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Abstract: Nopal (Opuntia ficus indica) belonging to the Cactacea family has many nutritional benefits
attributed to a wide variety of phenolic and flavonoid compounds. Coumaric acid (COA), ferulic
acid (FLA), protocatechuic acid (PRA), and gallic acid (GAA) are the phenolic acids (PhAs) present
in nopal. In this study, the role of these PhAs in copper-induced oxidative stress was investigated
using the density functional theory (DFT). The PhAs form 5 thermodynamically favorable complexes
with Cu(II), their conditional Gibbs free energies of reaction (∆G’, at pH = 7.4, in kcal/mol) are from
−23 kcal/mol to −18 kcal/mol. All of them are bi-dentate complexes. The complexes of PRA and
GAA are capable of inhibiting the Cu(II) reduction by both O2

•− and Asc−, their reactions with the
chelated metal are endergonic having rate constants about ~10−5–102 M−1 s−1, PhAs can prevent
the formation of hydroxyl free radicals by chelating the copper ions. Once the hydroxyl radicals are
formed by Fenton reactions, the complexes of PhAs with Cu(II) can immediately react with them,
thus inhibiting the damage that they can cause to molecules of biological interest. The reactions
between PhAs-Cu(II) complexes and hydroxyl free radical were estimated to be diffusion-limited
(~108 M−1s−1). Thus, these chelates can reduce the harmful effects caused by the most reactive free
radical existent immediately after it is formed by Fenton reactions.

Keywords: natural antioxidants; fenton reactions; phenolic acids in nopal; oxidative stress; DFT

1. Introduction

Several diseases are caused by oxidative stress (OS) such as cancer, rheumatoid
arthritis, pulmonary and renal failures, cardiovascular diseases and neurodegenerative
disorders such as Alzheimer’s and Parkinson’s diseases, multiple sclerosis, and memory
loss [1–10]. OS is caused by an excess in the production of reactive oxygen species (ROS)
and the inability of the body to remove such excess. The imbalance between production
and consumption of ROS can severely damage cells or molecules of biological interest
such as proteins or DNA [11,12]. Therefore, to preserve human health, it is important to
find efficient strategies to attenuate the OS-induced molecular damage. In addition to
enzymatic defense systems, chemical antioxidants arising from plant extracts containing
phenolic and flavonoid compounds are a viable tool to achieve that purpose.

Nopal (Opuntia ficus indica) is part of the Cactacea family. This plant grows wildly
in arid and semi-arid regions in America and Europe. The tender young part of the cac-
tus stem, or cladode, is frequently consumed as a vegetable in salads, while the nopal
fruit is consumed as a fresh fruit. The fruit and cladodes of nopal have nutritional ben-
efits attributed to their antioxidant properties and the pharmacological activity of their
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compounds [13–15]. Consumption of nopal has been recommended for the treatment of
some diseases like diabetes mellitus, blood glucose levels, hyperlipidemia, obesity and
gastrointestinal disorders, and neuronal injury [16–19] Nopal is a valuable source of nu-
trients [20] as well as antiulcerogenic [21,22], antioxidant [19,20,23–25] anticancer [23],
neuroprotective [26], hepatoprotective [27], and antiproliferative [28] compounds.

All parts of the nopal are rich in polyphenolic compounds and phenolic acids (PhAs),
as is reported in Figure S1. These compounds are abundant within the plant’s kingdom
and human diet. Coumaric acid (COA), ferulic acid (FLA), protocatechuic acid (PRA), and
gallic acid (GAA) are PhAs present in nopal [29] (Figure 1). These PhAs, in turn, have nu-
merous beneficial effects on human health including antibacterial [30], anticoagulatory [31],
anti-inflammatory [29,32], antihyperglycemic [33], antimutagenic [34,35], antiviral [36,37],
cardioprotective [38] and neuroprotective [39] activities.

Figure 1. Phenolic acids (PhAs) in Nopal.

