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Abstract: Microfluidic-based micromosaic technology has allowed the pattering of 

recognition elements in restricted micrometer scale areas with high precision. This controlled 

patterning enabled the development of highly multiplexed arrays multiple analyte 

detection. This arraying technology was first introduced in the beginning of 2001 and holds 

tremendous potential to revolutionize microarray development and analyte detection. Later, 

several microfluidic methods were developed for microarray application. In this review we 

discuss these novel methods and approaches which leverage the property of microfluidic 

technologies to significantly improve various physical aspects of microarray technology, 

such as enhanced imprinting homogeneity, stability of the immobilized biomolecules, 

decreasing assay times, and reduction of the costs and of the bulky instrumentation. 
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1. Introduction 

Disease diagnostics is performed by immunoassays developed against a specific analyte/antigen. 

Immunoassays for such applications are developed using an established technology, which is based 

upon microtitre well plates [1]. Microarray is another important technology in the field of diagnostics, 
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especially in genetic analysis. Microarrays are defined by a matrix of several individual  

recognition elements immobilized on a solid support (substrate) [2] using bulk-phase mass transfer 

strategy, in particular by direct spotting of biomolecules on the substrate. The major benefits of 

microarray over microtitre-based immunoassay are multiplexity (a couple thousand spots in low density 

array to 50,000 spots in high density arrays), low sample volumes, robustness, and rapid methods. At 

the same time, the major drawback associate to microarrays is data analysis that requires complex 

algorithms and extensive computation.  

There are several methods for developing microarrays that include printing/spotting, in situ 

synthesizing on solid supports, high-density and suspension bead arrays, and electron microarrays are 

few of the examples [3]. The nature and types of recognition elements are used to categorize the type 

of microarray. The most common recognition elements are nucleic acid and proteins that are 

spotted/printed on the substrate; there are several other recognition elements, such as microRNA-, 

peptides-, and glycans (Figure 1; Table 1). Microarrays have demonstrated tremendous potential in the 

field of diagnostics because they enable low-volume multiplexing analysis. The two key fields 

associated to the microarray development are genomics and proteomics; however, the advances in 

microarray technology contributed significantly in progressing genomics, in comparison to proteomics [4]. 

Today, high-density DNA arrays are available for the detection of genes with a respectable number of 

the commercial products having been approved by the food and drug administration (FDA), USA [5]; 

however, key to the fulfillment of clinical diagnosis potential is based on protein-based biomarkers. 

Gene-based diagnostics can only provide information on the genetic susceptibility of a person towards 

a disease but generally gene expression is not representative of the amount and nature of protein 

present in/outside the cells [6], which constitutes the major problem for using DNA-based diagnostics. 

Genomic encoding applications have been developed for cancer management and analyzing the 

treatment course of patients, such as determination of chemotherapies for cancer treatment and serial 

analysis of gene expression (SAGE), have been possible due to the high-parallel processing afforded 

by microarrays explicitly. Protein microarrays have now become common in research and 

development industries in the form of antibody arrays, which are employed as analytical and 

diagnostics tools [7]. However, their use still has not become routine in clinical diagnostics due to 

numerous reasons. The most obvious is complex analysis of obtained results in addition to high cost of 

development and intensive labor requirements [8]. Additionally, major challenges are validation of the 

developed microarrays in terms of the analyte detection ability at variable concentrations and 

reproducibility of the data for the same set of samples over an extended period [9,10]. Meeting strict 

regulatory norms in the US and Europe for public use of various in-vitro diagnostics (IVD) platforms 

has further complicated the inception of protein microarrays as a routine clinical diagnostic tool [11]. 

The lack of exhaustive testing of protein microarray platforms and the restricted availability of 

information regarding proteins and their expression in public domain adds further to the hurdles in 

their use for clinical set-ups. Automation, robustness, and reliability of these microarray platforms  

are some of the most critical parameters that have not been completely overcome, which have 

prevented major diagnostic companies to enter into the microarray-based IVD market. The investment  

and achievements therefore have resulted in only few microarrays for specific diseases now 

commercially available. 
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Figure 1. Illustration of microarray technology. An array printer is depicted in (a) which 

has a dedicated space for holding reagent plates and slides. An automated syringe cum pin 

is filled up with specific reagent followed by spotting in specific spot-sizes and electronically 

controlled volumes (Table 2); (b) Methodology of creating oligo/antibody array is 

depicted. Each spot on the slide holds immobilized oligonucleotides or antibodies which 

were later used for analyte detection; (c) An assay in a microarray format is shown with 

immobilized anti-fetuin antibody detecting various concentrations of fetuin and detection 

performed with Cy5 anti-fetuin antibody. Spot size of the array is 2 mm each, with a 

spotting volume of 1 µL anti-fetuin capture antibody. 

