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Abstract: Statistical learning (SL) is a method of learning based on the transitional probabilities
embedded in sequential phenomena such as music and language. It has been considered an implicit
and domain-general mechanism that is innate in the human brain and that functions independently
of intention to learn and awareness of what has been learned. SL is an interdisciplinary notion that
incorporates information technology, artificial intelligence, musicology, and linguistics, as well as
psychology and neuroscience. A body of recent study has suggested that SL can be reflected in
neurophysiological responses based on the framework of information theory. This paper reviews
a range of work on SL in adults and children that suggests overlapping and independent neural
correlations in music and language, and that indicates disability of SL. Furthermore, this article
discusses the relationships between the order of transitional probabilities (TPs) (i.e., hierarchy
of local statistics) and entropy (i.e., global statistics) regarding SL strategies in human’s brains;
claims importance of information-theoretical approaches to understand domain-general, higher-order,
and global SL covering both real-world music and language; and proposes promising approaches
for the application of therapy and pedagogy from various perspectives of psychology, neuroscience,
computational studies, musicology, and linguistics.

Keywords: statistical learning; implicit learning; domain generality; information theory; entropy;
uncertainty; order; n-gram; Markov model; word segmentation

1. Introduction

The brain is a learning system that adapts to multiple external phenomena existing in its living
environment, including various types of input such as auditory, visual, and somatosensory stimuli,
and various learning domains such as music and language. By means of this wide-ranging system,
humans can comprehend structured information, express their own emotions, and communicate with
other people [1]. According to linguistic [2,3] and musicological studies [4,5], music and language have
domain-specific structures including universal grammar, tonal pitch spaces, and hierarchical tension.
Neurophysiological studies likewise suggest that there are specific neural bases for language [6,7] and
music comprehension [8,9]. Nevertheless, a body of research suggests that the brain also possesses
a domain-general learning system, called statistical learning (SL), that is partially shared by music
and language [10,11]. SL is a process by which the brain automatically calculates the transitional
probabilities (TPs) of sequential phenomena such as music and language, grasps information dynamics
without an intention to learn or awareness of what we know [12,13], and further continually updates
the acquired statistical knowledge to adapt to the variable phenomena in our living environments [14].
Some researchers also indicate that the sensitivity to statistical regularities in sequences could be
a by-product of chunking [15].

Brain Sci. 2018, 8, 114; doi:10.3390/brainsci8060114 www.mdpi.com/journal/brainsci

http://www.mdpi.com/journal/brainsci
http://www.mdpi.com
http://dx.doi.org/10.3390/brainsci8060114
http://www.mdpi.com/journal/brainsci
http://www.mdpi.com/2076-3425/8/6/114?type=check_update&version=1


Brain Sci. 2018, 8, 114 2 of 23

The SL phenomenon can partially be supported by a unified brain theory [16]. This theory tries to
provide a unified account of action and perception, as well as learning under a free-energy principle [17,18],
which views several keys of brain theories in the biological (e.g., neural Darwinism), physical
(e.g., information theory), and neurophysiological (e.g., predictive coding) sciences. This suggests
that several brain theories might be unified within a free-energy framework [19], although its capacity to
unify different perspectives has yet to be established. This theory suggests that the brain models
phenomena in its living environment as a hierarchy of dynamical systems that encode a causal
chain structure in the sensorium to maintain low entropy [16], and predicts a future state based on
the internalized model to minimize sensory reaction and optimize motor action. This prediction is in
keeping with the theory of SL in the brain. That is, in SL theory, the brain models sequential phenomena
based on TP distributions, grasps entropy in the whole sequences, and predicts a future state based on
the internalized stochastic model in the framework of predictive coding [20] and information theory [21].
The SL also occurs in action sequences [22,23], suggesting that SL could contribute to optimization of
motor action.

SL is considered an implicit and ubiquitous process that is innate in humans, yet not unique to
humans, as it is also found in monkeys [24,25], songbirds [26,27], and rats [28]. The terms implicit
learning and SL have been used interchangeably and are regarded as the same phenomenon [15].
A neurophysiological study [29] has suggested that conditional probabilities in the Western music
corpus are reflected in the music-specific neural responses referred to as early right anterior negativity
(ERAN) in event-related potential (ERP) [8,9]. The corpus study also found statistical universals in
music structures across cultures [30,31]. These findings also suggest that musical knowledge may be at
least partially acquired through SL. Our recent studies have also demonstrated that the brain codes
the statistics of auditory sequences as relative information, such as relative distribution of pitch and
formant frequencies, and that this information can be used in the comprehension of other sequential
structures [10,32]. This suggests that the brain does not have to code and accumulate all received
information, and thus saves some memory capacity [33]. Thus, from the perspective of information
theory [21], the brain’s SL is systematically efficient.

