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Abstract: The traditional approach with microarray data has been to apply transformations that
approximately normalize them, with the drawback of losing the original scale. The alternative
standpoint taken here is to search for models that fit the data, characterized by the presence of
negative values, preserving their scale; one advantage of this strategy is that it facilitates a direct
interpretation of the results. A new family of distributions named gpower-normal indexed by p ∈ R
is introduced and it is proven that these variables become normal or truncated normal when a
suitable gpower transformation is applied. Expressions are given for moments and quantiles, in terms
of the truncated normal density. This new family can be used to model asymmetric data that
include non-positive values, as required for microarray analysis. Moreover, it has been proven that
the gpower-normal family is a special case of pseudo-dispersion models, inheriting all the good
properties of these models, such as asymptotic normality for small variances. A combined maximum
likelihood method is proposed to estimate the model parameters, and it is applied to microarray and
contamination data. R codes are available from the authors upon request.

Keywords: data analysis; microarrays; gpower-normal; pseudo-dispersion models; truncated normal;
combined maximum likelihood estimators

1. Introduction

While analysing microarray intensity measurements, it is usual to find asymmetric distributions
with some negative values and the purpose of this article is to model data with these characteristics.

The traditional approach with microarray data has been to apply transformations
that approximately normalize them, with the drawback of losing the original scale.
The initial transformation applied was log2; it allows working with log-ratios which have a
simple and intuitive meaning for biologists (see for example [1,2]). This transformation usually works
well for high values but not for zero, and low ones. Further, it cannot be applied to negative values.
To avoid these drawbacks, [3,4] suggested the generalized logarithm transformation (glog), that allows
negative values and this transformation is obtained from a multiplicative–additive linear error model
for the data, through a Taylor approximation.

On the other hand, the glog transformation usually works well for low values but it is too severe
for high ones. The next improvement was introduced by [5], who defined transformations on a real
supported data family named generalized power transformations (gpower):

gpower (Y; p) =


(Y+

√
Y2+1)

p−1
p if p 6= 0

ln
(

Y +
√

Y2 + 1
)

if p = 0
(1)

Microarrays 2017, 6, 5; doi:10.3390/microarrays6010005 www.mdpi.com/journal/microarrays

http://www.mdpi.com/journal/microarrays
http://www.mdpi.com
http://www.mdpi.com/journal/microarrays


Microarrays 2017, 6, 5 2 of 12

The gpower transformations extend the glog transformation continuously, in the same sense as the
Box-Cox family [6] extends the natural logarithm.

A related problem presented by microarray data when they are log transformed is the
intensity-dependent biases observed in the MA (Minus Average) plots (see [7]). These plots
display pairwise comparisons of log intensities (Int1 and Int2) between microarrays. More
specifically the vertical axis gives the log ratio or difference of the intensities in a log scale
M = log2(Int1/Int2) = log2(Int1)− log2(Int2) and the horizontal axis is the average log intensities
A = 1/2log2(Int1× Int2) = 1/2(log2(Int1) + log2(Int2)). Even when intensities from a controlled
spike-in experiment are expected to show a horizontal cloud centred on the M = 0 axis from low
to high intensities, non-horizontal structures are apparent. Several approaches have been taken to
account for the observed biases (see for example [2,8–10]) , explain and correct the observed MA plot
intensity-dependent biases through linear transformations.

To avoid transformations, the alternative standpoint taken here is to search for models that fit the
data, preserving their scale. One advantage of this strategy is that it facilitates a direct interpretation
of the results. In this direction, [11] showed that data that become normal after a glog transformation
belong to what they called the glog-normal distribution family.

In this paper, we extend their results by characterizing those distributions that become normal
(or truncated normal) after a gpower transformation. We introduce the gpower-normal family; this
family of distributions should be fitted to gene intensities that have been previously calibrated with an
affine transformation, according to the Bengtsson and Hössjer proposal [10].

For positive data, a study has been carried out by [12], who analysed the power normal family,
related to Box-Cox transformation. The improvement of the gpower-normal family over the glog-normal
family is that it can account for lighter asymmetries where the glog transformation is too strong
(see [1,5]); also, it has support on the whole real line, not being restricted to positive values.

