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Abstract: A theoretical and computational study on the estimation of the parameters of a single
Fitzhugh–Nagumo model is presented. The difference of this work from a conventional system
identification is that the measured data only consist of discrete and noisy neural spiking (spike times)
data, which contain no amplitude information. The goal can be achieved by applying a maximum
likelihood estimation approach where the likelihood function is derived from point process statistics.
The firing rate of the neuron was assumed as a nonlinear map (logistic sigmoid) relating it to the
membrane potential variable. The stimulus data were generated by a phased cosine Fourier series
having fixed amplitude and frequency but a randomly shot phase (shot at each repeated trial). Various
values of amplitude, stimulus component size, and sample size were applied to examine the effect of
stimulus to the identification process. Results are presented in tabular and graphical forms, which
also include statistical analysis (mean and standard deviation of the estimates). We also tested our
model using realistic data from a previous research (H1 neurons of blowflies) and found that the
estimates have a tendency to converge.

Keywords: neuron modeling; Fitzhugh–Nagumo Model; Poisson processes; inhomogeneous Poisson;
neural spiking; maximum likelihood estimation

1. Introduction

Application of computational tools in neuroscience is an emerging field of research in the last
50 years. The Hodgkin–Huxley model [1] is a striking development in the field of theoretical
and computational neuroscience. Here, the membrane potential and its bursting properties are
modeled as a fourth-order nonlinear system. In addition to the membrane potential, it describes the
behaviors of sodium and potassium ion channels. Its nonlinear properties make some researchers
search for possibilities that yield simpler nonlinear differential equations. One such attempt is
the second-order Morris–Lecar [2], which lumps the ion channel activation dynamics into a single
recovery variable. It is still a conductance based model. Further simplifications involve complete
elimination of physical parameters such as ion conductances. Two major examples are the second-order
Fitzhugh–Nagumo [3,4] and the third-order Hindmarsh–Rose [5] models. These can model the pulses
and bursts occurring in the membrane potential without the need of physical parameters like ion
conductances. In addition, as in the case of Morris–Lecar models, the behaviors of ion channels are
lumped into generic variables.

In the case that only the input output (stimulus/response) relationships are important, general
neural network models can be a good choice. Some examples from literature are the static feed-forward
models [6,7] and nonlinear recurrent dynamical neural network models [8,9]. The dynamical neural
network models can be structured such that one may receive a membrane potential information
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(bursts can be explicitly recovered) or just the instantaneous firing rate as the output [10]. In addition,
sometimes only the statistical properties of the stimulus/response pair is import and thus statistical
black-box models are taken into account [11,12].

Regardless of the chosen model, stimulus/response data are required to obtain an accurate
relationship. Depending on the experiment, these data may be continuous or discrete in nature. In the
case of an in-vitro environment such as a patch clamp experiment, one may record a full time dependent
profile of membrane potential. That allows computational biologists to perform an identification
(parameter estimation) based on traditional minimum mean square estimation (MMSE) techniques.
However, in an in-vivo experiment, it is very difficult to collect continuous data revealing exact (or in
an acceptable range at least) membrane potential information. If a membrane potential micro electrode
contacts a living neuron membrane, the resistive and capacitive properties of the electrode may alter
the operation of the neuron. This is not desired as one will not model a realistically functioning neuron
at the end of the identification process.

In [7,8], it is suggested that one can record the successive action potential timings if the electrodes
are suitably placed in surroundings of the membrane. With that, one is able to form a neural spike
train which has the discrete timings of the spikes (or of the action potential bursts). Of course,
a spike train cannot have dedicated amplitude information. However, this does not mean that one
is hopeless concerning model identification. In [13], it is suggested that neural spike timings largely
obey Inhomogeneous Poisson Point Processes (IPPPs). Being aware of the fact that an IPPP can be
approximated by a local Bernoulli process [14], it would be convenient to derive suitable likelihood
functions and apply statistical parameter identification techniques on that.

In addition, previous research suggests that the transmitted neural information is not directly
coded by the membrane potential level but rather vested in the firing rate [15], interspiking intervals
(ISI) [16] or individual timings of the spikes [17]. Thus, training neuron models from discrete and
stochastic spiking data is expected to be a beneficial approach to understand the computational features
of our nervous system.

Concerning the application of statistical techniques based on point process likelihoods to
neural modeling, there are a few research works in the related literature. The authors of [6,7]
applied maximum a-posteriori estimation (MAP) technique to identification of the weights of a static
feed-forward model of the auditory cortex of marmoset monkeys. The authors of [8,9] presented
a computational study aiming at the estimation of the network parameters and time constants of
a dynamical recurrent neural network model using point process maximum likelihood technique.
The authors of [18] applied likelihood techniques to generate models for point process information
coding. The authors of [19] trained a state space model from point process neural spiking data.