As a result of the implicit nature of SL, however, humans cannot verbalize exactly what they
statistically learn. Nonetheless, a body of evidence indicates that neurophysiological and behavioural
responses can unveil musical and linguistic SL effects [14,32,34–44] in the framework of predictive
coding [20]. Furthermore, recent studies have detected the effects of musical training on linguistic
SL of words [41,43,45–47] and the interactions between musical and linguistic SL [10] and between
auditory and visual SL [44,48–50]. On the other hand, some studies have also suggested that SL is
impaired in humans with domain-specific disorders such as dyslexia [51–53] and amusia [54,55],
disorders that affect linguistic and music processing, respectively (though Omigie and Stewart
(2011) [56] have suggested that SL is intact in congenital amusia). Thiessen et al. [57] suggested
that a complete-understanding statistical learning must incorporate two interdependent processes: one
is the extracting process that computes TPs (i.e., local statistics) and extracts each item, such as word
segmentation, and the other one is the integration process that computes distributional information
(i.e., summary statistics) and integrates information across the extracted items. The entropy and
uncertainty (i.e., summary statistics), as well as TPs, are used to understand the general predictability
of sequences in domain-general SL that could cover music and language in the interdisciplinary
realms of neuroscience, behavioral science, modeling, mathematics, and artificial intelligence. Recent
studies have suggested that SL strategies in the brain depend on the hierarchy, order [14,35,58,59],
entropy, and uncertainty in statistical structures [60]. Hasson et al. [61] also indicated that certain
regions or networks perform specific computations of global or summary statistics (i.e., entropy),
which are independent of local statistics (i.e., TP). Furthermore, neurophysiological studies suggested
that sequences with higher entropy were learned based on higher-order TP, whereas those with lower
entropy were learned based on lower-order TP [59]. Thus, it is considered that information-theoretical
and neurophysiological concepts on SL link each other [62,63]. The integrated approach of
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neurophysiology and informatics based on the notion of order of TP and entropy can shed light on
linking concepts of SL among a broad range of disciplines. Although there have been a number
of studies on SL in music and language, few studies have examined the relationships between
the “order” of TPs (i.e., the order of local statistics) and entropy (i.e., summary statistics) in SL.
This article focuses on three themes in SL from the viewpoint of information theory, as well as
neuroscience: (1) a mathematical interpretation of SL that can cover music and language and the
experimental paradigms that have been used to verify SL; (2) the neural basis underlying SL in adults
and children; and (3) the applicability of therapy and pedagogy for humans with learning disabilities
and healthy humans.

2. Mathematical Interpretation of Brain SL Process Shared by Music and Language

2.1. Local Statistics: Nth-Order Transitional Probability

According to SL theory, the brain automatically computes TP distributions in sequential
phenomena (local statistics) [35], grasps uncertainty/entropy in the whole sequences
(global statistics) [61], and predicts a future state based on the internalized statistical model
to minimize sensory reaction [16,20]. The TP is a conditional probability of an event B given that
the latest event A has occurred, written as P(B|A). The TP distributions sampled from sequential
information such as music and language are often expressed by nth-order Markov models [64] or
n-gram models [21] (Figure 1). Although the terminology of n-gram models has frequently been used
in natural language processing, it has also recently been used in music models [65,66]. They have often
been applied to develop artificial intelligence that gives computers learning abilities similar to those
of the human brain, thus generating systems for data mining, automatic music composition [67–69],
and automatic text classification in natural language processing [70,71]. The mathematical model of SL
including nth-order Markov and (n + 1)-gram models is the conditional probability of an event en+1,
given the preceding n events based on Bayes’ theorem:

P(en+1|en) = P(en+1 ∩ en)/P(en) (1)

From the viewpoint of psychology, the formula can be interpreted as positing that the brain
predicts a subsequent event en+1 based on the preceding events en in a sequence. In other words,
learners expect the event with the highest TP based on the latest n states, whereas they are likely to be
surprised by an event with lower TP (Figure 2).
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Figure 1. Example of n-gram and Markov models in statistical learning (SL) of language (a) and 

music (b) based on information theory. The top are examples of sequences, and the others explain 

how to calculate TPs (P(en+1|en)) based on zero- to second-order Markov models. They are based on 

the conditional probability of an event en+1, given the preceding n events based on Bayes’ theorem. 

For instance, in language ((a), This is a sentence), the second-order Markov model represents that the 

“a” can be predicted based on the last subsequent two words of “This” and “is”. In music ((b), C4, 

D4, E4, F4), second-order Markov model represents that the “E” can be predicted based on the last 

subsequent two tones of “C” and “D”. 

Figure 1. Example of n-gram and Markov models in statistical learning (SL) of language (a) and
music (b) based on information theory. The top are examples of sequences, and the others explain
how to calculate TPs (P(en+1|en)) based on zero- to second-order Markov models. They are based on
the conditional probability of an event en+1, given the preceding n events based on Bayes’ theorem.
For instance, in language ((a), This is a sentence), the second-order Markov model represents that the “a”
can be predicted based on the last subsequent two words of “This” and “is”. In music ((b), C4, D4, E4,
F4), second-order Markov model represents that the “E” can be predicted based on the last subsequent
two tones of “C” and “D”.
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2.2. Global Statistics: Entropy and Uncertainty 

SL models are sometimes evaluated in terms of entropy [72–75] in the framework of 
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Figure 2. SL models and the sequences used in neural studies. All of the models and paradigms
in sequences based on concatenation of words (a), Markov model of tone (b) and word (c), and
concatenation of words with different TPs of the last stimuli in words (d) are simplified so that
the characteristics of paradigms can be compared. In the example of word-segmentation paradigm (a),
the same words do not successively appear. TP—transitional probability.