In Section 2, we describe the development of a new probability model to be used as a statistical
tool for microarrays data analysis. Gpower-normal models are defined and their main properties
are demonstrated; their relation with pseudo-dispersion models is studied and expressions for the
moments and quantiles are obtained. Then, a combined maximum likelihood method is described
to obtain estimators of the parameters and it is applied in subsequent sections. For the purpose of
illustration, in Section 3, we show several density functions, their quantiles and real data applications.
Finally, discussion and conclusions are presented in Sections 4 and 5 respectively. We have placed
some proofs in the Appendices so as not to break the flow of the narrative.

2. Methods

The methodological idea within this section is to obtain a model for microarray data in their
original scale. With this purpose, we describe a new tool and its implementation.

2.1. Gpower-normal Distribution

With the goal mentioned above, a new distribution family named gpower-normal is presented
and its main properties are stated. We are considering data that, when transformed by gpower, become
normally distributed.

Definition 1. A random variable Y has a gpower-normal distribution if for some µ ∈ R, σ > 0, p ∈ R its
density function is given by

fY

(
y; µ, σ2, p

)
=

1

K
√

2πσ2

(
y +

√
y2 + 1

)p√
y2 + 1

exp
(
− 1

2σ2 dp (y, µ)

)
, y ∈ R (2)
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where the normalizing constant K = 1 − Φ
(
−1/p−gpower(µ,p)

σ

)
if p > 0, K = 1 if p = 0 and

K = Φ
(
−1/p−gpower(µ,p)

σ

)
if p < 0. Φ is the cumulative distribution function of a standard normal variable

and dp (y, µ) = (gpower(y; p)− gpower(µ, p))2 is the deviance (see Section 2.2). Density 2 will be denoted
as GPN(µ, σ, p), where GPN stands for gpower-normal distribution.

The next theorem gives the main property of gpower-normal variables: after a gpower
transformation they become truncated normals (TN). Recall that if X is a TN variable, its density

is given by fX
(

x, µX , σ2) = 1
K

1√
2πσ

exp
(
− 1

2

(
x−µX

σ

)2
)

I(a,b), where I is the indicator function,

(a, b) = (−1/p, ∞) if p > 0, (a, b) = (−∞, ∞) if p = 0 and (a, b) = (−∞,−1/p) if p < 0; µX ∈ R
and we will denote that X ∼ TN

(
µX , σ2, a, b

)
(see Dhrymes [13]).

Theorem 1. Let Y ∼ GPN(µ, σ, p), then the transformed variable X = gpower (Y; p) has a truncated normal
distribution TN

(
µX , σ2,−1/p, ∞

)
if p > 0, TN

(
µX , σ2,−∞,−1/p

)
if p < 0 and normal distribution

N
(
µX , σ2) if p = 0 with µX = gpower(µ, p).

The proof of this theorem can be seen in Appendix A. Figure 1 shows the flexibility of this
distribution family across different values of the parameters, including symmetric and heavy
tailed densities.

2.2. Relationship between Gpower-normal Models and Pseudo-dispersion Models

Gpower-normal models are a special case of a general family of distributions called
pseudo-dispersion models defined by [14]. It is proven in Appendix B that the densities defined
by (2) belong to this family. Expressions for their deviance and unit variance functions are also
obtained. From a theoretical point of view, this is interesting because there are very few examples of
pseudo-dispersion models known in the specialized literature.

2.3. Quantiles and Moments

A straightforward method to obtain quantiles such as the median and quartiles is considered.
These quantiles will be useful in the graphical examination of the model fit to a data set,
through quantile–quantile plots.

Let Y be a gpower-normal random variable and X = gpower (Y; p) the transformed variable
distributed as TN

(
µX , σ2,−1/p, ∞

)
. Let xα be the α-quantile for X, to obtain an expression for the

quantiles of a truncated normal distribution we proceeded as follows:

P (X ≤ xα) = P
(

X0 ≤ xα

)
− FX0 (−1/p)

=
1
K

(
Φ
(

xα − µX
σ

)
−Φ

(
−1/p− µX

σ

))
=

1
K

(
Φ
(

xα − µX
σ

)
− (1− K)

)
= α,

where X0 ∼ N (µX , σ) is the corresponding normal variable with cumulative distribution FX0 and Φ is
the cumulative distribution of the standard normal. Now, clearing up

xα = σΦ−1 (K(α− 1) + 1) + µX .

