SUPPLEMENTAL INFORMATION

Mechanistic insights into the stimulant properties of novel psychoactive substances (NPS) and their discrimination by the dopamine transporter - *in silico* and *in vitro* exploration of dissociative diarylethylamines

Michelle A. Sahai¹, Colin Davidson^{2,3}, Neelakshi Dutta², and Jolanta Opacka-Juffry^{1*}

¹Department of Life Sciences, University of Roehampton, London SW15 4JD

²St George's University of London, SW17 0RE

³Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK

*Correspondence: Professor J. Opacka-Juffry Department of Life Sciences University of Roehampton, London SW15 4JD, UK Tel +44 (0)20 8392 3563 Email: j.opacka-juffry@roehampton.ac.uk Table S1. The convergence of the calculated free energy change (kcal/mol) in each perturbation for the five compounds in the bound (protein-ligand complex in water) state. (N.B. This is not the change of the binding free energy). The error was estimated based on the standard deviation of all the values used in the estimation of the final value.

	ΔG_4 w.r.t. DPH	ΔG_4 w.r.t. DPH	ΔG_4 w.r.t. DPH	Average ΔG_4
Compound	(kcal/mol)	(kcal/mol)	(kcal/mol)	w.r.t. DPH
	100ns	150ns	175ns	(kcal/mol)
DPH	0	0	0	0
3-MXP	1.19	1.25	1.28	1.25 ± 0.5
4-MXP	1.84	1.89	1.92	1.89 ± 0.5
2-Cl-DPH	-6.77	-6.80	-6.84	-6.84 ± 0.7
2-MXP	15.51	15.59	16.02	15.59 ± 0.8

		N-terminus	
hDAT	1	MSKSKCSVGLMSSVVAPAKEPNAVGPKEVELILVKEQNGVQLTSSTLTNPRQSPVEAQDRETWGKKIDFLLS	5
rDAT	1	MSKSKCSVGPMSSVVAPAKESNAVGPREVELILVKEQNGVQLTNSTLINPPQTPVEAQERETWSKKIDFLLS	5
mDAT	1	MSKSKCSVGPMSSVVAPAKEPNAVGPREVELILVKEQNGVQLTNSTLINPPQTPVEVQERETWSKKIDFLLS	5
dDAT	1	MSPTGHISKSKTPTPHDNDNNSISDERETWSGKVDFLLS	\$
		── TM1 ── ● EL1 ● ── TM2 ── ■ IL1 ●	Ś
hDAT	73	VIGFAVDLANVWRFPYLCYKNGGGAFLVPYLLFMVIAGMPLFYMELALGQFNREGAAGVW-KICPILKGVGF	P.
rDAT	73	VIGFAVDLANVWRFPYLCYKNGGGAFLVPYLLFMVIAGMPLFYMELALGQFNREGAAGVW-KICPVLKGVGF	P.
mDAT	73	VIGFAVDLANVWRFPYLCYKNGGGAFLVPYLLFMVIAGMPLFYMELALGQFNREGAAGVW-KICPVLKGVGF	P
dDAT	40	VIGFAVDLANVWRFPYLCYKNGGGAFLVPYGIMLVVGGIPLFYMELALGQHNRKGAITCWGRLVPLFKG <u>I</u> GY	č
		TM3 EL2	
hDAT	144	TVILISLYVGFFYNVIIAWALHYLFSSFTTELPWIHCNNSWNSPNC	-
rDAT	144	TVILISFYVGFFYNVIIAWALHYFFSSFTMDLPWIHCNNTWNSPNC	-
mDAT	144	TVILISFYVGFFYNVIIAWALHYFFSSFTMDLPWIHCNNTWNSPNC	-
dDAT	112	AVVLIAFYVDFYYNVIIAWSLRFFFASFTNSLPWTSCNNIWNTPNCRPFESQNASRVPVIGNYSDLYAMGNQ	2
		FI 2	
DAT	190	SDAHPGDSSGDSSGLNDTFG-TTPAAEYFERGVLHLHOSHGIDDLGPPRWOLTACLVLVIVLLYFSLW	4
DAT	190	SDAHASNSS-DGLGLNDTGG-TTPAAEYFERGVLHLHOSRGIDDLGPPRWOLTACLVLVIVLLYFSLW	A
nDAT	190	SDAHSSNSS-DGLGLNDTGG-TTPAAEYFERGVLHLHOSRGIDDLGPPRWOLTACLVLVTVLLYFSLW	4
IDAT	184	SLLYNETYMNGSSLDTSAVGHVEGFQSAASEYFNRYILELNRSEGIHDLGAIKWDMALCLLIVYLICYFSLW	4
		II.2 a TM5 EI.2 a TM6	
DAT	257		,
DAT	257	ROVELSGAVVII TAIMFIVULIALLILIGVILIFGAIDGIRALLSVDFIRLCASVIIDAATQVCFSLGVGGV	,
DAT	256	KOVATSGAVVMITATMPIVULTALLLAGVTLPGAMDGIDAVISVDFIRLCEASVMIDAATQVCFSLGVGFGV	
DAT	250	KOVATSGAVVWITATMPIVULTALLLAGVTLPGAMDGIRAYLSVDFYRLCEASVWIDAATQVCFSLGVGFGV	,
IDAT	250	KGISTSGKVVWFTALFPYAVLLILLINGLTLPGSFLGIQYYLTPNFSAIYKAEVWVDAATQVFFSLGPGFGV	,
		──● IL3 ●──── TM7 ───● EL4	
hDAT	329	LIAFSSYNKFTNNCYRDAIVTTSINSLTSFSSGFVVFSFLGYMAQKHSVPIGDVAKDGPGLIFIIYPEAIAT	C
DAT	328	LIAFSSYNKFTNNCYRDAIITTSINSLTSFSSGFVVFSFLGYMAQKHNVPIRDVATDGPGLIFIIYPEAIAT	2
nDAT	328	LIAFSSYNKFTNNCYRDAIITTSINSLTSFSSGFVVFSFLGYMAQKHNVPIRDVATDGPGLIFIIYPEAIAT	F
DAT	328	LLAYASYNKYHNNVYKDALLTSFINSATSFIAGFVIFSVLGYMAHTLGVRIEDVATEGPGLVFVVYPAAIAT	e
		• TM8• II.4 • TM9• EL5 •	
DAT	401	LPLSSAWAVVFFIMILTIGTDSAMGGMESVITGLTDEFOLLHERHELFTLFVLFVLATFLLSLFCVTNGGIVVF	,
DAT	400	LPLSSAWAAVFFLMLLTLGIDSAMGGMESVITGLVDEFOLLHRHRELFTLGIVLATFLLSLFCVTNGGIVVF	,
DAT	400	LPLSSAWAAVFFLMLI, TIGIDSAMGGMESVITGLUDEFOLLHERELFTLGIVLATFLLSLFCVTNGGIVVE	
DAT	400	MPASTFWALIFFMMLLTLGLDSSFGGSEAIITALSDEFPKIKRNRELFVAGLFSLYFVVGLASCTQGGFYFF	,
		TM10 TM11	
DAT	473	TLLDHFAAGTSILFGVLIFAIGVAWFYGVGOFSDDTOOMTGORPSLYWRLCWKLVSPCFLLFVVVVSTVTFF	2
DAT	472	TLLDHFAAGTSILFGVLIEAIGVAWFYGVOOFSDDIKOMTGORPNLYWRLCWKLVSPCFLLVVVVVSTVTFF	2
nDAT	472	TLLDHFAAGTSILFGVLIEAIGVAWFYGVOOFSDDIKOMTGORPNL/WRLCWKLVSPCFLI/VVVVSTVTFF	2
IDAT	472	HLLDRYAAGYSILVAVFFEAIAVSWIYGTNRFSEDIRDMIGFPPGRYWQVCWRFVAPIFLLFITVYGLI	C C
		FIG TM12	
DAT	545		
DAT	545	FINISALIFFUWAWALGWYIATSSMATYFIAAIAFGOLDGSFREALAIALAFEKDRELVDRGEVRQFI	
mDAT	544	FILIGALIFFDWANALGWILAISSMANYFILAIIAFCBLPGSFREALAIAITFEADNQLVDRGEVRQFI	
dDAT	544	CVEDLTVANALGWIIATSSMAMVFIIATIKFUSLPGSFKEKLAIAITFEKDKQLVDKGEVKQFT	
	344	C TEERITERA LESANARDONCTUODOAANITERANTEURD LEGORVÕKEITRILEMKNÖÖDWWANDNOALI	
		C-terminus — (20	
hDAT	614	LRHWLKV 620	
rDAT	613		
MDAT dDAT	613	LIKHWLLV 017	
UDAI	613	EVIVVRLIDIETAKEPVDV 051	