2.2. Global Statistics: Entropy and Uncertainty

SL models are sometimes evaluated in terms of entropy [72–75] in the framework of information
theory, as done by Shannon [21]. Entropy can be calculated from probability distribution, interpreted
as the average surprise (uncertainty) of outcomes [16,76], and used to evaluate the neurobiology
of SL [60], as well as rule learning [77], decision making [78], anxiety, and curiosity [79,80] from
the perspective of uncertainty. For instance, the conditional entropy (H(B|A)) in the nth order TP
distribution (hereafter, Markov entropy) can be calculated from information contents:

H(Xi+1|Xi) = −ΣP(xi)ΣP(xi+1|xi) log2P(xi+1|xi) (2)
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where H(Xi+1|Xi) is the Markov entropy; P(Xi) is the probability of event xi occurring; and P(Xi+1|Xi)
is the probability of Xi+1, given that Xi occurs previously. Previous articles have suggested that
the degree of Markov entropy modulates human predictability in SL [61,81]. The uncertainty
(i.e., global/summary statistics), as well as the TP (i.e., local statistics), of each event is applicable to
and may be used to predict many types of sequential distributions, such as music and language, and to
understand the predictability of a sequence (Figure 3). Indeed, entropy and uncertainty are often used
to understand domain-general SL in the interdisciplinary realms of neuroscience, behavioural science,
modeling, mathematics, and artificial intelligence.
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Figure 3. The entropy (uncertainty) of predictability in the framework of SL. The uncertainties depend on
(a) TP ratios in a first-order Markov model (i.e., bigram model) and (b) orders of models in the TP ratio of
10% vs. 90%.

2.3. Experimental Designs of SL in Neurophysiological Studies

The word segmentation paradigm is frequently used to examine the neural basis underlying SL
(e.g., [34,41,43,44,46,82–96]). This paradigm basically consists of a concatenation of pseudo-words
(Figure 2a). In the pseudo-words sequence, the TP distributions based on a first-order Markov
model represent lower TPs in the “first” stimulus of each word (Figure 2a: P(B|A), P(C|B), and
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P(A|C)) than other stimuli of word (Figure 2a: P(C|A), P(A|A), P(A|B), P(B|B), P(B|C), and P(C|C)).
When the brain statistically learns the sequences, it can identify the boundaries between words based
on first-order TPs (Figure 2a) [97,98], and segment/extract each word. The SL of word segmentation
based on first-order TPs has been considered as a mechanism for language acquisition in the early
stages of language learning, even in infancy [12]. Recent studies have also demonstrated that SL can be
performed based on within-word, as well as between-word, TPs ([40,98] for example, see Figure 2d).
Although a number of studies have used a word segmentation paradigm consisting of words with
a regular unit length (typically, three stimuli within a word), previous studies suggest that the unit
length of words [99], the order of TPs [59], and the nonadjacent dependencies of TPs in sequences
([14,100–102] for example, see Figure 2c) can modulate the SL strategy used by the brain. Indeed,
natural languages and music make use of higher-order statistics, including hierarchical, syntactical
structures. To understand the brain’s higher-order SL systems in a form closer to that used for natural
language and music, sequential paradigms based on higher-order Markov models have also been
used in neurophysiological studies ([32,35,103] for example, see Figure 2b). Furthermore, the nth-order
Markov model has been applied to develop artificial intelligence that gives computers learning
and decision-making abilities similar to those of the human brain, thus generating systems for
automatic music composition [67–69] and natural language processing [70,71]. Information-theoretical
approaches, including information content and entropy based on nth-order Markov models, may be
useful in understanding the domain-general SL, as it functions in response to real-world learning
phenomena in the interdisciplinary realms of brain and computational sciences.