Also

α = P (X ≤ xα) = P (gpower (Y) ≤ xα) = P
(

Y ≤ gpower−1 (xα)
)

then the α-quantile for Y is
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yα = gpower−1 (xα) (3)

and its value can be obtained from the standard normal distribution. This procedure will be applied in
Section 3.2.

Expressions for the moments of a gpower-normal family can be expressed in terms of the truncated
normal density function (see Appendix C). However, these expressions are not easy to handle, and their
convergence for different values of the parameters remains to be analysed. In order to avoid the
difficulties in moment calculations (e.g., mean and variance) for models given in Definition 1, we
propose the alternative use of quantiles.

2.4. Parameter Estimation

The gpower-normal models have three parameters to be estimated. They are related to the
corresponding TN model parameters as it has been detailed in Section 2.1. We propose a combined
profile likelihood and maximum likelihood approach to estimate the parameters. The five steps of the
proposed estimation approach are described below:

1. Given a data set represented by vector y = (y1, y2, . . ., yn), to obtain a profile likelihood for the
power p, we consider a grid of values p0, p1, . . ., pk.

2. For each pj, 1 ≤ j ≤ k the transformed data xpj are calculated as xpj = gpower
(
y, pj

)
.

3. Then, for each pj, the corresponding µpj and σpj are estimated, maximizing the likelihood function
of the truncated normal variable.

4. Then, pj, µpj and σpj are used to obtain the log-likelihood function of y whose density was given
by (2):

ln fy
(
y; µ, σ2, p

)
= n ln 1

K
√

2πσ2
pj

+ ∑n
i=1

(
ln p

(
yi +

√
y2

i + 1
)
− ln

√
y2

i + 1
)
− 1

2σ2 ∑n
i=1 dp

(
yi, µpj

)
.

5. Finally, p is chosen as the one that maximizes the log-likelihood in the grid:
p̂ = max

1≤j≤k
ln fy

(
y; µpj , σ2

pj
, pj

)
The method described above is applied in Section 3.2 and an implementation has been written in

R language [15]. The codes are available from the authors upon request.

3. Results

To highlight the potential of the distribution family to model data with different skewness and
kurtosis, we present several density functions and their quantiles. Also, the model fit is illustrated
with real data sets.

3.1. Some Examples of Gpower-normal Densities

By way of example, Figure 1 shows the flexibility of this distribution family across different values
of the parameters, including symmetric and heavy tailed densities. Graphic representations of these
densities are exhibited for two different values of p (0.05 and 0.5) and three different values of σ (1, 5
and 10); always with µ = 0.

It can be seen that kurtosis decreases as σ grows up and asymmetry grows with p.
Table 1 contains some quantile values corresponding to the distributions displayed in Figure 1

confirming the observations made above for those displays.
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Figure 1. Gpower-normal densities for some values of p and σ, always with µ = 0.

Table 1. Some α quantile values for different choices of the parameters in Expression 2: p = 0.05, 0.50,
σ = 1, 5, 10 always with µ = 0.

p = 0.05 p = 0.50

α σ = 1 σ = 5 σ = 10 σ = 1 σ = 5 σ = 10

0.01 −11.78 −3.65× 7 −1.63× 22 −166.37 −508.68 −182.81
0.05 −5.39 −3.98× 104 −2.73× 1011 −13.84 −20.83 −7.25
0.10 −3.49 −2.26× 103 −4.64× 107 −5.67 −5.17 −1.33
0.50 0.00 3.97× 10−4 0.57 0.06 4.25 14.16
0.90 3.17 259.00 2.17× 104 2.34 22.75 78.52
0.95 4.65 981.00 1.74× 105 3.04 31.37 109.85
0.99 8.92 9590.00 5.24× 106 4.48 51.85 185.57

3.2. Real Data Applications

As it was mentioned in Section 1, the proposed density family was originally motivated by
the modelling of microarray intensities, but its application is more general. Here, we present some
examples: the first one corresponds to intensities of microarray data, the second one to concentrations
of ammonia and the third one to magnetic contamination indices. For these examples, the parameter
estimators are obtained by the method described in Section 2.4. Then, the data fit to the corresponding
estimated model is shown graphically in three ways: (1) by the overlap of the data histograms with
the density curves, (2) by the overlap of the empirical distribution curve with the adjusted model
cumulative distribution function, and (3) by quantile–quantile (Q–Q) plots, that display the ordered
data in the horizontal axis and the corresponding quantiles of the estimated model distribution.

