Supplementary Files

Table S1. Genes associated with EMT, ECM, migration, angiogenesis and cellular junctions and their functions in cancer (for Fig. 4).

(A) Epithelial-to-Mesenchymal Transition

Gene Name	Abbreviation	Ref.	Function and Characteristics
Alpha-smooth	ACTA2	[1, 2]	Required for lung cancer metastasis and
muscle actin			progression of other carcinomas.
Neucleoprotein	AHNAK	[3, 4]	Upregulated in partial-EMT or
AHNAK			mesenchymal cells. Knockdown of AHNAK
			reduces cell migration in mesothelioma cell
			lines.
Bone morphogenic	BMP1	[5]	Involved in matrix assembly.
protein 1 Caldesmon 1	CALD1	[4, 6]	Overexpressed in mesenchymal cells.
	CALDI	[4, 0]	Calcium sensitive, regulates smooth
			muscle contraction.
N-Cadherin	CDH2	[7]	Activated in EMT via SNAIL or bHLH
	CDTZ	[']	pathway and overexpression is a hallmark
			of EMT. The cadherin switch from E to N
			triggers loss of epithelial cell association.
Collagen 1 A2	COL1A2	[4, 7]	Driven by SNAIL, activated in EMT.
Collagen 3 A1	COL3A1	[7]	Driven by SNAIL, activated in EMT.
Conagon o / (0020/11	1,1	
Collagen 5 A2	COL5A2	[7]	Driven by SNAIL, activated in EMT.
Fibronectin	FN1	[6, 7]	Activated in EMT via SNAIL or bHLH
			pathway. A part of the extracellular matrix.
			Canonical indicator of EMT.
Forkhead box	FOXC2	[8]	Indirect repressor of E-cadherin, which is
protein C2			an epithelial marker.
G protein subunit	GNG11	[9]	Maybe an indicator of EMT. Differentially
gamma 11			expressed in EMT meta-analysis.
Insulin like growth	IGFBP4	[10]	Overexpression leads to tumor growth and
factor binding			EMT phenotype in renal cell carcinoma.
protein 4			
Integrin alpha	ITGA5	[11]	May promote tumor invasiveness and cell
subunit 5		54.43	migration.
Integrin alpha V	ITGAV	[11]	Receptor for ECM, i.e. FN1, VTN, and MMP.
Matrix	MMP2	[7]	Driven by SNAIL, activated in EMT.
metalloprotease 2			, ,
Matrix	MMP3	[7]	Driven by SNAIL, activated in EMT.
metalloprotease 3			
Matrix	MMP9	[7]	Driven by SNAIL, activated in EMT.
metalloprotease 9			
Moesin	MSN	[7]	Driven by SNAIL, activated in EMT. Likely
			to be involved in connecting cytoskeletal

			structures to the plasma membrane. Plays a role in proliferation, migration and
Discusions		[0 7]	adhesion of lymphoid cells.
Plasminogen	SERPINE1	[6, 7]	Driven by SNAIL, activated in EMT.
activator inhibitor 1			Involved in extracellular matrix
			organization.
Zinc finger protein 1	SNAI1	[7]	Down regulates epithelial markers and
			upregulates mesenchymal markers.
Zinc finger protein 2	SNAI2	[7]	Down regulates epithelial markers and upregulates mesenchymal markers.
Zinc finger protein 3	SNAI3	[7]	Also in the zinc finger protein family, but exact role in EMT is unclear.
Transcription factor	SOX10	[12]	Regulates mesenchymal cell attributes.
SOX10			Drives EMT and contributes to
			stem/progenitor activities in mammary cells.
Secreted protein	SPARC	[7]	Activated in EMT via SNAIL or bHLH.
acidic and rich in			Involved in the response to growth factors
cystine			and extracellular matrix organization.
Six Transmembrane	STEAP1	[13, 14]	May play a role in EMT, often up-regulated
Epithelial Antigen Of The Prostate 1			in several cancer cell lines.
T-cell factor 7L2	TCF7L2	[15]	May play a role in EMT and may be influenced by SNAIL regulation.
Tissue inhibitor of	TIMP1	[16]	Overexpression can induce EMT
metalloproteinase-1		[10]	phenotypes via TWIST1.
transmembrane	TMEFF1	[14]	May suppress cancer growth but also may
protein with EGF like		[1]	be a mesenchymal marker.
and two follistatin like			
domains 1			
transmembrane protein 132A	TMEM132A	[8, 14]	May play a role in EMT.
Versican core	VCAN	[6]	Play a role in connecting cells to ECM, can
protein			also regulate motility growth and
			differentiation.
Twist-related protein	TWIST1	[9]	Indirect repressor of E-cadherin, which is
1			an epithelial phenotype.
Vimentin	VIM	[9, 17,	Expression can induce EMT and is a poor
		18]	prognostic marker.
Vacuolar Protein	VSP13A	[16]	May play a role in EMT.
Sorting 13 Homolog A			
Protein WNT-5A	WNT5A	[19]	Can act via non-canonical pathways to
			promote tumor cell invasion.