3. Neural Basis of Statistical Learning

3.1. Event-Related Responses and Oscillatory Activity

The ERP and event-related magnetic fields (ERF) modalities directly measure brain activity during
SL and represent a more sensitive method than the observation of behavioral effects [40,41,104]. Based on
predictive coding [20], when the brain encodes the TP distributions of a stimulus sequence, it expects
a probable future stimulus with a high TP and inhibits the neural response to predictable external
stimuli for efficiency of neural processing. Finally, the effects of SL manifest as a difference in the ERP
and ERF amplitudes between stimuli with lower and higher TPs (Figure 4). Although many studies
of word segmentation detected SL effects on the N400 component [43,46,88,89,93,94,105], which is
generally considered to reflect a semantic meaning in language and music [106–108], auditory brainstem
response (ABR) [96], P50 [41], N100 [94], mismatch negativity (MMN) [40,44,98], P200 [46,89,105],
N200–250 [44,47], and P300 [83] have also been reported to reflect SL effects (Table 1). In addition, other
studies using Markov models also reported that SL is reflected in the P50 [14,36,37], N100 [10,14,32,35],
and P200 components [35]. Compared with later auditory responses such as N400, the auditory
responses that peak earlier than 10 ms after stimulus presentation (e.g., ABR) and at 20–80 ms,
which is around P50 latency, have been attributed to parallel thalamo–cortical connections or
cortico–cortical connections between the primary auditory cortex and the superior temporal gyrus [109].
Thus, the suppression of an early component of auditory responses to stimuli with a higher TP in
lower cortical areas can be interpreted as the transient expression of prediction error that is suppressed
by predictions from higher cortical areas in a top-down connection [96]. Thus, top-down, as well as
bottom-up, processing in SL may be reflected in ERP/ERF. On the other hand, SL effects on N400 have
been detected in word-segmentation tasks, but not in the Markov model. TPs of a word-segmentation
task are calculated based on first-order models (Figure 2a). In other words, in terms of the “order” of
TP, SL of word segmentation (i.e., sequence consisting of word concatenation) and first-order Markov
model have same hierarchy of TP. Nevertheless, SL studies using the first-order Markov model did
not detect learning effects of N400 (Table 1). The phenomenon of word segmentation itself has been
considered as a mechanism of language acquisition in the early stages of language learning [12].
Several papers claim that the sensitivity to statistical regularities in sequences of word concatenation
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could be a by-product of chunking [15]. Neurophysiological effects of word segmentation, such as
N400, reflecting a semantic meaning in language [106–108] may be associated with the neural basis
underlying linguistic functions, as well as statistical computation itself. On the other hand, our previous
study using the first-order Markov model [36] struggled to detect N400 in terms of a stimulus onset
asynchrony of sequences (i.e., 500 ms). A future study will be needed to verify SL effects of N400 using
the Markov model.

Table 1. Overview of neurophysiological correlations with auditory statistical learning.
TP—transitional probability; ABR—auditory brainstem response; MMN—mismatch negativity;
STS—superior temporal sulcus; STG—superior temporal gyrus; IFG—inferior frontal gyrus;
PMC—premotor cortex; PTC—posterior temporal cortex.

Paradigms Order of TP Neural Correlates References

Word
segmentation First-order

ABR Skoe et al., 2015 [96]

P50 Paraskevopoulos et al., 2012 [41]

N100 Sanders et al., 2002 [94]

MMN
Koelsch et al., 2016 [40]

Moldwin et al., 2017 [98]
Francois et a., 2017 [44]

P200
De Diego Balaguer et al., 2007 [89]

Francois et al., 2011 [46]
Cunillera et al., 2006 [105]

N200–250 Mandikal Vasuki et al., 2017 [47]
Francois et al., 2017 [44]

P300 Batterink et al., 2015 [83]

N400

Cunillera et al., 2009 [88], 2006 [105]
De Diego Balaguer et al., 2007 [89]

Sanders et al., 2002 [94]
Francois et al., 2011 [46]; 2013 [43]; 2014 [93]

STS, STG
Farthouat et al., 2017 [91]
Tremblay et al., 2012 [110]

Paraskevopoulos et al., 2017 [45]

Left IFG
Abla and Okanoya, 2008 [111]

McNealy et al., 2006 [112]
Paraskevopoulos et al., 2017 [45]

PMC Cunillera et al., 2009 [88]

Hippocampus Schapiro et al., 2014 [113]

Markov model

First-order

P50 Daikoku et al., 2016 [36]

Wernicke’s area Bischoff-Grethe et al., 2000 [114]

Hippocampus Harrison et al., 2006 [60]

Higher-order

P50 Daikoku et al., 2017 [14]; 2017 [37]

N100 Furl et al., 2011 [35]
Daikoku et al., 2014 [32]; 2015 [10]; 2017 [14]

P200 Furl et al., 2011 [35]

Right PTC Furl et al., 2011 [35]
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Figure 4. Representative equivalent current dipole (ECD) locations (dots) and orientations (bars) for
the N100 m responses superimposed on the magnetic resonance images (a) (Daikoku et al., 2014 [32];
and the SL effects (b) (Daikoku et al., 2015 [10]) (NS = not significant). When the brain encodes the TP
in a sequence, it expects a probable future stimulus with a high TP and inhibits the neural response to
predictable stimuli. In the end, the SL effects manifest as a difference in amplitudes of neural responses
to stimuli with lower and higher TPs (b).