 
 

Microarray technology has benefitted the scientific and clinical community by enabling quick,  

low-volume analysis of samples. However, like microtitre plate-based methods, microarray methods 

are bulk-dependent and are diffusion-limited [4]. In the past few years, new microarray development 

technologies were developed by the introduction of microfluidics-based approaches. This has enabled 

us to address previous drawbacks associated with microarrays by leveraging fluid displacement properties 

at the micron scale, a high surface area to volume ratio, which accelerates the diffusion-limited 

processes [5], and their compatibility with disposable materials for rapid prototyping [12]. Recently, 

microtitre plate-based immunoassay technology has also seen substantial improvements especially its 

merger with microfluidics-leveraged processes [13,14] but the main focus of this manuscript is to 

review techniques and methods for developing microfluidic microarrays. On one hand, while 

microfluidic microarrays provide rapid, robust methodological alternatives, on the other hand, a major 

challenge of this hybrid technology will be the development of high-density arrays that is an issue, 

quite well addressed in conventional methods but have required sizable investment. On the other hand 

researchers have devised a new convenient microfluidics-based arraying method that has been 
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demonstrated at research level as a potential replacement for the current technology. The concept of 

developing array patterns using a microfluidic network (µFN) system, known as micromosaic, was 

first introduced in 2001 by Delamarche and his group in the Life Science division at IBM-Zurich, 

which was later adapted by many research groups [15]. Other microfluidic platforms that were 

developed for microarray applications are microbead-based and centrifugal system-based. Successful 

attempts have also been made to merge conventional microarray technology with advanced 

microfluidic-based reagent delivery systems [16]. In these approaches, recognition elements or probes 

are first spotted on the surface using conventional methods then a microfluidic cartridge is aligned on 

the spotted chip for delivering analytes over those spots. Microfluidics has thus provided an edge over 

conventional approaches of microarray development. The simplicity of this method is very cost 

effective, even with the use of microfluidic systems.  

Table 1. Different microarray types employed for disease diagnosis. 

Type of 

microarray 

Method of 

development 
Format Density Diagnostics application References 

DNA 
Printing, in situ 

synthesis 
Oligonucleotide, cDNA Low-High 

Respiratory, digestive tract 

infections 
[17–21] 

RNA Printing miRNA, total RNA Low-High Liver diseases, viral miRNA [22–25] 

Protein  

and Peptide 

Printing, 

stamping 

Immunoassays, 

enzymatic assays,  

label-free 

Moderate 
Biomarker discovery, bacterial 

antigen 
[1,14,26–33]

Carbohydrate 
Stamping, Drop-

coating 
Lectin assay Moderate 

Cell signaling, Biomarker 

discovery 
[34–37] 

Cellular Droplet-coating 
Immunoassays, protein 

assays, molecular assays 
Low-moderate 

Biomarker discovery, drug 

discovery,  

CTC identification 

[38–41] 

2. Development of a Microarray 

This is a complex process that involves array fabrication (solid support selection, functionalization 

and immobilization of recognition element), assay development, and device optimization. It is critical 

to pack high density number of recognition elements on the array surface, about 1 cm2, in order to 

achieve highly parallelized throughput sample analysis, which is important specifically for gene-level 

diagnostics and proteome research. Most common techniques for the development of microarrays are 

contact and non-contact printing and have been summarized in Table 2.  
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Table 2. Various conventional microarray fabrication methods. 

Method Principle/Description Print density Relative cost References 

Contact Printing 
Reagent spotting on the desired surface either with a thin capillary-like nozzle/tip or with conformal contact of a biomolecule-coated 
stamp 

Pin-based 
A nozzle dispenses solution with a print head; 
dispensable volume varies (0.5–5 µL); spot sizes 
varies between 20–200 µm in diameter 

Moderate $$ [42–44] 

Nanotip-based 
An AFM tip dispenses solution onto the surface; 
dispensable volume varies (0.1–0.3 µL); spot 
size varies between 30–100 nm in diameter 

High $$$ [45,46] 

Microstamping 

A polymer cast with specific spot-patterns is 
dipped in desired protein solution that can 
replicate these protein spots on any surface by 
conformal contact 

High $ [47–50] 

Non-contact 
Printing 

Spotting is performed without making a conformal contact with the surface; reagents are delivered either by spraying or localizing 
under the influence of various fields 

Inkjet-based 
A nozzle sprays the 4–8 nL volume of the 
reagent as a liquid jet; spot size is variable and 
poor resolution 

Moderate $ [51–57] 

Laser writing 

Laser ablation of the thin film generates spatially 
localized evaporation that creates a confined 
droplet of sample/reagent placed parallel to the 
ablation zone; spot size 10–100 µm in diameter. 