Chemical composition depends on the cactus variety, maturation stage and environ-
mental conditions of the place of origin [40,41]. Different chemical compounds have been
found in the nopal, which are distributed in different proportions in its tissues. Cactus fruit
contains important amounts of ascorbic acid, vitamin E, carotenoids, phenols, flavonoids,
betaxanthin, betacyanin, and amino acids [42,43], while, in its flowers, many flavonoids
are present, such as kaempferol and quercetin [44]. Cactus peel and seeds are rich in
palmitic acid, oleic acid, and linoleic acid [45]. The cactus cladodes contain vitamins, vari-
ous flavonoids, particularly quercetin 3-methyl ether, narcissin, gallic acid, and coumaric
acid [46–48].

The growing interest in phenolic compounds results from their antioxidant potential.
For example, COA, FLA, PRA and GAA have shown to have antioxidant activity as
peroxyl radicals scavengers [49–55]. They react with the hydroperoxyl radical (•OOH)
at rate constants of 105–108 M–1 s–1 in aqueous solution and at physiological pH, which
indicates that, as free radical scavengers, they are better than Trolox, which is a reference
compound [56–58].

In addition to its free radical scavenging activity, some phenolic compounds can
prevent the formation of OS in the presence of redox metals such as iron or copper. These
metals participate in Fenton-type reactions generating hydroxyl radicals (•OH) that are a
highly oxidizing species. However, for COA, FLA, PRA and GAA there are not enough
data to determine if they could be implicated in preventing the production of •OH radicals.
So, the aim of the present investigation was to gain a deeper knowledge on this activity
and to provide a qualitative and quantitative analysis of the working mechanisms of COA,
FLA, PRA and GAA.
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2. Methodology

In the present investigation, the Gaussian 09 package of programs [59] was used. The
computational details to study the mechanisms for reactions between the complexes and
the hydroxyl free radical are in line with the quantum mechanics-based test for the overall
free radical scavenging activity (QM-ORSA) protocol [60]. In the present investigation, all
the calculations were carried out inside the framework of the density functional theory
(DFT) and, in particular, a Thrular functional M05 [61] was used in conjunction with the
basis set of Pople 6-311+G(d,p). To simulate the aqueous environment, the continuum
solvent method based on density SMD [62] was considered. SMD can be safely used for
estimating solvation free energies for any charged or uncharged solutes, with relatively low
errors [59]. The local minima and transition states were identified by 0 and 1 imaginary
frequencies, respectively. To verify that the imaginary frequency of each transition state
corresponds to the expected motion along the reaction path, the intrinsic reaction coordinate
(IRC) calculations were carried out. Unrestricted calculations were used for the open-shell
systems. The energetic values include thermodynamic corrections at 298.15 K.

The conventional transition state theory (TST) [63–65] and the 1 M standard state were
used to calculate the rate constants, using harmonic vibrational frequencies and Eckart
tunneling [66]. For the electron transfer reactions, the Gibbs free energy of activation
were calculated using the Marcus theory [67]. In addition, since several of the calculated
rate constants (k) are close to the diffusion limit, the apparent rate constant (kapp) cannot
be directly obtained from TST calculations. The Collins–Kimball theory is used to that
purpose [68], in conjunction with the steady-state Smoluchowski [69] rate constant for
an irreversible bimolecular diffusion-controlled reaction, and the Stokes–Einstein [70]
approaches for the diffusion coefficient of the reactants.

In the complexes, the Cu (II) ions were modeled coordinated to water molecules,
because they are expected to be hydrated in the aqueous phase. This model results to be
more adequate to represent “free” copper in biological systems than the corresponding
naked ions. Four water molecules were chosen for this purpose, since it was previously
reported that the most likely configuration of Cu (II) water complexes, in the aqueous
phase, corresponds to an almost square planar four-coordinate geometry [71].