It has been suggested that SL could also be reflected in oscillatory responses in the theta band [115,116].
Moreover, the human and monkey auditory cortices represent the neural marker of predictability based
on SL in the form of modulations of transient theta oscillations coupling with gamma and concomitant
effects [25], suggesting that SL processes are unlikely to have evolved convergently and are not
unique to humans. According to previous studies, low-frequency oscillations may play an important
role in speech segmentation associated with SL [73], and in tracking the envelope of the speech
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signal, whereas high-frequency oscillations are fundamentally involved in tracking the fine structure
of speech [117]. Furthermore, there is evidence of top-down effects in low-frequency oscillations
during listening to speech (up to beta band: 15–30 Hz), whereas bottom-up processing dominates in
higher frequency bands [118]. Studies on the auditory oddball paradigm have also demonstrated that
the power and/or coherence of theta oscillations to low-probability sounds is increased relative to
high-probability sounds. Thus, many studies suggest that the lower-frequency oscillations, including
theta band, are related to the prediction error [119]. Top-down predictions also control the coupling
between speech and low-frequency oscillations in the left frontal areas, most likely in the speech
motor cortex [120]. Although low-frequency oscillations could cover ERP components that have
been suggested to reflect SL effects, the studies on oscillation and prediction imply the importance of
investigating SL effects on oscillatory responses, as well as ERP.

3.2. Anatomical Mechanisms

3.2.1. Local Statistics: Transitional Probability

Neuroimaging studies have indicated that both cortical and subcortical areas play an important
role in SL. For instance, the auditory association cortex, including the superior temporal sulcus
(STS) [91] and superior temporal gyrus (STG) [110], contributes to auditory SL of both speech
and non-speech sounds. Previous studies have also reported the effects of laterality on SL.
For instance, functional magnetic resonance imaging (fMRI) [121] and near-infrared spectroscopy
(NIRS) [111] studies have suggested that SL is linked to the left auditory association cortex or
the left inferior frontal gyrus (IFG) [112,122], which include Wernicke’s and Broca’s areas, respectively.
Furthermore, one previous study has indicated that brain connectivity between bilateral superior
temporal sources and the left IFG is important for auditory SL [45]. On the other hand, another study has
shown that the right posterior temporal cortex (PTC), which represents the high levels of the peri-Sylvian
auditory hierarchy, is related to higher-order auditory SL [35] (i.e., second-order TPs). Further study
will be needed to examine the relationships between the order of TPs in sequences and the neural
correlations that depend on the order of TPs and hierarchy of SL.

Some studies have suggested that the sensory type of each stimulus modulates the neural
basis underlying SL. For instance, some previous studies have suggested that the right hemisphere
contributes to visual SL [123]. Paraskevopoulos and colleagues [50] revealed that the cortical network
underlying audiovisual SL was partly common with and partly distinct from the unimodal networks
of visual and auditory SL, comprising the right temporal and left inferior frontal sources, respectively.
fMRI studies have also reported that Heschl’s gyrus and the medial temporal lobe [124] contribute to
auditory and visual SL, respectively [113], and that motor cortex activity also contributes to visual SL of
action words [22]. Furthermore, Cunillera et al. [88] have suggested that the superior part of the ventral
premotor cortex (PMC), as well as the posterior STG, are responsible for SL of word segmentation,
suggesting that linguistic SL is related to an auditory–motor interface. Another study has suggested that
the abstraction of acquired statistical knowledge is associated with a gradual shift from memory systems
in the medial temporal lobe, including the hippocampus, to those of the striatum, and that this may be
mediated by slow wave sleep [125].

3.2.2. Global Statistics: Entropy

Perceptive mechanisms of summary structure (i.e., global statistics) are considered to be independent
of the prediction of each stimulus with different TPs (local statistics) [57,61]. Recent studies have examined
the brain systems that are responsible for encoding the uncertainty of global statistics in sequences
by comparing brain activities while listening to Markov/word-concatenation and random sequences,
which have lower and higher entropies, respectively. Regardless of whether music or language is assessed,
the hippocampus and the lateral temporal region [88], including Wernicke’s area [114], are considered
to play important roles in encoding uncertainty and conditional entropy of statistical information [60].
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Bischoff-Grethe et al. have also indicated that Wernicke’s area may not be exclusively associated
with uncertainty of language information [114]. Furthermore, uncertainty in auditory and visual
statistics is coded by modality-general, as well as modality-specific, neural mechanisms [126,127],
supporting the hypothesis that the neural basis underlying the brain’s perception of global statistics
(i.e., uncertainty), as well as local statistics (i.e., prediction of each stimulus with different TPs),
is a domain-general system. Our previous neural study also suggested that reorganization of
acquired statistical knowledge requires more time than the acquisition of new statistical knowledge,
even if the new and previously acquired information sets have equivalent entropy levels [14].
Furthermore the results suggested that humans learn larger structures, such as phrases, first and
subsequently extract smaller structures, such as words, from the learned phrases (global-to-local learning
strategy). To the best of our knowledge, however, no study has yet demonstrated the differences and
neural basis interactions between global and local statistics. Further study is needed to reveal how
the coding of global statistics affects that of local statistics.