In a few research studies, Fitzhugh–Nagumo models are involved in stochastic neural spiking
related studies. For example, the authors of [20] dealt with the interspike interval statistics when
the original Fitzhugh–Nagumo model is modified to include noisy inputs. The number of small
amplitude oscillations has a random nature and tend to have an asymptotically geometric distribution.
Bashkirtseva et al. [21] studied the effect of stochastic dynamics represented by a standard Wiener
process on the limit cycle behavior. In [22], the authors performed research on the hypoelliptic stochastic
properties of Fitzhugh–Nagumo neurons. They studied the effect of those properties on the neural
spiking behavior of Fitzhugh–Nagumo models. Finally, Zhang et al. [23] investigated the stochastic
resonance occurring in the Fitzhugh–Nagumo models when trichotomous noise is present in the model.
They found that, when the stimulus power is not sufficient to generate firing responses, trichotomous
noise itself may trigger the firing.

In this research, we treated a conventional single Fitzhugh–Nagumo equation [3,4] as
a computational model to form a theoretical stimulus/response relationship. We were interested
in the algorithmic details of the modeling. Thus, we modified the original equation to provide firing
rate output instead of the membrane potential. Based on the findings in [8–10], we mapped the firing
rate and membrane potential of the neuron by a gained logistic sigmoid function. Sigmoid functions
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have a significance in neuron models as they are a feasible way of mapping the ion channel activation
dynamics and membrane potential [1,2].

Although the output of our model is the neural firing rate, the responses from in vivo neurons are
stochastic neural spike timings. To obtain representative data, we simulated the Fitzhugh–Nagumo
neurons with a set of true reference parameters and then generated the spikes from the output firing
rate by simulating an Inhomogeneous Poisson process on it.

The parameter estimation procedure was based on maximum likelihood method. Similar to that
of Eden [14], the likelihood was derived from the local Bernoulli approximation of the inhomogeneous
Poisson process. That depends on the individual spike timings rather than the mean firing rate (which
is the case in Poisson distribution’s probability mass function).

The stimulus was modeled as a Fourier series in phased cosine form. This choice was made to
investigate the performance of the estimation when the same stimulus as that in [8,9] was applied.
In the computational framework of this research, the stimulus was applied for a duration 30 ms. This
may be observed as a relatively short duration and it is chosen to speed up the computation. In some
studies (e.g., [24–26]), one can infer that such short duration stimuli may be possible for fast spiking
neurons.

In addition, fast spiking responses obtained from a single long random stimulus can be partitioned
to segments of short duration such as 30 ms. Thus, the approach in this research can also be utilized in
modeling studies that involves longer duration stimuli.

In addition to the computational features of this study, we also investigated the performance of
our developments when the training data are taken from a realistic experiment. To achieve this goal,
we used the data generated by de Ruyter and Bialek [27]. The data from this research have a 20 min
recording of neural spiking responses obtained from H1 neurons of blowfly vision system against
white noise random stimulus. The response was divided into segments of 500 ms and the developed
algorithms were applied. Each 500 ms segment can be thought as an independent stimulus and its
associated response.

2. Materials and Methods

2.1. FitzHugh-Nagumo Model

Fitzhugh–Nagumo (FN) model is a second-order polynomial nonlinear differential equation
bearing two states representing the membrane potential (V) and a recovery variable (W), which
lumps all ion channel related processes into one state. Mathematically, it can be represented as shown
below [28]:

V̇ = V − dV3 −W + I

Ẇ = cV + a− bW
(1)

The above model has four parameters [a, b, c, d] determining its properties. In the original text
associated with the FN models, the coefficient of the V3 is 1/3; however, in this work, we suppose that
the coefficient of that cubic term is not constant and we assign a parameter d to it. In Equation (1),
I represents the stimulus exciting the neuron. It can be thought of as an electric current.

In the introduction, we state that we need a relationship between the membrane potential
representative variable V and the firing rate of our neuron. In addition, we also state that we can
construct such a map by developing a nonlinear sigmoidal map as shown below:

r =
F

1 + exp(−V))
(2)

where r is the firing rate of the neuron in ms−1 and F is the maximum firing rate parameter. Thus,
one has five parameters to estimate and they can be vectorally expressed as:
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θ = [a, b, c, d, F] (3)

Thus, we can call θ̂ as the estimates of θ. In the application, we needed the true values of θ so that
we coul generate the spikes that represent the collected data from a realistic experiment. These are
available in Table 1.

Table 1. The nominal parameters of the FN model in Equations (1) and (2). These were evaluated using
the information in [29].