3. Results and Discussion

To determine the molar fractions Mf of each acid-base species, at physiological pH
(pH = 7.4), it is important to take into account the pKa values; in Table 1 are reported those
for the investigated PhAs. For each PhA, in Figure S2, are the deprotonation routes.

Table 1. Experimental pKa values (with their references) and the molar fractions (Mf ) for the different acid-base species of
the investigated PhAs, at pH = 7.4.

PhAs pKa1 pKa2 pKa3 pKa4
Mf

(HnA)

Mf
(Hn−1A−)

Mf
(Hn−2A−2)

Mf
(Hn−3A−3)

Mf
(Hn−4A−4)

Refs.

COA 4.38 8.68 0.001 0.949 0.050 [56,72,73]
FLA 4.56 8.65 0.001 0.945 0.053 [56,73]
PRA 4.38 8.74 10.67 0.001 0.955 0.044 <0.001 [56,57]
GAA 4.32 8.24 9.97 13.1 0.001 0.871 0.127 <0.001 <0.001 [58,74]

At pH = 7.4 the species with more molar fraction Mf of the investigated PhAs is the
mono-anionic species (Hn−1A−), but also the neutral and di-anionic species were taken into
account in the present investigation. On the other hand, the molar fractions of tri-anions
(Hn−3A−3) and fourth anions (Hn−4A−4) for PRA and GAA are almost negligible.

3.1. Pro-Oxidant Effects by Cu(II) Reduction

A crucial feature for the antioxidant protection, when it takes place in the presence of
metal ions, is the reductant capability of the antioxidant, in particular of their deprotonated
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species. Since the mono-anions of the antioxidants can behave as nucleophilic agents, they
can cause the reduction of copper (II) to copper (I) and therefore accelerate the Fenton
reactions, thus originating hydroxyl radicals. Such pro-oxidant effects were also explored
in this work, considering both PhAs and their corresponding anions (1)–(3). To put the
calculated data into perspective, the Cu(II) reductant activity of the investigated PhAs was
compared to those of the superoxide radical anion (O2

•−), reaction (4), and the ascorbate
anion (Asc−), reaction (5). The superoxide anion radical (O2

•−) and ascorbate (Asc−)
are reducing species at a physiological level, even at an experimental level a mixture of
copper-ascorbate is used to provoke redox conditions, and the O2

•− is the main reducing
species in Fenton reactions; therefore, they are used in the present investigation to analyze
the reductant effect against Cu(II).

HnPhAs + Cu(II)→ HnPhAs •+ + Cu(I) (1)

Hn−1PhAs− + Cu(II)→ Hn−1PhAs • + Cu(I) (2)

Hn−2PhAs2− + Cu(II)→ Hn−2PhAs •− + Cu(I) (3)

O2
•− + Cu(II)→ O2 + Cu(I) (4)

Asc− + Cu(II)→ Asc • + Cu(I) (5)

In Table 2 are collected the data referring to the reduction of free Cu(II). To obtain the
rate constants, the molar fractions of PhAs, O2

•− and Asc− were included at the pH of
interest. Taking into account that the reduction of Cu(II) to Cu(I) by O2

•− experimentally
occurs at 8.1 × 109 M−1s−1 [75], it can be evinced that the rate constant calculated for that
reaction is found to be only 1.74 times lower than the experimentally measured one. This
finding supports us on the kinetic data reported and discussed in this work.

Table 2. Gibbs free energies of reaction (∆G, kcal/mol), reorganization energies (λ, kcal/mol),
reaction barriers (∆G 6=, kcal/mol) and rate constants (k, M−1s−1) for the Cu(II) reduction by PhAs,
O2
•− and Asc−, at 298.15 K and pH = 7.4.