4. Clinical and Pedagogical Viewpoints

4.1. Disability

Although SL is a domain-general system, some studies have reported that SL is impaired in
domain-specific disabilities such as dyslexia [51–53] and amusia [54,55], which are language- and
music-related disabilities, respectively. Ayotte and colleagues [128] have suggested that individuals
with congenital amusia fail to learn music SL but can learn linguistic SL, even if the sequences
of both types have the same degree of statistical regularity [54]. Another study has suggested,
in contrast, that SL is intact in amusia [56], and that individuals with amusia lack confidence in
their SL ability, although they can engage in SL of music. Peretz et al. [54] stated that the input and
output of the statistical computation might be domain-specific, whereas the learning mechanism
might be domain-general. Furthermore, previous studies have indicated that SL ability is impaired
in patients with damage to a specific area of the brain. For instance, SL is impaired in connection
with hippocampal [129] and right-hemisphere damage [130]. Indeed, it has been suggested that
the hippocampus plays an important role in SL [124]. One recent study indicated that auditory
deprivation leads to disability of not only auditory SL [131] but also visual SL [132]. This implies
that there may be specific neural mechanisms for SL that can be shared among distinct sensory
modalities. Another study [133], however, suggested that a period of early deafness is not associated
with SL disability. Further study is needed to clarify whether SL disability is related to temporary
auditory deprivation.

4.2. Music-to-Language Transfer

4.2.1. Neural Underpinnings of SL That Overlap across Music and Language Processing

Because of the acoustic similarity [134], cortical overlap [135,136], and domain generality of SL
across language and music, experienced listeners to particular spectrotemporal acoustic features,
such as rhythm and pitch, in either speech or music have an advantage when perceiving similar
features in the other domain [137]. According to neural studies, musical training leads to a different
gray matter concentration in the auditory cortex [138] and a larger planum temporale (PT) [139–143];
the region where both language and music are processed. An ERP study has demonstrated that both
the linguistic and the musical effects of SL on the N100–P200 response, which could originate in
the belt and parabelt auditory regions [144,145], were larger in musicians than in non-musicians [46].
Thus, the increased PT volume associated with musical training may facilitate auditory processing in
SL. A magnetoencephalographic (MEG) study also reported that the effect of SL on the P50 response
was larger in musicians than in non-musicians [41], suggesting that musical training also boosts
corticofugal projections in a top-down manner regarding predictive coding [96].
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Musical training could also facilitate the effects of SL on N400 [46], which is considered to
be associated with IFG and PMC [88]. According to the results of a neural study, musicians have
an increased gray matter density of the left IFG (i.e., Broca’s area) and PMC [146]. Other studies
have suggested that, during SL of word segmentation, musicians exhibit increased left-hemispheric
theta coherence in the dorsal stream projecting from the posterior superior temporal (pST) and
inferior parietal (IP) brain regions toward the prefrontal cortex, whereas non-musicians show stronger
functional connectivity in the right hemisphere [115]. An MRI study also demonstrated that SL of
word segmentation leads to pronounced left-hemisphere activity of the supratemporal plane, IP lobe,
and Broca’s area [147]. Thus, the left dorsal stream is considered to play an important role in SL, as
well as language [7] and music learning [148].

The SL of word segmentation plays an important role in various speech abilities. Recent studies
have revealed a strong link between SL of word segmentation and more general linguistic proficiency
such as expressive vocabulary [149] and foreign language [150]. An fMRI study [151] has suggested
that, during SL of word segmentation, participants with strong SL effects of familiar language
on which they had been pretrained had decreased recruitment of fronto-subcortical and posterior
parietal regions, as well as a dissociation between downstream regions and early auditory cortex,
whereas participants with strong SL effects of novel language that had never been exposed showed
the opposite trend. Furthermore, children with language disorders perform poorly when compared
with typical developing children in tasks involving musical metrical structures [152], and have
more difficulty in SL of word segmentation [153] and perception of speech rhythms [154,155].
Thus, musical training, including rhythm perception and production, is important for the development
of language skills in children. Together, a body of study indicates that musical expertise may transfer
to language learning [104]. It is generally considered that the left auditory cortex is more sensitive to
temporal information, such as musical beat and the voice-onset (VOT) time of consonant-vowel (CV)
syllables, whereas the right auditory cortex plays a role in spectral perception, such as pitch and vowel
discriminations. Recent studies have indicated relationships between rhythm perception and SL [156].

Recent neural studies have demonstrated that SL of speech, pitch, timbre, and chord sequences
can be performed and reflected in ERP/ERF [10,36,37,40,46]. Furthermore, the brain codes statistics
of auditory sequences as relative information, such as relative distribution of pitch and formant
frequencies, which could be used for comprehension of another sequential structure [10,32], suggesting
that SL is ubiquitous and domain-general. On the other hand, the relative importance of acoustic
features such as rhythm, pitch, intensity, and timbre varies depending on the domain, that is,
music or language [157]. For instance, unlike spoken language, music contains various pitch
frequencies. Recent studies have suggested that, compared with speech sequences, sung sequences
with various pitches facilitate auditory SL based on word segmentation [92] and the Markov model [10].
These results further support the advantage of musical training for language SL. In addition,
Hansen and colleagues have suggested that musical training also facilitates the hippocampal perception
of global statistics of entropy (i.e., uncertainty) [158], as well as local statistics of each TP. Thus, musical
training contributes to the improvement of SL systems in various brain regions, including the auditory
cortex. Together, the facilitation of SL may be related to enhancement of the left dorsal stream via
the IFG and PMC, as well as PT, enhanced low-level auditory processing in a top-down manner,
and enhanced hippocampal processing. Musical training including rhythm perception contributes
to these enhancements and facilitates the involvement of SL in language skills, and thus could be
an important clinical and pedagogical strategy in persons with any of a variety of language-related
disorders such as dyslexia [159,160] and aphasia [161].