Moderate $ [58–60] 



Microarrays 2014, 3 185 

 

Selection of solid supports used for developing these microarrays is critical in terms of achieving 

homogeneous spots of specific sizes. Hydrophobic surfaces have a high tendency towards adsorption 

of proteins and are regularly used for developing immunoassays in ELISA format; however for 

microarray development hydrophobic surface results in a non-homogeneous protein distribution [61]. 

Therefore, several modified surfaces have been reported for development of microarrays. Most 

commonly employed supports are epoxy-/aldehyde-/amine-activated glass surfaces, plastics functionalized 

with silanes or layer-by-layer assemblies, and polymeric materials and are summarized in Table 3.  

Table 3. Solid supports, their chemical nature, and grafted functionalities for microarray development. 

Solid Support 
Inherent Chemical 

Nature 
Functionalization Strategies 

Plastic polymers 

Polystyrene Hydrophobic For functionalizing surfaces: 

• Step 1: Activation of the surface with oxidation (chemical or 

plasma method) 

• Step 2: Incubation with silanes (amine/carboxy/epoxy) or 

with poly-L-lysine 

• Step 3: Further functionalization with dendrimers for 

achieving stability of the  

silanes on the surface 

For enhancing anti-fouling properties of hydrophobic surfaces: 

• Activation of the surface with oxidation (chemical or plasma 

method), or 

• Incubation with silanes (amine/carboxy/epoxy) or with poly-

L-lysine, or 

• Coating with surfactants, such as tritonX-100, tween-20 and 

polyvinyl pyrrolidone 

Polymethyl 

methacrylate 
Hydrophobic 

Poly carbonate Hydrophobic 

Cyclic poly-olefin Hydrophobic 

Cellulose acetate Hydrophilic 

Non-plastic polymers 

Glass Hydrophilic 

OSTE Hydrophilic 

PDMS Hydrophobic 

 

Another most important aspect in microarray development is immobilization of the recognition 

elements, such as antibodies or nucleic acids. Covalent, site-specific, random, and oriented immobilization 

are the most common approaches for depositing biomolecules on surfaces (Table 4). On the epoxy-/ 

aldehyde-/amine-activated surfaces proteins are mainly coated via covalent linkage [62]. Additionally, 

recognition molecules can be physio/chemisorbed on the support material via hydrophobic, electrostatic 

and/or co-ordination chemistry [62–64]. Covalent and adsorption based methods account for the 

random capture of proteins because appropriate presentation of active site of these molecules over the 

surface is not controlled. This could lead to a highly heterogeneous surface where a significant 

proportion of these recognition molecules may lose their activity due to the interaction of their active 

sites with surface [65]. In order to address this drawback researchers have employed site-directed and 

oriented immobilization methods by using a precapture stage which facilitates an orderly presentation 

of the functional sites of the recognition molecules [66]. In site-specific protein capture methods one 

molecule of the affinity pair is introduced on the protein while surface is functionalized with the other 

member of the affinity pair thus guiding the immobilization to a specific site of the protein. Examples 

of such tags are streptavidin-biotin or FLAG tag, and enzyme-mediated substrate reactions [62–64]. 

Other precapture proteins widely employed for oriented immobilization are antibodies, anti-antibodies, 

and staphylococcal proteins viz. protein A, G, or AG [62]. 
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Table 4. Protein immobilization methods for microarray applications. 