Parameter Value

a 0.08

b 0.056

c 0.064

d 0.333

F 100

2.2. Stimulus

The signal for stimulation was modeled using a phased cosine Fourier series as:

I =
NU

∑
n=1

An cos (ωnt + φn) (4)

where An represents the amplitude, ωn = 2π f0n stands for the frequency of the nth Fourier component
in rad/sec, and φn stands for the phase of the component in radians. The amplitude An along with
the base frequency f0 (in Hz) were kept constant, whereas the phase φn was selected randomly from
a uniform distribution in [−π, π] radians. The amplitude parameter An was unchanged for all mode
n and it was set as An = Amax.

2.3. Neural Spiking and Point Processes

We state in the introduction that the neural spiking is a point process that largely obeys an
Inhomogeneous Poisson Process (IPP). A basic Poisson process is characterized by an event rate λ and
has an exponential probability mass function defined by:

Prob [N (t + ∆t)− N (t) = k] =
e−λλk

k!
(5)

where k is the number of events that occur in the interval [t, t + ∆t). In the simplest case, λ is constant
in that interval. In neural operation, the process is much more complex and assuming a constant event
rate is insufficient; thus, we refer to a time varying event rate, which is actually equivalent to the firing
rate r(t) of the neuron (refer to Equation (2)). This yields an inhomogeneous Poisson point process
with the event rate λ replaced by the mean firing rate defined by:

λ =
∫ t+∆t

t
r (τ) dτ (6)

Now, the term k represents the spike count in the interval [t, t + ∆t), which is statistically related
to the firing rate r(t); λ now represents the mean spike count for the firing rate r(t), which varies
with time; and N(τ) stands for the cumulative total number of spikes up to time τ, thus making
N (t + ∆t)− N (t) the spike count for the time interval [t, t + ∆t).

Now, let us take a spike train (t1, t2, . . . , tK) in the time interval (0, T). Here, 0 ≤ t1 ≤ t2 ≤ . . . ≤
tK ≤ T, thus t and ∆t become 0 and T. The spike train can be defined using a series of time stamps for
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K spikes. As a result, the likelihood density function related to any spike train (t1, t2, . . . , tK) is gained
using an inhomogeneous Poisson process [14,30] in the following way:

p (t1, t2, . . . , tK) = exp
(
−
∫ T

0
r (t, x, θ) dt

) K

∏
k=1

r (tk, x, θ) (7)

The function reveals the likelihood of a given spike train (t1, t2, . . . , tK) to occur with the
rate function r (t, x, θ), which obviously is relying mainly upon network parameters and the
stimulus applied.

2.4. Maximum Likelihood Methods and Parameter Estimation

The parameters requiring assessment appear as a vector:

θ = [θ1, . . . , θ5] =
[
θ̂1, . . . , θ̂5

]
(8)

to cover all the parameters in Equation (3). The maximum probability here relies on the function
proposed in Equation (7) and includes each spike timing as well. Estimation theory asserts that
determining maximum probability is asymptotically effective and goes as far as the Cramér–Rao bound
within the scope of large data. Therefore, for us to expand the probability function in Equation (7)
to further cover settings with numerous spike trains initiated by numerous stimuli, a series of M
stimuli should be assumed. Take the mth stimulus (m = 1, . . . , M) to initiate a spike train containing
Km spikes in the time window [0, T], and the spike timings are given by Sm =

(
t(m)
1 , t(m)

2 , . . . , t(m)
Km

)
.

By Equation (7). According to Equation (7), the probability function for the spike train Sm can be
determined as:

p (Sm | θ) = exp
(
−
∫ T

0
r(m)(t) dt

) Km

∏
k=1

r(m)
(

t(m)
k

)
(9)

in which r(m) represents the firing rate due to the mth stimulus. Let us denote that the rate function
r(m) entirely relies on the parameters related to neuron parameters θ and the stimulus. On the left-hand
side of Equation (9), its reliance on the neuron parameters θ can be noted.

Supposing the stimulus and its elicited responses in each mth trial are independent, one can
derive a joint likelihood function as:

L (S1, S2, . . . , SM | θ) =
M

∏
m=1

p (Sm | θ) (10)

To improve its convexity, we can make use of natural logarithm and derive a log likelihood
function as shown below:

l (S1, S2, . . . , SM | θ) = −
M

∑
m=1

∫ T

0
r(m)(t) dt +

M

∑
m=1

Km

∑
k=1

ln r(m)
(

t(m)
k

)
(11)

Finally, the maximum likelihood estimates of the parameter vector θ is obtained by:

θ̂ML = arg max
θ

[l (S1, S2, . . . , SM | θ)] (12)

2.5. Spike Generation for Data Collection

Since this study was of computational type and targeted the development of an algorithm to
be applied in a realistic experiment, we needed a solid approach to generate a dataset to represent
the output of a realistic experiment. In the current research, the data were a set of neural spike
trains that bear the individual spike timings with no amplitude information. In addition, we also
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know that the neural spiking process largely obeys inhomogeneous Poisson statistics, thus we could
achieve that goal by implementing a stable Poisson process simulation. In other words, we simulated
an inhomogeneous Poisson process with r(t) as its event rate. There are several algorithms to simulate
an inhomogeneous Poisson process. The local Bernoulli approximation [14], thinning [31], and time
scale transformation [32] can be shown as examples.