4.2.2. Children and Adults: Critical Periods and Plasticity in the Brain

Previous studies have demonstrated that auditory SL can be performed even by sleeping
neonates [85,86,162]. SL is ubiquitously performed at birth, showing that the human brain is
innately prepared for it. An infant’s SL extends to rhythms [163], visual stimuli [164], objects [165],
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social learning [23,166], and a general mechanism by which infants form meaningful representations
of the environment [167]. Furthermore, infants can also learn non-adjacent statistics [101]. This suggests
that SL plays an important role in an infant’s syntactic learning, as well as the simple segmentation of
words. These results may enable us to disentangle the respective contributions of nature and nurture in
the acquisition of language and music. On the other hand, an MEG study has suggested that the strategies
for language acquisition in infants could shift from domain-general SL to domain-specific processing
of native language between 6 and 12 months [116], a “critical period” for language acquisition [168].
A comparable developmental change from domain-general to domain-specific learning strategies can
also occur in music perception [169]. During the “critical period” of heightened plasticity, the brain is
formed by sensory experience [170–172]. The development of primary cortical acoustic representations
can be shaped by the higher-order TP of stimulus sequences [58]. An ERP study [173] suggested
that sensitivity to speech stimuli in infants gradually shifts from accentuation to repetition during
a critical period. These results may suggest that cortical reorganization depending on early experience
interacts with SL [174], and that fluctuations in the degree of dependence on SL for the acquisition
of language and music are part of the developmental process during critical periods. On the other
hand, the SL system in the brain can be preserved even in adults (e.g., [32,35,40,41]). According to
previous studies, neural plasticity can occur in adults through SL [175] and musical training [176].
In fact, there is no doubt that SL occurs in adults who are already beyond the critical periods, and that
their SL ability can be modulated by auditory training. Recent studies have revealed that the process of
reorganization of acquired statistical knowledge can be detected in neurophysiological responses [14].
Furthermore, a computational study on music suggested the possibility that the time-course variation of
statistical knowledge over a composer’s lifetime can be reflected in that composer’s music from different
life stages [177]. Thus, implicit updates of statistical knowledge could be enabled by the combined and
interdisciplinary approach of brain, behavioral, and computational methodologies [178].

5. General Discussion

5.1. Information-Theoretical Notions for Domain-General SL: Order of TP and Entropy

SL is a domain-general and interdisciplinary notion in psychology, neuroscience, musicology,
linguistics, information technology, and artificial intelligence. To generate SL models that are applicable
to all of these various realms, the nth-order Markov and n-gram models based on information theory
have frequently been used in natural language processing [70,71] and in the creation of automatic
music composition systems [67–69]. Such models can verify hierarchies of SL based on various-order
TPs. Natural languages and music include higher-order statistics, such as hierarchical syntactical
structures and grammar. Thus, information-theoretical approaches, including information content
and entropy based on nth-order Markov models [59,61,81], can express domain-general statistical
structures closer to those of real-world language and music. The SL models are often evaluated in
terms of entropy [72–75]. From a psychological viewpoint, entropy is interpreted as the average
surprise (uncertainty) of outcomes [16,76]. Previous studies have demonstrated that the perception
of entropy and uncertainty based on SL could be reflected in neurophysiological responses [59] and
activity of the hippocampus [60]. Hasson et al. [61] indicated that certain regions or networks perform
specific computations of global or summary statistics (i.e., entropy), which are independent of local
statistics (i.e., TP). Furthermore, Thiessen and colleagues [57] proposed that a complete-understanding
statistical learning must incorporate two interdependent processes: one is the extracting process that
computes TPs and extracts each item, such as word segmentation, and the other one is the integration
process that computes distributional information and integrates information across the extracted
items. Our previous studies [59] investigated correlation among entropy, order of TP, and the SL
effect. As a result, the SL effects of sequences with higher entropy were lower than those with lower
entropy, even when TP itself is same between these two sequences. This suggests that an evaluation of
computational model of sequential information by entropy in the field of informatics may partially be
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able to predict learning effect in human’s brain. Thus, the integrated methodology of neurophysiology
and informatics based on the notion of entropy can shed light on linking the concept of SL among
a broad range of disciplines. To understand the domain-general SL system that incorporates notions
from both information theory and neuroscience, it is important to investigate both global and local SL.