Attachment 
Method 

Nature of Surface Mechanism of Binding Treatment for Binding References 

Adsorption 
(physisorption)

Hydrophobic (high density) 
Hydrophilic (low density) 

• Interaction of hydrophobic pockets 
with that of the surface 

• van der Waals interactions 
• Hydrogen bonding 

• Proteins incubated at basic pH, such as 
carbonate-bicarbonate buffer pH 9.2 for 
exposing buried hydrophobic pockets 

[62,67] 

Adsorption 
(Chemisorption)

Ionic bonds  
Coordination bonds 

• Interaction of ionic species 
• Interaction of chemical species of 

protein and surface via non-covalent 
dative bonds 

• Treatment with acidic or basic buffer for 
rendering amines or carboxyls charged 

• Exposing sulfhydryls for reaction with 
metallic surface 

[62,67,68] 

Covalent, 
random 

Grafted with pendent amine, 
carboxyl, sulfhydryl, epoxy, and 
other functionalities 

• Covalent bond between amine, 
carboxyl, and hydroxyl of proteins 
with those of surface 

• Mediated by crosslinkers such as NHS 
esters, carbodiimide, glutaraldehyde 

[62–64,67,68] 

Covalent, site 
directed 

Grafted with pendent amine, 
sulfhydryl, and carboxyl 
functionalities 

• Covalent bond between hydroxyl, 
sulfhydryl, and aldehydes of the 
protein with those of the surface 

• Crosslinker mediated reaction via tosyl, 
tresyl for reaction of hydroxyls of protein 

• Direct reaction for aldehyde of protein 
with amines of the surface 

• Crosslinker mediated reaction of 
sulfhydryls via maleimide, pyridile, and 
haloacetyls 

[62–64] 

Interaction-
based oriented 

binding 

Biofunctionalized surface with 
streptavidin, antibody-binding 
protein A, G, AG or L, FLAG tag, 
Ni+2-NTA tag, Enzyme-substrate 
reaction-mediated 

• Van der Waals, hydrophobic 
interaction, hydrogen bonding 

• Covalent bonding 
• No pretreatment required [62–64,66–68] 
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In the last decade, facile, robust, quick and less labor intensive approaches have been developed in 

microarray technology. High-density bead array coupled with microfluidics is one such example where 

the entire application lies on the ability to spatially decode the identification of each individual bead 

with the benefit of larger surface area per unit bead over that of planar arrays for binding which 

provides an advantage when considering the density number of probes available for binding. 

Microfluidic network-based microarrays, simply known as micromosaic, are yet another example that 

has been developed as a demonstration of the technology.  

3. Microfluidic Networks (µFN) 

3.1. Micromosaics 

This is one of the most effective methods developed in recent times for microarray fabrication. The 

method can be described as arraying of recognition elements in one dimension in form of a stripe 

followed by flowing analyte on the surface in a perpendicular dimension (Figure 2). The cross-section 

of two stripes perpendicular to each other result in an area of reactive site equal to the widths of the 

used channels. This method is known as microfluidic network (µFN)-based array fabrication, and the 

resulting array is referred to as a micromosaic. The number of channels in a µFN governs the number 

of spots per chip, thus, a geometric growth dependency is formed. While steric and kinetic 

considerations exist, this technique allows the adequately accessibility of the immobilized probes to 

the target molecules from a surface energetics perspective [69]. Surfaces are important consideration 

when developing micromosaics. Polymeric substrate materials are inferior to glass substrate, however, 

both these solid supports require adequate functionalization for proper analyte capture via flowing 

within the channels, as well as prevention of non-specific binding leading to false positives. For 

efficient reagent loading, channels in µFN are made hydrophilic by various approaches, such as 

plasma exposure or by chemical treatments, which allows filling these channels with biomolecules 

using a combination of positive surface tension and capillary forces [70]. This simplifies the reagent 

delivery instrumentation and removes the need for robotic spotting. Micromosaic technology was 

reported for the first time by Bernard et al. [15] where they demonstrated this technology with a direct 

immunoassay by coating an antigen onto polydimethylsiloxane (PDMS) surface along the X-axis and 

fluorophore-labeled detection antibody along Y-axis. Thus, the number of these spots was controlled 

by the number of channels in X- and Y-direction. Increasing the number of microfluidic channels in 

both directions increases the number of spots. In their work they have always employed silicon 

surfaces with engraved channels functionalized with silanes and further grafted with hydrophilic 

coatings for capillary-based reagent delivery. Subsequently, several other research groups have 

employed this technology either in its original form or modified it according to their requirements. 
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Figure 2. Methodology and results for developing micromosaic microarray using µFNs. 