Figure S1: Alignment of human (hDAT), rat (rDAT), mouse (mDAT) and fruit-fly (dDAT) amino acid sequences. Conservation > 99% is indicated in black and highlights the high conservation at the transmembrane (TM) regions, especially TM1-10. Positively charged residues are coloured in red and negatively charged residues in cyan. The figure was prepared using Alignment-Annotator web server [42].

Figure S2: (A) RMSD graph and superimposition of compounds at the binding site after docking (cyan) and after 100ns (orange) of unbiased MD for (B) DPH and (C) 2-MXP. Internal sodium and chloride ions are depicted as yellow and cyan coloured spheres. Dashed lines refer to the salt bridge interaction between Asp79 and the protonated amine of the respective compound as well as the hydrogen bond between the OH group of Tyr156 and Asp79.

Figure S3: Time evolution in the simulations for rDAT when bound to 2-Cl-DPH. (A) depicts the distances between D79 and Y156, Na1 and Na2 and R85 and D475. (B) and (C) depict the C β -C β distances between residues in various extracellular and intracellular transmembrane (TM) segments respectively for I67 (in TM1a) and L446 (in TM9), I67 (in TM1a) and S332 (in TM6b) and S332 (in TM6b) and L446 (in TM9); E306 (in TM6a) and F171 (in TM3); and F171 (in TM3) and K92 (in TM1b).

Figure S4: Time evolution in the simulations for rDAT when bound to 3-MXP. (A) depicts the distances between D79 and Y156, Na1 and Na2 and R85 and D475. (B) and (C) depict the C β -C β distances between residues in various extracellular and intracellular transmembrane (TM) segments respectively for I67 (in TM1a) and L446 (in TM9), I67 (in TM1a) and S332 (in TM6b) and S332 (in TM6b) and L446 (in TM9); E306 (in TM6a) and F171 (in TM3); and F171 (in TM3) and K92 (in TM1b).

Figure S5: Time evolution in the simulations for rDAT when bound to 4-MXP. (A) depicts the distances between D79 and Y156, Na1 and Na2 and R85 and D475. (B) and (C) depict the C β -C β distances between residues in various extracellular and intracellular transmembrane (TM) segments respectively for I67 (in TM1a) and L446 (in TM9), I67 (in TM1a) and S332 (in TM6b) and S332 (in TM6b) and L446 (in TM9); E306 (in TM6a) and F171 (in TM3); and F171 (in TM3) and K92 (in TM1b).