It is also evaluated applying Kolmogorov–Smirnov tests to compare the estimated gpower-normal
and the glog-normal distributions. The resulting p-values should be taken as descriptive comparisons
of the two distributions and as a complement of the Q–Q plots.

Example 1. The first set of data corresponds to 30 intensities of one gene and they can be seen in Appendix D.
These data were selected from the Yale University MAQC project and downloaded from [16].

The values forp, µ, and σ were estimated by the profile likelihood method (Section 2.4), resulting p̂ = 0.23,
µ̂ = 1052 and σ̂ = 3.46. From these estimations, the 0.25, 0.50 and 0.75 quantiles were obtained according to
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expression (3) resulting in 690, 1052 and 1545, respectively. As can be seen in Figure 2, this set of data is well
fitted by the gpower-normal model with the parameters given above. It is confirmed by the Kolmogorov–Smirnov
test, with a p-value = 0.7057 for the gpower-normal model and 0.4934 for the glog-normal model.
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Figure 2. Overlap of the histogram with the adjusted model density curve (left), of the empirical
distribution curve with the distribution function (center) and quantile–quantile (Q–Q) plot (right) for
gene expression data.

Example 2. Two sets of data representing concentrations of ammonia in the UK for the years 2005 and 2011
were downloaded from [17] and they are given in Appendix D. Applying again the methodology detailed in
Section 2.4, we obtained, for the year 2005, an optimum value of 0.20 for the parameter p. The corresponding,
µ, σ and the 0.25, 0.50 and 0.75 quantiles were 2.11, 0.70 , 1.39, 2.11 and 3.04 respectively. For the year
2011, the optimum p was 0.16 and the corresponding µ̂, σ̂ and the 0.25, 0.50 and 0.75 quantiles were 2.93,
0.68, 2.00, 2.93 and 4.15 respectively. Observe that the 2011 interquartile interval shows a level and amplitude
increase with respect to 2005.

As in the previous example, it can be seen in Figures 3 and 4 that the fitted gpower-normal models with
the parameters given above fit them quite well.

In the Q–Q plot for the year 2011 data, the highest three observations are higher than the expected model
quantiles, suggesting an increase in ammonia concentration. The Kolmogorov–Smirnov test confirms the
goodness-of-fit with a significance of 0.3411 for 2005 and 0.4993 for 2011. For the corresponding glog-normal
model, p-values of 0.1168 and 0.2327 were obtained.

Example 3. When measuring magnetic contamination, the index can take an asymmetric positive distribution,
with some negative values observed because of air presence. In this example, data from Mar del Plata,
Argentina (see [18]), are fitted with a gpower-normal density. Data can be seen in Appendix D. Applying
again the methodology detailed in Section 2.4, we obtained an optimum value of 0.19 for the parameter p.
The corresponding µ̂, σ̂ and the 0.25, 0.50 and 0.75 quantiles were 8.05, 1.64 , 3.98, 8.05 and 14.91 respectively.

As in the previous examples, it can be seen in Figure 5 that the fitted gpower-normal model with the
parameters given above fits them quite well. The fit was evaluated applying a Kolmogorov–Smirnov test
(p-value = 0.57 for the gpower-normal model and 0.29 for the glog-normal model).
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Figure 3. Overlap of the histogram with the adjusted model density curve (left), of the empirical
distribution curve with the distribution function (center) and Q–Q plot (right) for concentrations of
ammonia in 2005.
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Figure 4. Overlap of the histogram with the adjusted model density curve (left), of the empirical
distribution curve with the distribution function (center) and Q–Q plot (right) for concentrations of
ammonia in 2011.
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Figure 5. Overlap of the histogram with the adjusted model density curve (left), of the empirical
distribution curve with the distribution function (centre) and Q–Q plot (right) for magnetic
contamination in Mar del Plata.