Flow of biorecognition element of choice in the first direction using a network of parallel 

channels (a.i); immobilized strips of the biomolecule are created (a.ii); secondary analyte 

solution is flown over the immobilized biomolecule strips at 90 °C (a.iii); which creates 

second dimension lines (a.iv); washing steps remove the undesired portions of the strip 

leaving spots of the size of channels (a.v); A 3X3 micromosaic illustration is shown in (b) 

which was developed as an adaptation from a report by Bernard et al. [15]. We have 

employed a µFN of three parallel PDMS channels of 50 µm width, 20 µm depth, and 1 cm 

length treated with plasma for rendering channels hydrophilic thus allowing reagent 

delivery by capillary. Arraying was performed on a PDMS slab with anti-goat IgG-Cy3 

and goat IgG-atto647. Red, blue, and green represent different fluorescence emission 

wavelengths, while bars are the intensity of each spot. 

 
 

Jiang et al. (2003) have integrated micromosaics and reagent dilution system for detecting  

HIV-related gp-41 and gp-120 proteins [71]. They patterned antibodies in the first dimension  

using regular microchannel system and integrated another micro-dilutor in the second dimension. 

Cesaro-Tadic et al. (2004) reported a modification by introducing an 11-channel capillary flow  

system [72]. Introduction of a capillary system allows a continuous flow of reagents thus omitting the 

requirement of pretreatment of the channels for making them hydrophilic. Plug-flow techniques in 

microfluidics were employed for significantly reducing the hybridization times [73]. This type of flow 

approaches has a natural recirculating mixing effect by displacing the reagent several times over the 

array probes with larger sample volumes inside a microfluidic confinement. In addition, Gao et al. 

(2005) reported the use of electrokinetic flow control for development of micromosaic technology [74]. 

In their design the coating of antigens was similar to a typical micromosaic; however, they employed 

an ‘H’-shape microfluidic assembly for allowing electroosmotic flow-mediated delivery of the 

analytes to the coated antigen. This modification in the original micromosaic design was to facilitate 

the current flow through an intersection channel for controlling the flow speed over the spotted 

antigens. Hunziker and colleagues (2007) employed a capillary driven µFN assembly for capturing 

cells and for performing surface receptor screening in micromosaic immunoassay format [75]. As a 

conceptual proof they have captured mouse hybridoma cells on an anti-CD44 antibody coated on 

a

b



Microarrays 2014, 3 189 

 

PDMS surface. Takayama and colleagues (2007) replaced the use of thick PDMS block with 

membranes [76]. They sandwiched a semi-porous polyester membrane between glass and PDMS 

channels. They achieved a multilayer microfluidic system for analyzing the effect of various reagents 

on the protein expression conditions of C2C12 myoblast cells where reagents were flown continuously 

in the microfluidic channels and allowed to diffuse through polyester membrane. In addition, Liu et al. 

(2012) reported the development of mosaic patterns on filter membranes by sandwiching it between 

two layers of PDMS. Furthermore, they accelerated the binding of the probe on the array and detection 

via immunoassay by applying a vacuum [77]. Ziegler et al. (2008) reported a further modification to 

the initial design where they developed a stencil network for directing and coating proteins in several 

spots [78]. This modification had less fluidic components as the probe array deposition was replaced 

by stencil patterning. Shao et al. (2011) developed an array using a double-layered microchannel 

system [79]. Each layer in their system possesses a microfluidic network; the network in upper layer 

was perpendicular to the lower network thus developing a pattern similar to the micromosaic system. 

However, unlike the regular micromosaic patterning there were no removable parts in this chip, thus, 

eliminating the need of removing µFN of first dimension and reintroduction into the other. Most of the 

initial designs for micromosaics that researchers have followed are summarized in Table 5. In most of 

the micromosaic-based studies fluorescence, plasmon, and bioluminescence were commonly used for 

signal detection and analyte recognition. 

3.2. Other Networks 

Several µFNs were developed but most of them were employed for the development of 

hybridization-based microarrays. Bergeron and colleagues (2005) were few of the first to develop such 

a system [80]. Later, Kartalov et al. (2006) developed a complex µFN for arraying proteins with  

on-chip pneumatic valves for controlling the type of solutions and amounts in the microchannels [81]. 

They have demonstrated the detection of five different proteins in 10 different samples. Their group 

further improved the initial design of the µFN and increased the number of detectable proteins to a 

matrix of 6X10 [82]. Yu et al. (2009) developed a novel method for developing epoxy-functionalized 

microchannels and demonstrated its use in developing 3D protein microarray [83]. Recently, Roy et al. 