If the time bin is sufficiently small (e.g., δt = 10 µs) such that only one spike is fitted, one can use
local Bernoulli approximation to generate the neural spiking data very easily. The is also a reasonable
choice when the neuron models are integrated by discrete solvers such as the Euler or Runge–Kutta
method. One can see a summary of the related algorithm below [8]:

1. Given the firing rate of a neuron as r(t).
2. Find the probability of firing at time ti by evaluating pi = r(ti)δt where δt is the integration

interval. It should be a small real number such as 1 ms.
3. Draw a random number xrand = U[0, 1] that is uniformly distributed in the interval [0, 1]. Here,

U stands for a uniform distribution.
4. If pi > xrand, fire a spike at t = ti, else do nothing.
5. Collect spikes as S = [t1, . . . , tNs ] where Ns will be the total number of spikes collected from

one simulation.

3. Application

In this section, we introduce a simulation-based approach to evaluate the parameters of a firing
rate-based single Fitzhugh–Nagumo neuron model. The process in brief appears as follows:

1. A single run of simulation lasted for Tf = 30 ms.
2. The stimulus amplitude Amax and base frequency f0 were assigned prior to each trial m. The phase

angles φn was assigned randomly, as defined in Section 2.2.
3. The firing rate profile was obtained by integrating the FN model in Equation (1) for Tf = 30 ms

using a time bin of δt = 10 µs. The integration was performed at the true values of the parameters
in Table 1 to generate the actual firing rate information rm(t) of current mth trial.

4. Using the approach presented in Section 2.5, the spike train Sm of the mth trial was generated
from the firing rate rm(t). The number of spikes was Km at the mth trial.

5. The simulation was repeated Nit times to collect several statistically independent spike trains, i.e.,
m = 1 . . . Nit.

6. The neural spiking data needed by Equation (11) were obtained at the fifth step. However,
the firing rate rm(t) in Equation (11) should be computed at the current iteration of the
optimization.

7. An optimization algorithm (e.g., fmincon) was run on the joint likelihood function in Equation (11)
to obtain the maximum likelihood estimates of the parameters (θML in Equation (12)).

3.1. Optimization Algorithm

To perform a maximum likelihood estimation (i.e., the problem defined in Equation (12)),
we needed an optimizer. Most optimizers target a local minimum and thus require multiple initial
guesses to increase the probability of finding a global optimum to the problem. However, this is
a time consuming task and in a problem similar to that of this research duration is a crucial parameter.
This was even more critical when we are using our algorithms in a physiological experiment. Some
optimization algorithms such as genetic, pattern search, or simulated annealing do not require the
online computation of gradients but they are computationally extensive and will most likely require
a longer duration. Thus, in this research, we preferred a gradient based algorithm and utilized
MATLAB’s fmincon routine. It is based on interior-point algorithms (a modified Newton’s method)
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and allows lower and upper bounds to be set on the result. As all parameters of an FN model are
positive, a zero lower bound will prevent unnecessary parameter sweeps.

3.2. Simulation Scenarios

In this section, we introduce the results related to parameter estimation using table for the variation
of mean estimated values θ̂ =

[
θ̂1, θ̂2, θ̂3, θ̂4, θ̂5

]
of parameters θ = [θ1, θ2, θ3, θ4, θ5]. The scenario

information for the present problem appear in Table 2. To show impact of various stimulus components
NU , amplitude level Amax, and number of trials Nit, the problem was re-run for a set of different values
of those parameters.

Table 2. Data for the simulation scenario.

Parameter Symbol Value

Simulation Time Tf 30 ms

Number of Trials Nit 25, 50, 100, 200

# of Components in Stimulus NU 5, 10, 20, 30

Method of Optimization N/A Interior-Point Gradient Descent (MATLAB)

# of True Parameters Size(θ) 5

Stimulus Amplitude (µA) Amax 25, 50, 100, 200

Base Frequency f0
1
3 , 1, 7

3 , 10
3 KHz

The initial conditions of the states representing the membrane potential V and recovery activity
W in Equation (1) were assumed as V(0) = 0 and W(0) = 0. This is a reasonable choice as we did not
have any information about them.

A typical stimulus response relationship can be seen in Figure 1. Here, the stimulus parameters
are Amax = 100, f0 = 10/3 kHz, and NU = 5. The nominal parameters in Table 1 were used in
this simulation.