∆G λ ∆G 6= k

O2
•− −24.01 51.87 3.74 4.66 × 109

Asc− −4.67 34.14 6.36 1.33 × 108

HnCOA 12.90 29.40 15.22 4.34 × 10−2

Hn−1COA– 5.49 30.79 10.69 8.59 × 104

Hn−2COA2– −16.64 28.53 1.24 3.96 × 108

HnFLA 8.46 29.45 12.20 7.11 × 100

Hn−1FLA– 2.94 29.86 9.00 1.47 × 106

Hn−2FLA2– −19.39 28.45 0.72 4.22 × 108

HnPRA 15.69 30.97 17.57 8.12 × 10−4

Hn−1PRA– 8.14 31.35 12.43 4.57 × 103

Hn−2PRA2– −16.15 29.96 1.59 3.45 × 108

HnGAA 15.19 31.05 17.22 1.48 × 10−3

Hn−1GAA– 8.50 31.20 12.63 2.97 × 103

Hn−2GAA2– −17.80 30.11 1.26 1.01 × 109

At physiological pH, the di-anionic PhAs are predicted to reduce Cu(II) to Cu(I) at
significant rates. However, neutral, and mono-anionic acids do not have this pro-oxidant
effect since their rate constants are around 10−4 M−1s−1–106 M−1s−1 and the reduction of
the metal by O2

•− and Asc− occurs at 109 M−1s−1 and 108 M−1s−1, respectively. The PhAs
featuring a pro-oxidant effect consist of the di-anion of gallic acid with a rate constant for
the Cu(II) reduction of 1.01 × 109 M−1s−1, very closed to that of O2

•−, at pH = 7.4. The
rate constant for the Cu(II) reduction by di-anions of COA, FLA and PRA are similar to
that involving Asc−.
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3.2. •OH-Inactivating Ligand Behavior

The possibility that PhAs behave as •OH-inactivating ligand (OIL) [76–78] in the
presence of redox metal ions also was explored. Such a behavior can be exhibited in two
different ways [72]:

OIL−1: by sequestering metal ions from reductants.
OIL−2: by deactivating •OH as they are formed through Fenton-like reactions.
In both cases, OIL molecules should act as metal chelating agents. When they behave

as OIL−1 agents, the metal (Cu (II)) is protected by the antioxidant in the complex formed.
Thus, initially the Fenton reactions that originate hydroxyl radicals are inhibited.

Furthermore, the antioxidant behaves like OIL−2, when once the hydroxyl radical is
formed by Fenton reactions, the complex of PhAs with Cu(II) immediately reacts with the
radical, thus behaving as an immediate target and thus protecting other molecules of great
interest such as proteins or even DNA.

Chelation was the first aspect explored here since it represents a necessary and crucial
step in both cases. Cu(II) ions were modeled coordinated to four water molecules, in a
near square-planar configuration and Cu(I) with four explicit water molecules too, in a
linear two-coordinate configuration. In this case, in fact, Cu(I) is coordinated only to two
water molecules, while the other two are retained in the second coordination shell of the
metal ion.

All the possible chelation sites involving O atoms of the examined PhAs were explored,
as described in detail in Table S1. In addition, their roles as mono-dentate and bi-dentate
ligands have both been considered. Six different chemical routes leading to Cu(II) chelation
were investigated. They are:

Route (I): Direct chelation by neutral phenols (HnPhAs):
Cu(H2O)4

2+ + HnPhAs � [Cu(H2O)4-j(HnPhAs)]2+ + jH2O
Route (II): Coupled deprotonation-chelation involving neutral phenols (HnPhAs):
Cu(H2O)4

2+ + HnPhAs � [Cu(H2O)4-j(Hn−1PhAs)]+ + jH2O + H+

Route (III): Direct chelation by anionic phenols (Hn−1PhAs −):
Cu(H2O)4

2+ + Hn−1PhAs −� [Cu(H2O)4-j(Hn−1PhAs)]+ + jH2O
Route (IV): Coupled deprotonation-chelation involving anionic phenols (Hn−1PhAs −):
Cu(H2O)4