(2011) have employed the microfluidic network for the detection of miRNA detecting as low as 300 

copy numbers [84]. This is an emerging field and continuously researchers are showing inclination 

toward this technology for developing microarrays. µFNs are highly advantageous because of the ease 

and high efficiency of patterning proteins on the surface and, thus, development of multi-spot 

microarrays. Several other physical process that significantly affects the protein spotting stage of the 

development process of spotting-based microarray include evaporation, incubation times, temperature, 

etc.; on the contrary, in microfluidic microarrays, the effects of such physical entities are negligible 

thus require minimum optimization. In addition, in microchannels the protein immobilization is faster 

due to the increased mass flow in comparison to the conventional spotting-based microarray methods. In 

addition, fabrication of µFNs is easy. Such fluidic networks are now regularly employed for point-of-

care applications [85,86]. 
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Table 5. Summary of the developed micromosaic immunoassays. 

Detection Method Solid Support Assay Format Analyte Sensitivity Spots/Array (n × n) Reference 

Fluorescence Silicon Direct immunoassay Guinea pig IgG 6 ng/mL 25 × 25 [15] 

Plasmon PDMS Hybridization RNA/DNA   [87] 

Fluorescence Glass Sandwich immunoassay Bacteria  6 × 6 [88] 

Fluorescence PDMS Direct immunoassay Gp41; gp120   [72] 

Fluorescence PDMS Sandwich immunoassay Human TNF 20 pg/mL 10 × 17 [73] 

Bioluminescence PDMS Intracellular signal Cells  5 × 5 [89] 

Fluorescence PDMS Sandwich immunoassay C-reactive protein 30 ng/mL 7 × 7 [90] 

Fluorescence PDMS Direct immunoassay Multiple Bacterial antigens  1 × 5 [74] 

Fluorescence PDMS Direct assay Cells  8 × 6 [91] 

Fluorescence PDMS Direct immunoassay Antibodies against bacteria in serum  6 × 6 [92] 

Fluorescence Silicon nitride Sandwich immunoassay C-reactive protein 2.5 µg/mL 3 × 12 [93] 

Fluorescence PDMS 
Quantum dot-based 

sandwich immunoassay 
Carcinoma embryonic antigen 500 fM 4 × 8 [94] 

Fluorescence PDMS Sandwich immunoassay C-reactive protein 1ng/mL 5 × 14 [78] 

Fluorescence PDMS Sandwich immunoassay 

Oxidative stress biomarkers 3-nitro 

tyrosine, Catalase Superoxide 

dismutase 

150 µM  

5 ng/mL  

0.5 ng/mL 

3 × 10 [95] 

Fluorescence PVDF, PDMS Direct immunoassay   1 × 10 [96] 

Fluorescence PDMS Direct immunoassay IgG 5 ng/mL 1 × 4 [79] 

Various Various  Various   

[97] (Patent 

number: US 

8,075,854 B2) 

Fluorescence 
Polycarbonate 

and PDMS 
Sandwich immunoassay Rabbit IgG 0.16 µM 6 × 5 [77] 

Fluorescence PDMS Sandwich immunoassay Panel of HIV associated antigens  8 × 21 [98] 

Fluorescence PDMS Sandwich immunoassay Panel of HIV associated antigens   [99] 
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Centrifugal force driven microfluidics have had a great impact on flow control and development of 

diagnostic devices in the form of Lab-on-chip or –CD (developed on circular disk-like platforms)  

(Figure 3). It is also another method reported for the development of microfluidic microarrays. Liquid 

propulsion is generated by spin frequency and accelerations, which govern the fluid movement in the 

channels. Induced forces in centrifugal driven systems, such as Coriolis and physical volume forces, 

enhance mixing by accelerating the diffusional process [100]. In addition, susceptibility of centrifugal 

platforms to physiochemical properties of the fluids is negligible due to some of the typical materials 

used with pressure sensitive adhesives (PSA). Several DNA microarrays have been reported on this 

platform; however, restricted literature is available for protein patterning-based applications. The 

earliest of such microfluidic microarray was reported by Bynum and Gordon (2004) where they have 

integrated a spotted nucleic acid chip with a centrifugal platform, which uses concentric co-rotating 

chambers [101]. Noroozi et al. developed a microarray system for detecting IgG protein immunoassay 

and Burkholderia antigens printed on a nitro-cellulose membrane [102]. The device’s operational 

method relied on flow-reciprocation, which focused on re-flowing of analytes over the same surface 

area for increased absorption to reduce cost and time.  

Figure 3. An illustration of the disc-based microfluidic microarray platform developed by 

Noroozi et al. [102]. (a) represents the burst-out of the whole platform where the main 

compartment as shown in (b) holds the arrayed paper (c) in the compartment; (d) shows 

the close up of the reagent delivery system to the array. 

