the
direct connection, that is, i vertex exerts influence on j vertex.

The clustering coefficient of a vertex in a network is the fraction of triangles around a node and is
defined as [34]:

Ci =
2ti

ki(ki − 1)
(12)

where Ci is the clustering coefficient of node i that belongs to set N, ki represents total degree and ti
represents the number of triangles around the node i.

In this case we are interested only in evaluating the connections between subjects, therefore the
strength and the clustering coefficient were computed on the between brain networks. Then the two
indices were averaged across four main scalp areas: frontal (F3, Fz, F4); central (C3, Cz, C4); parietal
(P3, Pz, P4), and; occipital (O1, O2, O3).

These indices were then statistically compared between Easy and Hard conditions in three
frequency bands (Theta, Alpha and Beta) for the whole population, as no significant differences
in terms of workload perception were found between the Pilot and Co-Pilot groups. Moreover,
their values were correlated (Pearson’s correlation) with those of the mental workload index in the
considered experimental group.

3. Results

3.1. Performance and Mental Workload Index

Moving from the Easy to Hard condition, a significant decrease in the global performance index
(p = 0.014) was found (panel a in Figure 2). The comparison between workload perceived by the Pilot
and Co-Pilot groups on the same condition was not significantly different both in Easy (p = 0.625) and
in Hard (p = 0.438) according to the Wilcoxon test. On the contrary, considering the entire experimental
population, the perceived workload in the Hard condition was significantly higher (p = 0.000018) than
the Easy (panel b in Figure 2). The same trend (panel c in Figure 2) was showed by the computed
mental workload index (p = 0.059).
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Figure 2. Bar diagram reporting the performance (a), NASA-Task Load Index (NASA-TLX) (b) and
workload index (c) value obtained in Easy (blue bar) and Hard (red bar) conditions. The symbol * points
out a significant difference between the considered conditions (p < 0.05).

3.2. Multiple-Brain Connectivity

3.2.1. Grand Average

Figure 3 represents the Grand Average Connectivity maps obtained from the statistical contrast by
means of paired t-test between Easy and Hard conditions, respectively, against the baseline condition.
In each couple, the scalp model on the left represents subject doing audio and fuel task (Co-Pilot), whilst
the scalp model on the right represents subjects doing tracking and lights task (Pilot). Only significant
(p < 0.05) connections were reported by means of arrows whose color codifies the averaged value of
the connection. The value of inter-brain density (D) for each condition is also reported. It has to be
noticed the lower number of inter-connections in the Hard condition with respect to the Easy one.
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Figure 3. Grand Average Connectivity Maps obtained comparing Easy (first column) and Hard (second
column) conditions with baseline condition in Theta (first row), Alpha (second row) and Beta (third
row) conditions. The patterns are reported on a 2-D scalp model seen from above with the nose
pointing to the upper part of the page. Only significant connections were reported (paired t-test,
p < 0.05). The colour and diameter of the arrows code for the averaged strength were obtained within
the experimental group. The value D is the inter-brain density.
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3.2.2. Inter-Brain Density

The inter-brain density showed an increasing trend in the Hard condition in the EEG theta and
alpha band, while a decrement in EEG beta band, but none of these differences were statistically
significant (Table 1).

Table 1. Inter-brain density.

Easy Hard p-Value

Theta 0.074 ± 0.005 0.094 ± 0.024 0.104
Alpha 0.080 ± 0.019 0.105 ± 0.020 0.077
Beta 0.124 ± 0.029 0.117 ± 0.019 0.703

3.2.3. Strength

Figure 4 shows the strength averaged in each brain area of interest for the two experimental
conditions. It can be seen that there are higher values in the Hard condition than in the Easy one.
Such a trend was significant over the frontal brain area in the theta band, and over all the considered
brain areas in the alpha band (Table 2).
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Table 2. t-Test p-value Easy versus Hard condition.

Area Theta Alpha

Frontal 0.043 * 0.039 *
Central 0.447 0.014 *
Parietal 0.070 0.010 *

Occipital 0.305 0.009 *

The symbol * points out statistical difference between the considered conditions (paired t-test, p < 0.05).

3.2.4. Clustering Coefficient

The clustering coefficient averaged in the brain areas of interest has been correlated with the
mental workload index. Significant negative correlations were found for the clustering coefficient
averaged over the central brain area in the Hard condition, both in the alpha (R =−0.772, p = 0.008) and
in the beta band (R = −0.784, p = 0.007). Moreover, the clustering coefficient averaged over the parietal
brain area (Figure 5) correlated negatively with the workload index in the beta band (R = −0.690,
p = 0.026). No significant correlation was found in the Easy condition.
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4. Discussion

In this study, the cooperation between humans performing operational tasks under different
difficulty levels has been investigated by means of subjective, behavioral and physiological measures.
The hyperscanning approach that was used made it possible to apply the multi-subject connectivity
analysis that, as demonstrated in previous work [17,19], made it possible to discriminate the degree of
cooperation on the basis of the corresponding brain network properties.