2+ + Hn−1PhAs −� [Cu(H2O)4-j(Hn−2PhAs)] + jH2O + H+

Route (V): Direct chelation by di-anionic phenols (Hn−2PhAs 2−):
Cu(H2O)4

2+ + Hn−2PhAs 2−� [Cu(H2O)4-j(Hn−2PhAs)] + jH2O
Route (VI): Coupled deprotonation-chelation involving di-anionic phenols (Hn−2PhAs 2−):
Cu(H2O)4

2+ + Hn−2PhAs 2−� [Cu(H2O)4-j(Hn−3PhAs)]- + jH2O + H+

Table S1 collects all the complexes formed between PhAs and Cu(II) indicating their
chelation routes (ChR), chelation sites (ChS), conditional Gibbs free energies of reaction
(∆G’, at pH = 7.4, in kcal/mol), and Maxwell–Boltzmann distribution (%MB) for the differ-
ent chelation pathways. The corresponding equilibrium constants and Gibbs energies of
reaction would explicitly depend on the pH, because the coupled deprotonation-chelation
mechanisms (CDCM), i.e., routes II, IV and VI, simultaneously involve Cu(II) chelation
and deprotonation of the reactive site in the ligand. Thus, to take this effect into account,
the reported data correspond to pH = 7.4. If the complex corresponds to a neutral species
and mono-dentate, the label is, for example, HnCOA(1)-Ci, where “i” is the number of the
chelate. In addition, if it is from a mono-anionic species and bi-dentate, the label is, for ex-
ample, Hn−1FLA–(2)-Ci, and so on. Some of these complexes could be formed through two
routes; for example, the complex HnCOA(1)-C2 formed by the route II, and the complex
Hn−1COA–(1)-C1 formed by the route III, are both the same complex (see Table S1).

Table S1 reports the values of Cu(II) chelation, by all the PhAs present in the nopal,
characterized by at least one significantly exergonic pathway. In addition, for COA,
PRA and GAA only one main complex is expected, with contributions larger than 98%,
i.e., Hn−2COA2– (2)-C2, Hn−2PRA2– (2)-C7 and Hn−2GAA2– (2)-C7. For FLA, two com-
plexes are the most abundant, Hn−2FLA2– (2)-C5 and Hn−2FLA2– (2)-C2, with 81.61% and
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18.21%, respectively (Table 3). Therefore, they were the ones that have been explored as
antioxidants with the behavior of OIL−1.

Table 3. Conditional Gibbs free energies of reaction (∆G’, at pH = 7.4, in kcal/mol), and Maxwell–Boltzmann distribution
(%MB) for the main complexes of PhAs and Cu(II).

Complex ∆G’ %MB

Hn−2COA2– (2)-C2 −22.87 ~100

Hn−2FLA2– (2)-C5 −19.19 81.61

Hn−2FLA2– (2)-C2 −18.30 18.21

Hn−2PRA2– (2)-C7 −22.83 99.99

Hn−2GAA2– (2)-C7 −20.83 98.05

To this purpose, two different reductants were considered: the superoxide radical
anion (O2

•−) and the ascorbate anion (Asc−) (6). Table 4 shows Gibbs free energies of
reaction and rate coefficients for the reductant reactions of the PhAs-Cu(II) complexes
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with the O2
•− and Asc−; these are compared with the reaction of Cu(II)(H2O)4 and the

same reductants.

PhAs-Cu(II) + O2
•−/Asc− → PhAs-Cu(I) + O2/Asc• (6)

Table 4. Gibbs free energies of reaction (∆G, kcal/mol), and rate coefficients (k, M−1 s−1), for the
reactions of the PhAs-Cu(II) complexes with the reductants O2

•− and Asc−, in aqueous solution at
298.15 K and pH = 7.4.