4. Discussion

A new family of distributions named gpower-normal, indexed by p ∈ R, has been defined.
Variables whose distribution belongs to this family become normal or truncated normal when a gpower
transformation is applied. From a practical point of view, the truncation is very often negligible, such
is the case of data in Example 1. The estimated parameters were p̂ = 0.23 , µ̂ = 1052 and σ̂ = 3.516 and
thus the truncation constant given in Definition 1 is almost 1, meaning that no truncation is necessary
in this case. Similar results were obtained for Examples 2 and 3.

The gpower-normal family can model data that include non-positive values, as required for
microarray analysis.

To estimate the model parameters, a combined maximum likelihood method is proposed and
it is successfully applied to real data. It enables direct calculations of quantiles for which simple
expressions are given. Thus, position and scale measures (i.e., the median and the interquartile range)
can be easily obtained, overcoming the difficulties found in moment calculations.

This allows the use of the estimated distribution medians as summary measures for gene
intensities. Therefore, to compare the gene intensities in two biological conditions, it seems adequate
to compare the corresponding medians of the estimated distributions.

This paper extends the results previously presented by Leiva and coauthors [11] and therefore
the new distribution family offers a larger set of models. Considering the Leiva et al. proposal as a
standard alternative, the new family can fit data for which their proposal might be not flexible enough.
As expected, in all examples, the Kolmogorov–Smirnov tests indicated a closer fit of the data to the
gpower-normal distribution in comparison with the glog-normal fit.

In addition, it has been proven that the gpower-normal family is a special case of pseudo-dispersion
models, inheriting all the good properties of these models, such as asymptotic normality for small
variances. It should be pointed out that very few examples of pseudo-dispersion models have been
reported in the literature. The obtained p-values should be considered as descriptive values only and
as a complement to the Q–Q plot, which provides a visual impression of the fit.
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5. Conclusions

We have presented a family of distributions to model asymmetric data with positive and negative
values. It allows investigators to model microarray data, preserving their original scale. Although the
construction of this family of distributions was motivated by microarray data, it is important to notice
that the model is also useful in other environments, such as chemical and magnetical contamination
data. A method has been given to estimate quantiles and in our examples, specific quantile–quantile
plots were effective tools for a visual evaluation of the data fit to the estimated models.
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Appendix A. Proof of Theorem 1

In this Theorem, it is shown that a gpower-normal variable becomes normal or truncated normal
when its corresponding gpower transformation is applied.

Proof. Let x = gpower (y; p), then when p 6= 0

y = gpower−1 (x) =
(px + 1)1/p − (px + 1)−1/p

2

and it is easy to see that

∂y
∂x

=
∂ gpower−1 (x)

∂x
=

(px + 1)1/p + (px + 1)−1/p

2(px + 1)

for p > 0, x > −1/p and the derivative is positive, which means that gpower (y; p) is a monotonically
increasing function. Now, X = gpower (Y) is considered as a function of a random variable Y ∼
GPN(µ, σ, p). The density for X is obtained as follows:

fX (x) =
∂

∂x
P (gpower (Y; p) ≤ x)

= fY

(
(px + 1)1/p − (px + 1)−1/p

2

)
(px + 1)1/p + (px + 1)−1/p

2(px + 1)

=
1

K
√

2πσ2
exp

(
− 1

2σ2

(
x− µX)

2
))

, −1/p < x < ∞

that is precisely the density of a TN
(
µX , σ2,−1/p, ∞

)
random variable. For p < 0, it can be proved

analogously that

fX (x) =
1

K
√

2πσ2
I(−∞,−1/p) (x) exp

(
− 1

2σ2 (x− µX)
2
)

,

For p = 0, gpower (x, 0) = ln
(

y +
√

y2 + 1
)

= arc sinh (y). The inverse transformation is

gpower−1 (x, 0) = sinh (x) = ex−e−x

2 and

∂gpower−1 (x, 0)
∂x

=
∂

∂x

(
ex − e−x

2

)
=

ex + e−x

2
.
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Again, the derivative is positive ∀y, meaning that the function is monotonically increasing and
the density of X becomes

fX (x) =
d

dy
P
(

Y ≤ ex − e−x

2

)
dy
dx

=
1√

2πσ2
exp

(
− 1

2σ2

(
x− µX)

2
))

that is precisely the density of a N
(
µX , σ2) random variable.