 

4. Microbeads 

Microbeads have now become popular due to their ease of handling, processing efficiency and 

ability to be used in wash-free immunoassay development. These beads are available in different sizes 

and are customizable in terms of their chemical functionalization and biomolecule immobilization. 

They have started to gain popularity in protein patterning as well. Several of such applications are 

already available in the market (Illumina, B&D, Affimetrix) (Figure 4). Probe-functionalized beads are 

generally trapped in microwells or microchambers and then bioassays are performed on them under 

a b c

d
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flow conditions. Goodey et al. (2001) for the first time reported the development of a fluidic 

microbead array [103]. Specific receptor-labeled beads were filled in an array of microcavities 

followed by flowing analytes over it. They have demonstrated the use of microbead array for the 

detection of influenza virus in addition to the solid-phase peptide synthesis. In a similar approach, 

McDevitt and colleagues (2002) have developed an array for the detection of C-reactive protein 

(CRP) [104]. Ali et al. (2003) reported a microbead-based microarray [105], demonstrated where 

beads were employed for generating arrays They have generated a network of microtrenches of the 

dimensions of 400 microns in an inverted pyramid shape that can hold a bead under flow. These 

microtrenches were aligned over with a microfluidic network followed by flowing the analyte, thus, 

facilitating specific DNA fragment hybridization. Barbee et al. (2010) developed a microfluidic system 

where they have incorporated a bead capture module for capturing specific antibody-functionalized 

beads and an electrophoretic module underneath it for protein separation [106]. The separated proteins 

were allowed to react with electrophoretically separated proteins thus detecting them in an array 

pattern. Yu et al. (2010) also have employed microbead-based microfluidic arrays for detecting a panel 

of seven receptors viz. epidermal (EGFR), insulin-like 1 (IGF-1R) platelet-derived receptor beta  

(PGFR-beta), human epidermal receptor 2 (HER2), vascular endothelial receptor 2 (VEGFR 2), and 

tyrosine kinase, associated to growth factor-mediated signaling [107]. Yang and colleagues (2010) 

used a modified microbead array where they incorporated microcontainers to a µFN and employed it 

for high-sensitivity viral detection as low as 1000 copy numbers/mL [108]. Thus, microbead-based 

method provides a robust and facile approach to develop microarrays with an advantage of customization. 

This approach has a potential to revolutionize the way we perceive personalized diagnostics. 

Figure 4. A set-up of the device is illustrated in (a) for creating a surface with several 

microwells. Later these microwells are filled with antibody-functionalized microbeads 

depicted in yellow colour such that each well holds one bead, which makes a micro-site for 

performing immunoassays. Detection is performed using fluorescence microscopy with 

appropriate emission filters. Red, green, and blue represents the fluorescence emission 

filters for respective fluorophores; (b) shows an array of microbeads adapted from [104]. 

 

a

b
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5. Perspective 

Sequencing technologies available today for molecular analysis are providing vast avenues for the 

development of biological and clinical applications with next-generation-sequencing (NGS) leading 

the forefront. Microfluidic platforms are playing a crucial role in the advancement of state-of-the-art. 

However, these systems must phase with other advancing technologies in order for the innovation to 

continue. The landmark technological alternate to Sanger method of sequencing, sequencing-by-synthesis, 

was revolutionized by Church's group, which allows the arraying of molecular materials in picoliter 

volumes. Microarrays are the key to the cost effective success of genome analysis but their use in 

protein biology and analysis of circulating DNA and RNA is restricted. Since proteins are a better 

diagnostic tool than genetic approaches therefore, diagnostic devices will have to be developed with 

protein handling capabilities by overcoming denaturation issues; firstly in terms of their immobilization 

on surfaces [67,68] and secondly for long term storage [65]. Other issues also concern the read length 

to provide reference of sequencing or a directive from the genome vs. characterization of sample for 

novel identification of molecular material. Conventional methods for arraying are still preferred to 

develop microarrays due to some unmatched requirements related to automation and low-throughput-, 

as well as the loss of biomolecules due to non-specific binding, to which many solutions have been 

identified, but it remains specific to the type of material used [109]. These two obstacles confluence 

and created the need of the development of automation strategies, such as valving techniques, to create 

high-throughput analytics while reducing cross-contamination. NGS systems can provide same output 

of reads in 24 h as hundreds of Sanger-type capillary sequencers, however, to replace them, microarrays 

at present will not supersede this processing power, nor come anywhere close. Conversely, for reagent 

delivery electrokinetic systems, as demonstrated by Gao et al. (2005), are best suited at micron scales 

and allows automation of various microfluidic technologies [74]. Further automation, which currently 

is an engineering challenge, can be achieved by on chip incorporation of several other microfluidic 

modules, such as patient sample handling platforms and cell separation for screening parallelization, 

which have been exploited at functional level [110,111]. These integrations might well induce a market 

interest to invest and reap benefit as it is doing with the NGS development specifically into the Biochip. 