5.2. Output of Statistical Knowledge: From Learning to Using

According to recent studies, acquired statistical knowledge contributes to the comprehension
and production of complex structural information, such as music and language [179], intuitive
decision-making [77,78,180–182], auditory-motor planning [183], and creativity involved in musical
composition [62]. Several studies suggest that musical representation is mainly formed by a tacit
knowledge [184–186]. Thus, statistical knowledge is closely tied to musical and speech expression
such as composition, playing, and conversation. In addition, global statistical knowledge (i.e., entropy
and uncertainty), as well as local statistical knowledge (each TP), is also supposed to contribute to
decision-making [78], anxiety [80], and curiosity [79]. A number of studies have reported, however,
that humans cannot verbalize exactly what they have learned statistically, even when an SL effect is
detected in neurophysiological responses [14,32,34–44]. Nevertheless, our previous study suggested that
statistical knowledge could alternatively be expressed via abstract medium such as musical melody [32].
In these studies, learners could behaviorally distinguish between sequences with more than eight tones
with only higher TPs and those with only lower TPs, suggesting that humans can distinguish sequences
with different TPs when they are provided longer sequences when compared with a conventional way
in word-segmentation studies that present sequences with three tones. These studies may also suggest
that that SL of auditory sequences partially interact with the Gestalt principle [5]. Furthermore, an
fMRI study has suggested that the abstraction of statistical knowledge is associated with a gradual
shift from the memory systems in the medial temporal lobe, including the hippocampus, to those
of the striatum, and that this may be mediated by slow wave sleep [125]. Future study is needed to
examine how/when statistical learning contributes to mental expression of music and language.

5.3. Applicability in Clinical and Pedagogy

Previous studies suggest that neurophysiological correlations of SL can disclose subtle individual
differences that might be underestimated by behavioral levels [34,88,89,187], although recent
studies showed individual differences in SL by behavioral tasks [188]. Some studies suggest that
neurophysiological responses disclose SL effects, even when no SL effects cannot be detected in
behavioral levels [40,41]. Neurophysiological markers of SL may at least be informative when
studying less accessible populations such as infants, who are unable to deliver an obvious behavioral
response [86,162]. For instance, ERP/ERF could be a useful method for the evaluation of the individual
ability of SL, which is linked to individual skill in language and music learning [189,190], and which is
impaired in humans with language- and music-based learning impairments such as dyslexia [51–53]
and amusia [54,55]. Thus, neurophysiological markers of SL may be applicable for the evaluation
of therapeutic and educational effects for patients and healthy humans [191] across any domain in
which the conditional probabilities of sequential events vary systematically. Francois’s findings [43]
suggest the possibility of music-based remediation for children with language-based SL impairments.
In addition, by using information theoretic approaches such as higher-order Markov models and
entropy, SL ability can be evaluated in the form that is closest to that used in learning natural language
and music [14,63]. The integration of neural, behavioral, and information-theoretical approaches may
enhance our ability to evaluate SL ability in terms of both music and language.

5.4. Challenges and Future Prospects: SL in Real-World Music and Language

Although SL is generally considered domain-general, many studies also report that
comprehension of language and music, which have domain-specific structures including universal
grammar, tonal pitch spaces, and hierarchical tension [2–5], may rely on domain-specific neural
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bases [6–9,192]. Furthermore, current SL paradigms are not sufficient to account for all levels
of the music- and language-learning process. Some studies suggest two steps of the learning
process [193,194]. The first is SL, which shares a common mechanism among all the domains
(domain generality). The second is domain-specific learning, which has different mechanisms in
each domain (domain specificity). This learning process implies that, at least in an earlier step of the
learning process, SL plays an essential role that covers music and language learning abilities [195].
On the other hand, few studies investigated how statistically acquired knowledge was represented in
real-world communication, conversation, action, and music expression. Future studies will be needed
to investigate how neural systems underlying SL contribute to comprehension and production in
real-world music and language. Information-theoretical approaches based on higher-order Markov
models can be used to understand SL systems in a form closer to that used for natural language and
music, from a perspective of linguistics, musicology, and a unified brain theory such as the free-energy
principle [16], including optimisation of action, as well as perception and learning.

6. Conclusions

This paper reviews a body of recent neural studies on SL in music and language, and discusses
the possibility of therapeutic and pedagogical application. Because of a certain degree of acoustic
similarity, neural overlap, and domain generality of SL between speech and music, musical training
positively affects language skills in SL. Recent studies also suggested that SL strategies in the brain
depend on the hierarchy, order [14,35,58,59], entropy, and uncertainty in statistical structures [60],
and that certain brain regions perform specific computations of entropy that are independent
of those of TP [61]. Yet few studies have investigated the relationships between the order of TPs
(i.e., order of local statistics) and entropy (i.e., global statistics) in terms of SL strategies of the human
brain. Information-theoretical approaches based on higher-order Markov models that can express
hierarchical information dynamics as they are expressed in real-world language and music represent
a possible means of understanding domain-general, higher-order, and global SL in the interdisciplinary
realms of psychology, neuroscience, computational studies, musicology, and linguistics.
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