O2•− Asc−

∆G k ∆G k

CuII (H2O)4 −24.01 4.67 × 109 −4.67 1.33 × 108

Hn−2COA2– (2)-C2 −15.06 4.61 × 107 4.28 3.19 × 104

Hn−2FLA2– (2)-C5 −13.92 1.29 × 108 5.41 6.62 × 104

Hn−2FLA2– (2)-C2 −14.59 3.53 × 107 4.74 2.09 × 104

Hn−2PRA2– (2)-C7 4.13 1.39 × 102 23.46 1.57 × 10−5

Hn−2GAA2– (2)-C7 1.35 4.75 × 102 20.69 3.87 × 10−4

The complexes of protocatechuic acid and gallic acid are capable of inhibiting the
Cu(II) reduction by both O2

•− and Asc−, then they act as highly performing OIL−1.
Their reactions with the chelated metal are endergonic, having rate constants about
~10−5–102 M−1 s−1 compared with the Cu(II)(H2O)4 + O2

•− and Cu(II)(H2O)4 + Asc−,
which are exergonic reactions with rate constants of 4.66 × 109 and 1.33 × 108 M−1 s−1,
respectively (Table 2). On the contrary, coumaric acid and ferulic acid are able to prevent
the Cu(II) reduction from Asc− but do not inhibit the reduction by O2

•−, albeit the reactions
with these complexes are slower than with Cu(II)(H2O)4.

These results suggest that, although COA and FLA are able to coordinate copper,
it is possible that the chelated metal can be reduced by strong reductants, such as O2

•−,
producing •OH radicals, through Fenton-type reactions. This is not expected to happen if
PRA and GAA coordinate copper.

The OIL−2 behavior was also analyzed, which involves the reactions between the
PhAs ligands in the copper complex and the hydroxyl radical (•OH). Different reaction
mechanisms may contribute to such reactions, namely, single-electron transfer (SET), formal
hydrogen atom transfer (f -HAT) and radical adduct formation (RAF) (Scheme 1). The
complexes with PRA and GAA were included in this part to test if they can scavenge •OH
radicals formed, even though they do not contribute to their production.

Scheme 1. (OIL−2) of PhAs-Cu(II).
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Thermodynamic and kinetic results for the SET mechanism (Path (A) of Scheme 1)
are collected in Table 5. The rate constants values for this mechanism are in the range of
10–7–10–9 M–1 s–1. The complex that reacts faster with •OH is Hn−2FLA–2-(2)-C5, while the
slowest reactions correspond to that of Hn−2FLA–2-(2)-C2. When copper is coordinated
only with water molecules, Cu(II)(4H2O), the value of the Gibbs free energy of reaction
with •OH through the SET mechanism becomes 73.85 kcal/mol [79]. It implies that the high
values in the rate constants (Table 5) are due to the presence of PhAs in the coordination
sphere of Cu(II).

Table 5. Gibbs free energy of reaction (∆G, kcal/mol), Reorganization energies (λ, kcal/mol), Gibbs
free energy of activation (∆G 6=, kcal/mol), and rate constants (k, M–1 s–1) for the SET reactions
between PhAs-Cu(II) and •OH.

PhAs-Cu(II) ∆G λ ∆G 6= k

Hn−2COA–2-(2)-C2 −31.72 14.01 5.59 4.64 × 108

Hn−2FLA–2-(2)-C5 −28.01 17.36 1.63 7.36 × 109

Hn−2FLA–2 -(2)-C2 −35.61 14.76 7.37 2.46 × 107

Hn−2PRA–2-(2)-C7 −38.90 17.24 6.81 6.29 × 107

Hn−2GAA–2-(2)-C7 −39.36 17.41 6.92 5.21 × 107

Thermodynamic results for f -HAT mechanisms (Paths (B) and (C) of Scheme 1) are
reported in Table 6. All the reactions resulted to be exergonic. COA forms complexes with
copper through its fully deprotonated specie. For this reason, the only hydrogens available
to be transferred to •OH are those of the water molecules coordinated to copper (Path (C)
of Scheme 1). However, the copper complexes with PRA, FLA and GAA as ligands have
protonated functional groups that also participate in f -HAT reactions with the •OH radical
(Path (B) of Scheme 1). These groups are OCH3 in the FLA complexes and OH in the PRA
and GAA complex.