0 5 10 15 20 25 30
-400

-200

0

200

400

u(
t)

0

0.5

1

Sp
ik

es

0 5 10 15 20 25 30
time (ms)

Figure 1. A typical stimulus and response pattern. In the first pane, a Fourier series stimulus with
parameters Amax = 100, f0 = 333 Hz, and NU = 5 is displayed. In the second pane, the neural
spiking pattern of the Fitzhugh–Nagumo model in Equation (1) with the nominal parameters in Table 1
obtained after Poisson simulation can be seen.
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3.3. Estimation of Parameters Using a Realistic Data

As stated in the end of the Introduction, we were likely interested in the results of the estimation
when the stimulus/response data (spike trains collected) were collected from realistic neurons.
Although performing an experiment may not be possible, one can use data from repositories or
other sites on the web. We used the data collected in an experiment performed by de Ruyter and
Bialek [27]. Here, the stimulus was of white noise type and the response was measured from H1
neurons of blowfly vision system. The data are available as a MATLAB workspace file on the website
http://www.gatsby.ucl.ac.uk/~dayan/book/exercises/c1/data/c1p8.mat. In this dataset, a single
stimulus of 20 min duration stimulates the H1 neurons of the flies. We divided these 1200 s long data
into 2400 segments, each of which is 500 ms long. Thus, our algorithm was applied as if there were
2400 independent stimuli of 500 ms duration. Since we had a random stimulus here, we could assume
that segments were triggered by independent stimuli. The algorithm was provided by subsets of data
having 25, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700,
1800, 1900, 2000, 2100, 2200, 2300, and 2400 samples (in other words, the value of Nit).

4. Results

In this section, the results of our example problem are presented. The maximum likelihood
estimates (θML) of the parameters (θ) in Equation (3) were obtained by maximizing Equation (10)
using MATLAB’s fmincon routine.

The relevant results can be categorized under two headings:

1. The variations of mean estimated values of θ (θML) against varying sample size Nit, amplitude
level Amax, stimulus component size NU , and base frequency f0 are presented in Section 4.1.

2. The variations of standard deviations of the estimated parameters against varying sample size
Nit, amplitude level Amax, stimulus component size NU , and base frequency f0 are presented in
Section 4.2.

4.1. Mean Estimated Values

One can see the variation of the mean estimated values of each parameter in Equation (3) against
the number of samples Nit, amplitude Amax, component size NU , and base frequency f0 of the stimulus
in Tables 3–6, respectively.

Table 3. Estimated value vs. Nit (NU = 5, Amax = 100, and f0 = 333.3 Hz).

Nit θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

5 0.0781 0.0504 0.0627 0.3348 100.0135

50 0.0953 0.0816 0.0731 0.3317 99.9960

100 0.0870 0.0635 0.0695 0.3326 99.9933

200 0.0840 0.0597 0.0694 0.3325 100.0065

Table 4. Estimated value vs. NU (Nit = 100, Amax = 100, and f0 = 333.3 Hz).

NU θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

5 0.0781 0.0504 0.0627 0.3348 100.0135

10 0.0811 0.0436 0.0595 0.3333 99.9927

20 0.0849 0.0618 0.0801 0.3326 99.9943

30 0.0770 0.0505 0.0636 0.3331 99.9920

http://www.gatsby.ucl.ac.uk/~dayan/book/exercises/c1/data/c1p8.mat
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Table 5. Estimated value vs. Amax (Nit = 100, NU = 5, and f0 = 333.3 Hz).

Amax θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

25 0.0817 0.0549 0.0638 0.3337 99.9980

50 0.0809 0.0586 0.0699 0.3330 100.0008

100 0.0781 0.0504 0.0627 0.3348 100.0135

200 0.0767 0.0505 0.0608 0.3322 99.9894

Table 6. Estimated value vs. f0 (Nit = 100, NU = 5, and Amax = 100). Frequencies are in KHz.

f0 θ̂1 θ̂2 θ̂3 θ̂4 θ̂5

1/3 0.0856 0.0637 0.0712 0.3315 99.9942

1 0.0796 0.0550 0.0641 0.3364 100.0124

5/3 0.0861 0.0566 0.0627 0.3327 100.0195

7/3 0.0870 0.0635 0.0695 0.3326 99.9933

4.2. Standard Deviations

One can see the variation of the standard deviations of the estimates of each parameter in
Equation (3) against the number of samples Nit, amplitude Amax, component size NU , and base
frequency f0 of the stimulus in Tables 7–10, respectively.

In addition to the tabular results, the variation of the standard deviations are also presented in
graphical forms in Figures 2–5.

Table 7. Standard deviations vs. Nit (NU = 5, Amax = 100, and f0 = 333.3 Hz).

Nit σ(θ1) σ(θ2) σ(θ3) σ(θ4) σ(θ5)

5 0.0423 0.0487 0.0366 0.0057 0.0895

50 0.0350 0.0387 0.0321 0.0021 0.0770

100 0.0339 0.0446 0.0246 0.0017 0.0634

200 0.0235 0.0343 0.0276 0.0023 0.02995

Table 8. Standard deviations vs. NU (Nit = 100, Amax = 100, and f0 = 333.3 Hz).