Appendix B. Relationship between Gpower-normal Models and Pseudo-dispersion Models

We first define proper dispersion models and then extend them to pseudo-dispersion models.

Definition 2. Given an open interval Ω ⊆ R, a proper dispersion model is a family of random variables Y with
density functions of the form

fY

(
y; µ, σ2

)
= c

(
σ2
)

V−1/2 (y) exp
(
− 1

2σ2 d (y, µ)

)
, y ∈ Ω

where µ ∈ Ω, σ > 0, d (y, y) = 0 ∀y ∈ Ω and d (y, µ) > 0 ∀y 6= µ (which means that d is a deviance).
The constant c

(
σ2) ensures that this is a density function and V () is the variance function, related with d by

V (y) = − 2
∂2d(y,µ)

∂y∂µ

∣∣∣∣
y=µ

.

Proper dispersion models are characterized by the existence of vector functions s and α such that
their deviance can be factorized as d(y, µ) = s(y)Tα(µ).

The above definition can be extended, by allowing c () todepend also on µ and the new density is

fY

(
y, µ, σ2

)
= c

(
µ, σ2

)
V−1/2 (y) exp

(
− 1

2σ2 d (y, µ)

)
, y ∈ Ω (4)

being
1

c (µ, σ2)
=
∫
Ω

V−1/2 (y) exp
(
− 1

2σ2 d (y, µ)

)
dy.

On the other hand, if it satisfies that σc
(
µ, σ2) −→ (2π)−1/2 , when σ → 0 for all y, it is called

a pseudo-dispersion model. A remarkable property of these models is that they are asymptotically
normal [14].

It will be proven now that gpower-normal models are pseudo-dispersion models.

Theorem 2. Models given in Definition 1 are pseudo-dispersion models.

Proof. First note that (gpower (y; p)− gpower(µ, p))2 is a deviance. Besides, defining V (y) =(
y2 + 1

)
/
(

y +
√

y2 + 1
)2p

, equality given in 2 is verified and the densities given in (2) can be written
as (4) where the normalizing constant is

c
(

µ, σ2
)
=

1(
1−Φ

(
−1/p−gpower(µ)

σ

))√
2πσ

To verify that it satisfies the limit condition, it has to be seen that σc
(
µ, σ2)→ 1√

2π
when σ→ 0.

This is true because −1/p−gpower(µ)
σ −→

σ→0
−∞ and Φ (−∞) = 0.

Besides, note that it is enough to define s(y)T = (gpower2(y; p),−
√

2gpower(y; p), 1) and
α(µ)T = (1,

√
2gpower(µ, p), gpower2(µ, p)) to be able to express dp(y, µ) as s(y)Tα(µ). In particular,
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if p = 0, the variance function is V (µ) = µ2 + 1 and it coincides with the variance function of a
generalized hyperbolic secant, that corresponds to a Morris model [19].

Appendix C. Moments of Gpower-normal Family

Expressions for the moments of a gpower-normal family are obtained here, and it is shown that
they can be expressed in terms of the truncated normal density function.

Theorem 3. Let Y ∼ GPN(µ, σ, p), then its moments can be expressed as E (Yn) =

1
2K
√

2πσ2

∞∫
−1/p

(
(px + 1)1/p − (px + 1)−1/p

)n
exp

(
− 1

2

(
x−µX

σ

)2
)

dx.

Proof. Y can be represented as the inverse gpower transformation of a truncated normal variable X:

Y = gpower−1 (X, p) =

{
(pX+1)1/p−(pX+1)−1/p

2 if p 6= 0
eX−e−X

2 if p = 0

now, the expectation of Yn can be expressed for p 6= 0 as

E (Yn) = E

(
(pX + 1)1/p − (pX + 1)−1/p

2

)n

=
1

2nK
√

2πσ2

∞∫
−1/p

(
(px + 1)1/p − (px + 1)−1/p

)n
exp

(
−1

2

(
x− µX

σ

)2
)

dx.

Appendix D. Data used in Examples

Example 1

1276, 910, 1159, 561, 1174, 1174, 2707, 2056, 1539, 962, 1635, 604, 848, 1506, 1195, 793, 1657, 3187,
1246, 2546, 537, 456, 201, 1153, 515, 1228, 529, 1461, 382, 721.