Table 6. Gibbs free energy of reaction (∆G, kcal/mol) and rate constants (k, M–1 s–1) for the f -HAT
reactions between PhAs-Cu(II) and •OH.

PhAs-Cu(II) ∆G k

Hn−2COA–2-(2)-C2
from H2O

−42.21 2.81 × 109

Hn−2FLA–2-(2)-C5
from H2O

−41.90 8.07 × 109

Hn−2FLA–2-(2)-C5
from FLA (site OCH3)

−23.63 8.06 × 109

Hn−2FLA–2-(2)-C2
from H2O

−46.28 8.08 × 109

Hn−2FLA–2-(2)-C2
from FLA (site OCH3)

−21.83 8.08 × 109

Hn−2PRA–2-(2)-C7
from H2O

−46.80 7.96 × 109

Hn−2GAA–2-(2)-C7
from GAA (site OH)

−51.76 8.03 × 109

Hn−2GAA–2-(2)-C7
from H2O

−47.55 8.03 × 109

The f -HAT reactions are highly exergonic, with values of Gibbs free energy of reaction
ranging from −41.90 to −51.76 kcal/mol, except those originated from the OCH3 group in
the FLA complexes, the values of which are −23.63 and −21.83 kcal/mol.
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The f -HAT reactions from water molecules binding to copper (Path (C) of Scheme 1)
were identified as barrierless (Figure S3), with rate constants (k) controlled by diffusion
(Table 6). The same f -HAT mechanism was tested for the reaction between the Cu(II)(4H2O)
complex and the •OH radical. It was found that this reaction is endergonic by 1.6 kcal/mol.
Those results evidence that Cu(II) coordinated only with water molecules is not able to act
as radical scavenger.

For the RAF mechanism (Path (D) of Scheme 1), all the possible sites on the aromatic
ring of PhAs numbered in Scheme 1 were considered. The Gibbs free energies of reaction
(∆G), and Gibbs free energies of activation (∆G 6=) through direct addition, are reported in
Table S2, while the transition structures are presented in Schemes S4–S8. The ∆G energy
values indicate exergonic reactions. However, the ∆G 6= values are negative, suggesting that,
in the RAF mechanism, a more complex mechanism is involved, probably implicating the
formation of a pre-reactive adduct as a crucial step before the addition reaction (Scheme 2).
Therefore, in this case, the RAF reactions were evaluated considering the pre-reactive
adduct and not the separated species as the RAF reactants (Table 7). From the results, it
emerges that the RAF mechanism does not contribute to the OIL−2 behavior of PhAs,
because all the RAF pathways are endergonic processes with high activation barriers.

Scheme 2. General RAF mechanism for reactions between PhAs-Cu(II) and •OH.

Table 7. Gibbs free energy of reaction (∆G, kcal/mol), Gibbs free energy of activation (∆G 6=, kcal/mol)
and rate constants (k, M–1 s–1) for the RAF mechanism between PhAs-Cu(II) and •OH, since pre-
reactive adduct. Solvent = water.