NU σ(θ1) σ(θ2) σ(θ3) σ(θ4) σ(θ5)

5 0.0258 0.0345 0.0196 0.0024 0.0399

10 0.0287 0.0406 0.0356 0.0016 0.0444

20 0.0337 0.0457 0.0485 0.0015 0.0499

30 0.0165 0.0204 0.0149 0.0016 0.0189

Table 9. Standard deviations vs. Amax (Nit = 100, NU = 5, and f0 = 333.3 Hz).

Amax σ(θ1) σ(θ2) σ(θ3) σ(θ4) σ(θ5)

25 0.0151 0.0216 0.0137 0.0022 0.0671

50 0.0181 0.0275 0.0232 0.0023 0.0640

100 0.0258 0.0345 0.0196 0.0024 0.0399

200 0.0311 0.0388 0.0289 0.0034 0.0264
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Table 10. Standard deviations vs. f0 (Nit = 100, NU = 5, and Amax = 100). The frequencies are in KHz.

f0 σ(θ1) σ(θ2) σ(θ3) σ(θ4) σ(θ5)

1/3 0.0178 0.0312 0.0158 0.0043 0.0407

1 0.0129 0.0165 0.0067 0.0064 0.0329

5/3 0.0258 0.0364 0.0254 0.0034 0.0447

7/3 0.0339 0.0446 0.0246 0.0017 0.0634

Figure 2. The variation of individual standard deviations (or relative errors) of the estimates against
varying sample (iteration) size Nit. Other stimulus parameters are NU = 5, Amax = 100, and
f0 = 333.3 Hz. For most parameters, these relative errors show an improving behavior with the
increasing sample size. However, some parameters such as b do not present any improvement or
degradation in relative errors. However, in general, the relative error levels remain small.

Figure 3. The variation of individual standard deviations (or relative errors) of the estimates against
varying stimulus amplitude parameter Amax. Other stimulus parameters are Nit = 100, NU = 5, and
f0 = 333.3 Hz. Except for parameter F, one cannot see an improvement with raising the stimulus
amplitude. However, in general, the relative error levels remain small.
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Figure 4. The variation of individual standard deviations (or relative errors) of the estimates against
varying stimulus component size NU . Other stimulus parameters are Nit = 100, Amax = 100, and
f0 = 333.3 Hz. Stimuli with small NU = 5 or large NU = 30 component size can be preferred.
In general, relative error levels also stay smaller in this case.

Figure 5. The variation of individual standard deviations (or relative errors) of the estimates against
varying base frequency f0. Other stimulus parameters are Nit = 100, Amax = 100, and NU = 5.
The frequencies are in KHz. Although overall relative error levels are smaller, one can prefer a mid
frequency range, e.g. 1 ≤ f0 ≤ 7/3 KHz

4.3. Results of Estimation from Realistic Data

As mentioned in Section 3.3, we also utilized realistic data obtained from H1 neurons of
blowflies [27]. A little more detailed discussion is available in Section 3.3. The variation of estimated
values of neuron parameters a, b, c, d, F against the sample sizes are available in Table 11. In Table 12,
the relative error with respect to the case with previous sample size setting is shown. The relative error
was computed with the following scheme:
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ER(k) =
(
θ̂(k)− θ̂(k− 1)

)
θ̂(k− 1)

(13)

where k refers to each of the cases in Table 11 and they are identified by the sample size parameter Nit.
Here, k did not start from k = 1 because we did not have any data concerning the cases Nit < 25. Thus,
in Table 12, the k value starts from k = 2. Thus, in its first column, the relative error of the case with
Nit = 50 was computed against the case with Nit = 25. Similarly, the relative error of the case with
Nit = 100 was computed against the case with Nit = 50, and so on. When we examine Table 12, we can
observe that the relative errors (ER) of parameters [a, b, c, d, F] reduce as the sample size increases (as k
progresses). Although there seems a fluctuation of the relative error, the magnitude of this fluctuation
tends to decrease. This is noted especially after the case with Nit = 600.

Table 11. The variation of estimated parameters a, b, c, d, F against increasing sample size Nit in the
estimation using realistic stimulus/response data obtained from H1 neurons of blowfly neurons.