Firstly, we analyzed the effects of different task difficulty on the subjects: a more demanding
condition caused a significant reduction in performance with respect to the Easy condition. Subjective
measures (the NASA-TLX questionnaire) reflected significant increments in the Hard condition,
showing that it was actually perceived as more demanding. The neurometric (i.e., mental workload
index) showed a marginally significant (p = 0.059) increase in the Hard condition, coherently with the
cognitive psychology literature that demonstrated an inverted relationship between mental workload
and performance after exceeding an optimal threshold [11].

Secondly, the multiple-brain connectivity analysis was carried out with the aim to provide
the causal influences between activated brain areas, not necessarily belonging to the same subject.
Each of this area can be describe as a node and the causal relationship by an edge, so the connectivity
matrix can efficiently describe a network. Qualitatively, the number of connections between subjects
(inter-connections), significantly different (p < 0.05) from baseline condition, were higher in Easy than in
Hard (Table 1) condition, but there was not a significant difference in inter-brain density value between
the two conditions (Table 1). In previous works differences in the number of inter-brain connections
had been related to different levels of interaction. However, in this work no differences have been
found, probably because different levels of workload of the same task did not lead to different levels
of coupling activities between participants’ brain. Nevertheless, there was a modulation from Easy to
Hard condition of local features describing the network in subsets of electrodes representative of the
frontal, central, parietal and occipital brain areas.
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Higher strength due to inter-connections during a more demanding task (Hard) in the EEG alpha
band (and also in theta band over the frontal brain area) can be explained as a higher involvement
of those areas in both participants, as the strength is explanatory of brain processes [32]. Then, while
there was not a modulation in terms of number of connections involving the two subjects, in the case
of a more difficult task the average value of the inter-connections was significantly higher than in an
Easy one, as expected.

Finally, during the Hard condition the subjects who exhibited lower workload also had lower
clustering coefficient in the central and parietal brain areas, as reported in the negative correlation
(Figure 5). Since high clustering is associated with robustness of a network, it can be assumed that
higher workload caused impairment in local connectivity in the beta band for both parietal and central
areas, and in the alpha band for the central area. Diminished local clustered connectivity in those
areas indicates less efficiency in information transfer and a behavior closer to a random network [35].
From the mental workload perspective, the significant correlation in case of the Hard condition, but
not in case of the Easy one, could be assumed to be a sign of network properties alteration as the
subjects were closer to the overload point.

These results in terms of bands and areas of interest are coherent with previous knowledge both
about the role of EEG alpha and beta bands [6], and about the central (sensory-motor system), and
parietal (mirror neuron system) brain areas in human interaction and coordination [7].

5. Conclusions

The proposed study demonstrated that different workload demands impacted differently on the
individual team member both in terms of performance, and experienced workload, but also on the
whole team in terms of different local network’s features, describing the brain activities that were
Granger-caused to each other by the two subjects.

Strength value was proven to be significantly higher for a more difficult task in the alpha band,
while clustering coefficient showed negative correlation with workload index in the Hard condition
in bands and areas of interest, respectively, alpha and beta EEG bands and central and parietal brain
areas, as expected in coordination and interaction phenomena.

To sum up, two subjects sharing a task can be seen as a system where mental resources required
for each subject and some features representing the whole system are not independent: in the context
of social neuroscience this relationship could be a fertile ground for the definition of a neuromarker of
efficient interaction.

In this study only a limited number of indexes was used with particular focus on local properties.
Nevertheless, in the future studies, a more complete description of global network properties and
different kind of motifs, aside from clustering, will be computed to better investigate the relationship
between task difficulty and interaction. An online analysis of EEG signals will be used to follow
how both neuromarkers of interaction and workload vary over time in order to predict performance
decreases caused by lack of interaction and/or overload condition.

As the EEG hyperscanning approach makes it possible to examine real social behavior in a real
environment, by using a higher number of electrodes it could be also possible to reconstruct, using functional
imaging methods based on EEG, the cortical and sub-cortical brain activations with high temporal resolution
to investigate how interaction processes and behaviors are implemented by brain system.

Finally, although the size of the experimental group was low, this work showed convergent
findings with previous research and the possibility to correlate information of multiple-brain system
with workload assessment to have a wider view of how coordinated interaction is affected by different
workload demands and, in turn, how it can affect performance. Moreover, since the considered
experimental task (NASA MATB) is freely available, further experiments will be run or replicated in
order to enlarge the experimental group and validate the results described in the presented work.
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