PhAs-Cu(II) ∆G ∆G 6= k

Hn−2COA2–-(2)-C2 RAF-1 11.18 17.53 8.76 × 10−1

Hn−2COA2–-(2)-C2 RAF-2 6.35 17.90 4.72 × 10−1

Hn−2COA2–-(2)-C2 RAF-3 2.19 12.46 4.57 × 103

Hn−2COA2–-(2)-C2 RAF-4 5.64 12.99 1.85 × 103

Hn−2FLA2–-(2)-C5 RAF-1 12.43 20.11 1.13 × 10−2

Hn−2FLA2–-(2)-C5 RAF-2 NF - -
Hn−2FLA2–-(2)-C5 RAF-3 4.18 17.81 5.44 × 10−1

Hn−2FLA2–-(2)-C5 RAF-4 1.80 14.54 1.37 × 102

Hn−2FLA2–-(2)-C5 RAF-5 7.38 18.15 3.06 × 10−1

Hn−2FLA2–-(2)-C5 RAF-6 5.07 16.21 8.17 × 100

Hn−2FLA2–-(2)-C2 RAF-1 13.57 18.67 1.28 × 10−1

Hn−2FLA2–-(2)-C2 RAF-2 6.29 18.36 2.14 × 10−1

Hn−2FLA2–-(2)-C2 RAF-3 0.84 14.43 1.63 × 102

Hn−2FLA2–-(2)-C2 RAF-4 5.90 11.70 1.64 × 104

Hn−2FLA2–-(2)-C2 RAF-5 6.72 15.12 5.09 × 101

Hn−2FLA2–-(2)-C2 RAF-6 5.60 15.80 1.61 × 101
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Table 7. Cont.

PhAs-Cu(II) ∆G ∆G 6= k

Hn−2PRA2–-(2)-C7 RAF-1 9.83 18.93 8.24 × 10−2

Hn−2PRA2–-(2)-C7 RAF-2 8.12 16.83 2.88 × 100

Hn−2PRA2–-(2)-C7 RAF-3 7.65 13.14 1.44 × 103

Hn−2PRA2–-(2)-C7 RAF-4 6.18 12.53 4.05 × 103

Hn−2PRA2–-(2)-C7 RAF-5 10.26 17.98 4.12 × 10−1

Hn−2PRA2–-(2)-C7 RAF-6 5.52 14.53 1.38 × 102

Hn−2GAA2–-(2)-C7 RAF-1 11.60 20.12 1.10 × 10−2

Hn−2GAA2–-(2)-C7 RAF-2 8.25 18.85 9.40 × 10−2

Hn−2GAA2–-(2)-C7 RAF-3 10.66 15.74 1.79 × 101

Hn−2GAA2–-(2)-C7 RAF-4 6.53 13.42 9.05 × 102

Hn−2GAA2–-(2)-C7 RAF-5 7.30 17.40 1.09 × 100

Hn−2GAA2–-(2)-C7 RAF-6 8.74 17.03 2.05 × 100

NF = not formed.

4. Conclusions

Nopal is a plant containing four phenolic acids: coumaric acid (COA), ferulic acid
(FLA), protocatechuic acid (PRA), and gallic acid (GAA). These compounds had been
shown to be efficient Cu(II) chelators, yielding five complexes with high thermodynamic sta-
bility. This implies that they can be efficient in treatments to detoxify the body from copper.

Dianionic species of PhAs are capable of reducing Cu(II) to Cu(I) and therefore pro-
mote the formation of •OH radicals through Fenton-type reactions; for this reason, they
can be proposed as species with a behavior of pro-oxidants. However, when the chelates
are formed, they can inhibit the reduction of the metal by the reductants of the O2

•− and
Asc−, i.e., they can be proposed to act as OIL−1, especially the chelates of PRA and GAA,
whereas the chelates of COA and FLA inhibit the reduction of Cu(II) by ascorbate and only
slightly the reduction by the radical anion superoxide (O2

•−).
All the complexes between Cu(II) and PhAs can deactivate the •OH radical through

SET and f -HAT reactions that take place at diffusion-controlled rates. Therefore, they can
act as OIL−2 agents, inhibiting the damage by hydroxyl free radical immediately as it is
formed by Fenton reactions. The PhAs studied in this investigation are proposed as OIL−1
and OIL−2, and therefore they can be proposed as protectors of biomolecules since they
inhibit the reduction of Cu(II) to Cu(I) and therefore the formation of the hydroperoxyl free
radical, and additionally, they react with hydroxyl free radical once it is formed.
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