Case # Nit â b̂ ĉ d̂ F̂

1 25 255.7506 23.1953 344.3629 0.0000 185.6737

2 50 209.6757 21.3999 288.8835 0.0814 157.9571

3 100 233.4375 21.2668 266.9164 0.0492 154.7241

4 200 238.6861 21.1010 242.4651 0.0571 150.1093

5 300 244.5549 20.8891 239.7912 0.0777 145.6895

6 400 238.0263 20.1484 227.6343 0.1002 145.9515

7 500 220.6098 19.5167 212.1591 0.1091 142.7544

8 600 209.2398 18.9435 203.5418 0.1155 140.1229

9 700 208.3796 18.6725 200.2183 0.1180 138.9247

10 800 205.1722 18.6186 196.1978 0.1294 138.2120

11 900 206.8349 18.7251 195.6544 0.1247 137.1808

12 1000 204.2514 18.5038 192.3779 0.1250 135.9998

13 1100 201.7751 18.6313 191.4930 0.1164 136.7989

14 1200 199.1862 18.7457 190.4784 0.1237 136.2337

15 1300 196.8611 18.6375 190.3953 0.1201 135.1311

16 1400 198.3144 18.5702 190.7353 0.1230 135.3718

17 1500 196.1595 18.3109 189.0624 0.1306 134.3871

18 1600 192.2135 17.9623 185.5415 0.1447 133.7077

19 1700 190.5854 17.8516 183.7031 0.1508 133.3508

20 1800 190.7481 17.8419 184.6075 0.1495 133.5511

21 1900 192.3369 17.8900 185.2415 0.1473 133.6132

22 2000 194.9553 18.0284 185.7370 0.1495 133.5813

23 2100 198.5889 18.1381 187.4582 0.1452 134.3980

24 2200 200.3984 18.1539 188.0695 0.1366 134.8025

25 2300 201.9018 18.2673 188.5241 0.1356 134.8863

26 2400 201.6645 18.2587 187.8792 0.1357 135.2327

4.4. Statistical Testing of the Parameter Estimation with Realistic Data

To test the validity of the results of Section 4.3, one needs to perform a statistical comparison
test. To achieve this goal, we performed a Kolmogorov–Smirnov test on the interspike intervals of the
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spike trains obtained from the H1 neuron measurement data and the simulated spike trains with one
of the parameter sets [a, b, c, d, F] in Table 11. As one set of measurement is not statistically adequate,
we used superimposed spike sequences. As they were obtained from independent stimuli, their
statistical nature was not disturbed. As we did in the estimation experiment, we superimposed the
spike sequences in the response segments of both realistic measurements and the simulated output
from our model. After obtaining that, we performed a Kolmogorov–Smirnov test for the two samples
(one is from realistic response and one is from the simulated response from our model). We applied
different segment lengths and plotted the variation of the p-values. The tool used in the application
was MATLAB’s kstest2(x1,x2) routine (here, x1 and x2 are two samples from similar or dissimilar
distributions). We used the parametric estimations from the last column in Table 11. One can see the
relevant results in Figures 6–11. From those outcomes, one can note that the p-value starts crossing
the p = 0.05 line after obtaining about 80 samples of measurement. This may be normal in the
view of statistics, as these hypothesis testing algorithms require large numbers of samples to yield
strong results.

Table 12. The relative error levels against the sample size parameter Nit. The errors were computed
by evaluating the difference between the parameter values of the current case k and the previous case
k− 1 in Table 11. With increasing sample sizes, the estimates tend to have smaller fluctuations.

Nit ea eb ec ed eF

50 0.18016 0.07741 0.16111 Inf 0.14928

100 0.11333 0.00622 0.07604 0.39521 0.02047

200 0.02248 0.00779 0.09161 0.16078 0.02983

300 0.02459 0.01004 0.01103 0.35951 0.02944

400 0.02670 0.03546 0.05070 0.28976 0.00180

500 0.07317 0.03135 0.06798 0.08886 0.02191

600 0.05154 0.02937 0.04062 0.05941 0.01843

700 0.00411 0.01431 0.01633 0.02123 0.00855

800 0.01539 0.00288 0.02008 0.09665 0.00513

900 0.00810 0.00572 0.00277 0.03619 0.00746

1000 0.01249 0.01182 0.01675 0.00208 0.00861

1100 0.01212 0.00689 0.00460 0.06885 0.00588

1200 0.01283 0.00614 0.00530 0.06300 0.00413

1300 0.01167 0.00577 0.00044 0.02875 0.00809

1400 0.00738 0.00361 0.00179 0.02359 0.00178

1500 0.01087 0.01397 0.00877 0.06198 0.00727

1600 0.02012 0.01904 0.01862 0.10819 0.00505

1700 0.00847 0.00616 0.00991 0.04207 0.00267

1800 0.00085 0.00054 0.00492 0.00871 0.00150

1900 0.00833 0.00270 0.00343 0.01443 0.00047

2000 0.01361 0.00773 0.00267 0.01429 0.00024

2100 0.01864 0.00608 0.00927 0.02861 0.00611

2200 0.00911 0.00087 0.00326 0.05905 0.00301

2300 0.00750 0.00625 0.00242 0.00735 0.00062

2400 0.00118 0.00048 0.00342 0.00091 0.00257
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Figure 6. The variation of the Kolmogorov–Smirnov test p value with the number of samples Nit