Additional problems in the development of microfluidic microarrays are validation of the developed 

assays [112–115] and reuse of the chips [116]. The validation problems are attributed to the high 

variability in the imprinting due to the fact that patterning in two dimensions require subsequent 

removal of the microfluidic network of first dimension for introducing the network in second 

dimension; this restricts the PDMS bonding to the substrate only by conformal contact. Therefore, we 

need to depend upon self-propelled or flow displacement techniques, such as capillary pumping [117]. 

This introduces huge variability due to the mass-transport phenomena limitations in sensing and 

detection, which are complex and difficult to mathematically model due to the requirement of 

performing analysis at individual component levels. Thus, this needs an in-depth understanding of 

operational mechanism of the device. These theoretical developments help in designing biosensors in 

microfluidic devices which can be used to assist in understanding the complex phenomena happening 

in these systems therefore, advection flow regime must be dominant when designing such microfluidic 

microarrays in order to reduce such mass-transport limited variability. In addition, fine tuning of 

interfaced upstream components and a precise control over flow rates must be attentively addressed to 
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ascertain transport phenomena regime. Developed immunoassays on these fluidic arrays can be 

validated by analyzing several rounds of assay performance on separate arraying units as well. This 

will allow finding out variations among repeats of the fluidic arraying technique and the performance 

of the assays. In addition, cross platform validation, such as against conventional arraying techniques, 

will be helpful in further analyzing the arraying efficiency by microfluidic methods. Other issues, such 

as calibration and use of reference samples have led to more consistent output and less intra-assay 

variation [113,114,118] especially due to the low aspect ratio of microfluidics. Additionally, speed of 

reactivity to provide information about affinity and cross-reactivity of the sample and low 

consumption of sample and reagents have positive benefits over conventional methods. Furthermore, 

the effects of contaminants and nutrient exchanges in the case of cell micromosaic arrays [75] as 

compared with larger volumes of cells need to be understood to maintain adequate response from 

sampled population. Permeability of molecules and gases and leachability of material are also a 

concern as, for example, ubiquitous PDMS has shown in some instances to have adverse effects on 

cells. Similarly, the effects seen on cells in these micromosaic arrays could also be observed in mosaic 

microarray immunoassays. However, after careful experimental modulation the issue of assay 

repeatability and experimental variability can be addressed effectively. 

However, the goal is to reduce manufacturing cost, and one viable option is the reusability of the 

microfluidic array. As for the issue of reusability, the fabrication method of most microfluidic devices 

mostly required a range of high precision closed in-line devices or stand-alone platforms, which allow 

new chips to be introduced. This eliminates the ability to interchange sensor surfaces and leaves 

dispensing cleaning solutions as one of the few alternatives to provide a renewed active surface. This 

issue has somewhat been addressed and one particularly efficient and flexible system is the use of 

magnetically captured surfaces as reaction sites [119], which allows an efficient interphasing of 

microchip device or the use of nanolithography-based surfaces in conjunction with microfluidic 

network [120]. Currently, there are no efforts that are available to us, where the same array could be 

used several times except for micromosaic assemblies, which are still in their infancy. However, since 

antigen-antibody interaction is reversible, therefore, regeneration strategies that are commonly 

employed in immunobiosensors, such as BIAcore SPR, could be adapted and further tested.  

6. Conclusions  

We concluded that (i) for clinical diagnostics-based applications focus should be kept at the 

development of immuno-microfluidic arrays as disposables; (ii) automation and integration of other 

microfluidic modules should be achieved for real world applications; and (iii) involvement of the 

industrial partners who are working in the field of diagnostics should be considered exhaustively 

because the journey of a product from lab to market is essentially facilitated by them. The future and 

fate of microfluidic microarrays is held by the developments which are holding the full potential  

of its peripheral technologies, such as conventional microarrays, and are less laborious, simple, and 

rapid; in our opinion the benefits of microfluidic microarrays as a diagnostic tool outweighs the 

present limitations. 
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