Example 2

2005: 3.16 6.21 5.17 5.57 4.96 2.58 1.01 1.43 1.27 1.87 0.71 0.63 0.67 3.06 0.49 1.85 1.94 0.33 1.34 2.73 2.45
2.71 3.57 2.30 1.39 2.52 2.17 2.54 2.46 1.89 2.06 2.50 2.26 2.97 3.50 1.89 1.97 3.07 3.39 3.08 4.33 8.23
5.35 5.85 4.04 3.81 3.44 5.23 5.92 4.22 2.67 1.55 1.50 1.95 1.43 3.40 2.38 2.96 1.36 0.13 0.21 0.69 1.96
0.23 0.55 2.13 3.55 4.40 2.73 5.12 3.64 3.85 2.12 2.49 2.33 2.53 2.64 4.42 3.67 3.13 2.64 3.02 2.92 2.73
2.97 2.36 3.74 2.16 2.76 3.12 3.33 1.84 2.29 2.63 2.54 2.41 2.98 2.47 2.34 2.29 2.57 2.67 2.32 2.28 1.40
1.76 2.79 2.34 2.55 2.82 2.29 2.22 1.63 0.54 0.31 1.01 1.62 0.71 1.94 1.47 0.36 0.57 1.61 0.81 2.43 2.65
1.20 1.38 1.26 1.85 1.54 1.31 0.89 0.83 0.85 1.30 1.75 1.34 1.76 2.83 2.00 1.22 1.51 1.88 2.37 2.88 3.20
3.38 4.23 2.01 1.06 1.05 1.77 1.22 0.90 2.77 1.21 1.89 0.84 0.72 1.11 0.81 0.66 2.28 2.33 2.49 2.93 1.67
1.98 0.58 6.76 0.58.

2011: 3.25 6.82 7.20 6.49 5.40 4.09 2.84 2.28 2.08 3.25 1.57 1.06 0.75 3.44 0.86 2.37 2.45 0.63 1.67 3.43 3.45
4.29 4.47 2.77 1.95 3.12 2.77 3.47 4.19 2.73 3.76 3.92 4.17 6.19 4.37 2.46 2.82 3.65 4.71 3.50 6.50 15.89
8.87 10.08 5.97 6.36 4.61 5.99 6.64 4.69 3.06 1.66 2.02 1.73 1.35 3.20 2.02 2.73 1.43 0.17 0.40 1.43 2.36
0.87 1.24 2.88 4.15 4.78 4.74 6.05 3.92 3.98 3.67 2.83 3.14 3.54 3.01 5.22 4.56 3.94 3.27 3.81 3.82 3.92
4.33 3.45 5.12 3.64 4.42 5.16 5.67 2.90 5.22 4.70 4.32 3.70 3.88 3.35 3.02 3.06 3.18 3.55 3.10 3.22 1.93
2.19 3.52 3.15 3.33 3.85 2.83 2.97 2.49 1.55 0.61 1.59 2.26 1.97 4.11 2.55 1.67 2.38 2.05 2.22 3.05 3.75
3.09 1.96 2.09 2.64 2.40 2.01 1.50 1.35 1.41 1.96 2.46 1.97 2.50 3.52 2.64 1.80 2.08 2.37 3.77 4.05 4.61
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4.91 5.61 3.20 1.38 3.36 3.35 1.60 1.09 3.48 1.71 2.40 0.99 1.04 1.30 1.10 0.93 3.00 3.08 3.27 3.66 2.28
2.42 0.72 4.54 1.29.

Example 3

8.8 0.9 10.2 25.9 21.5 8.3 12.4 3.9 11.4 3.2 11.1 5.8 6.7 13.8 83.4 8.3 6.2 8.9 19.2 13.5 15.0 31.3 8.2 5.0
3.9 11.2 8.3 12.0 9.5 5.8 6.3 14.0 21.5 10.6 7.1 9.5 9.0 3.9 3.5 7.1 16.9 4.0 4.5 10.9 55.3 3.3 1.3 13.4 -0.3 2.0 0.0
9.8 0.0 8.1
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