obtained from both measurements (simulation and realistic measurement). Here, the segment size is
500 ms.
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Figure 7. The variation of the Kolmogorov–Smirnov test p value with the number of samples Nit

obtained from both measurements (simulation and realistic measurement). Here, the segment size is
1 s.
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Figure 8. The variation of the Kolmogorov–Smirnov test p value with the number of samples Nit

obtained from both measurements (simulation and realistic measurement). Here, the segment size is
2 s.
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Figure 9. The variation of the Kolmogorov–Smirnov test p value with the number of samples Nit

obtained from both measurements (simulation and realistic measurement). Here, the segment size is
3 s.
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Figure 10. The variation of the Kolmogorov–Smirnov test p value with the number of samples Nit

obtained from both measurements (simulation and realistic measurement). Here, the segment size is
4 s.
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Figure 11. The variation of the Kolmogorov–Smirnov test p value with the number of samples Nit

obtained from both measurements (simulation and realistic measurement). Here, the segment size is
6 s.
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5. Conclusions

In this paper, we present a theoretical and computational study aiming at the identification of
the parameters of a single Fitzhugh–Nagumo model from stochastic discrete neural spiking data.
To pursue this goal, we needed to modify the classical Fitzhugh–Nagumo model so that the output
generates a firing rate instead of a membrane potential. We transformed the membrane potential
information into that of a time dependent firing rate through a nonlinear map in sigmoidal form.
The spiking data that are representative of an experimental application were obtained by simulating the
Fitzhugh–Nagumo model and an Inhomogeneous Poisson process together. To assess the performance
of the work, we repeated the simulations under different sample sizes (the number of repeated trials),
stimulus component sizes, and stimulus base frequencies and amplitudes. The variation of mean
estimated values and standard deviations are presented as results. The following concluding remarks
can be made:

• The estimation algorithm showed a stable behavior for all examined conditions, as shown in
Table 2.

• The results in Tables 3–6 show that the mean estimated values are closest to the true values of the
parameters in Table 1 when Nit = 100, NU = 5, f0 = 0.333 KHz, and Amax = 25.

• In general, the standard deviations of estimates present a decreasing behavior increasing sample
size Nit (Figure 2). For parameters b and c, there is a slightly oscillating behavior in the standard
deviation values (Figure 2b,c). The standard deviations when Nit = 100 are slightly larger
than those of the case Nit = 200. The situation may be treated inferior to the results of others
studies (e.g., [8]). However, one should bear in mind that the model in [8] is a type of generic
recurrent neural network and those are known to have universal approximation capabilities [33].
Thus, one should expect that the standard deviations of network weight estimates will have
a better correlation to stimulus parameters when a generic model with a universal approximation
capability is utilized for model fitting. In addition, the absolute standard deviations of the
estimates in this research seem smaller. Thus, the overall results can be considered successful.

• For most of the parameters (a, b, c, d), the variation of standard deviations against the amplitude
parameter Amax has a worsening behavior (Figure 3). The only exception is associated with the
maximum firing rate parameter F. It has an improved standard deviation when the amplitude
level Amax increases. Concerning the mean estimated values, changing the amplitude from
Amax = 25 to Amax = 200 does not make a sensible variation. Thus, keeping Amax = 25 seems
a good choice.

• Standard deviations of the estimates showed a little improvement when one has a large number
of stimulus components NU (Figure 4). However, based on the mean estimated values, keeping it
smaller together with the amplitude parameter Amax seems a viable choice.

• Concerning the stimulus base frequency f0, it seems better to keep it in the lower side of the range
(0.333 ≤ f0 ≤ 3.333 KHz) applied in this research (i.e., f0 ≤ 1 KHz).

• For assessing the performance of our model when more realistic data and longer stimuli exist,
we performed an estimation attempt using the data from a previous research [27]. We divided
a 20 min recording into 2400 segments, the lengths of which equal 500 ms each. The stimulus
was randomly generated and thus each segment was treated as an independent experiment.
It appears that the estimates of the parameters have a tendency to converge to a final value,
with the increasing sample size Nit. This can be understood from the relative errors in Table 12.
The errors become smaller and fluctuations diminish as the sample size advances. As a result,
our model can be used in modeling studies where the computational features of the neural signal
processing is important.

• The statistical Kolmogorov–Smirnov testing reveals that our modified Fitzhugh–Nagumo
computational model can successfully describe the statistics stimulus/response relationship.
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In general, the obtained results are promising. However, a slight improvement may be obtained
if an optimal stimulus profile is generated prior to the identification process. The theory of optimal
design of experiments [34] may be beneficial in this respect. An application to the continuous time
recurrent neural network models is available in [9]. It appears to improve the mean square errors of
network weight estimates (thus also the variance). This may be a part of future related studies under
the same topic.
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