(B) ECM and Surface Adhesion

Gene Name	Abbreviation	Ref.	Function and Characteristics

Bone morphogenic protein 1	BMP1	[5]	Involved in matrix assembly.
Bone morphogenic protein 7	BMP7	[5]	Promotes EMT in gastric and prostate cancer. May have paradoxical effects in different cancer types.
Collagen 1 A1	COL1A1	[4, 7]	Driven by SNAIL, activated in EMT. A normal part of the extracellular matrix.
Collagen 1 A2	COL1A2	[4, 7]	Driven by SNAIL, activated in EMT. A normal part of the extracellular matrix.
Collagen 3 A1	COL3A1	[7]	Driven by SNAIL, activated in EMT. A normal part of the extracellular matrix.
Collagen 5 A2	COL5A2	[7]	Driven by SNAIL, activated in EMT. A normal part of the extracellular matrix.
Catenin beta	CTNNB1	[6]	A part of the adherens junction as a component of the E-Cadherin-Catenin complex.
Epidermal growth factor	EGFR	[6, 20]	Increases MUC1 interaction with CTNNB1. E-cadherin-mediated cell-to-cell contact can induce EGFR.
Fibronectin	FN1	[6, 7]	Activated in EMT via SNAIL or bHLH pathway. A part of the extracellular matrix. Canonical indicator of EMT.
Forkhead box protein C2	FOXC2	[8]	Indirect repressor of E-cadherin, which is an epithelial phenotype.
Integrin linked protein kinase	ILK	[6]	Focal adhesion protein mediates cell architecture, adhesion and anchorage- dependent growth.
Integrin alpha subunit 5	ITGA5	[11]	May promote tumor invasiveness and cell migration.
Integrin alpha V	ITGAV	[11]	Receptor for ECM, i.e. FN1, VTN, and MMP.
Integrin beta 1	ITGB1	[6, 21]	Core regulator of integrin-linked kinase, focal adhesion kinases and others involved in cellular adhesion. Promotes endothelial cell motility and angiogenesis.
Focal adhesion kinase 1	PTK2	[6]	Critical in regulating cell migration adhesion an spreading.
Plasminogen activator inhibitor 1	SERPINE1	[6, 7]	Driven by SNAIL, activated in EMT. Involved in extracellular matrix organization.
Osteopontin	SPP1	[22]	Overexpression leads to cancer cell migration
Transforming growth factor beta 1	TGFB1	[23, 24]	Can induce EMT and migration of cancer cells.
Transforming growth factor beta 2	TGFB2	[6,14]	Can induce EMT and migration of cancer cells.
Tissue inhibitor of metalloproteinase-1	TIMP1	[16]	Overexpression can induce EMT phenotypes via TWIST1.

Versican core	VCAN	[6]	Play a role in connecting cells to ECM, can
protein			also regulate motility growth and
			differentiation.

(C) Cellular Migration and Motility

Gene Name	Abbreviation	Ref.	Function and Characteristics
Caldesmon 1	CALD1	[4, 6]	Overexpressed in mesenchymal cells. Calcium sensitive, regulates smooth muscle contraction.
Caveolin 1	CAV1	[25]	Biphasic effect where CAV1 is tumor- suppressing in the early stages but tumor- promoting in the later stages of cancer.
Caveolin 2	CAV2	[26]	Silencing CAV2 reduces cell proliferation, migration, and invasion in renal cell carcinoma.
Epidermal growth factor	EGFR	[6, 20]	Increases MUC1 interaction with CTNNB1. E-cadherin-mediated cell-to-cell contact can induce EGFR.
Fibronectin	FN1	[6, 8]	Activated in EMT via SNAIL or bHLH pathway. A part of the extracellular matrix. Canonical indicator of EMT.
Integrin beta 1	ITGB1	[6, 21]	Core regulator of integrin-linked kinase, focal adhesion kinases and others involved in cellular adhesion. Promotes endothelial cell motility and angiogenesis.
Protein jagged 1	JAG1	[6]	Enhances fibroblast growth factor-induced angiogenesis.
Moesin	MSN	[8]	Driven by SNAIL, activated in EMT. Involved in connecting cytoskeletal structures to the plasma membrane. Plays a role in proliferation, migration and adhesion of lymphoid cells.
Macrophage stimulating protein receptor	MST1R	[6]	Signal can promote epithelial cell migration, proliferation and survival.
Nodal homolog	NODAL	[6]	May positively regulate angiogenesis and cell-cell adhesion. Critical in embryonic development of the mesoderm.
Platelet-derived growth factor receptor beta	PDGFRB	[6]	Essential role in embryonic development, cell proliferation and survival, differentiation, chemotaxis, migration, blood vessel formation, etc.
Ras-related c3 botulinum toxin substrate 1	RAC1	[6]	Small GTPase involved in many cellular responses including epithelial cell polarization and growth-factor dependent membrane ruffles. Mediates cell migration and adhesion assembly.

Signal transducer and activator of transcription 3	STAT3	[6]	Mediates cellular responses in response to stimuli. May positively regulate angiogenesis and growth factor-dependent cell proliferation.
Vimentin	VIM	[8, 17, 18]	Expression can induce EMT and is a poor prognostic marker.

(D) Angiogenesis

Gene Name	Abbreviation	Ref.	Function and Characteristics
Angiotensinogen	ANG	[6]	Apart from regulating blood pressure, it can positively regulate endothelial cell migration,
Angiopoietin 1	ANGPT1	[6]	Competes and modulates ANGPT2. Regulates angiogenesis and endothelial cell survival. In migrating endothelial cells, it can induce focal adhesion complexes and stimulate angiogenesis/blood vessel maturity.
Angiopoietin 2	ANGPT2	[6]	In concert with VEGF facilitates endothelial cell migration and services as a permissive signal for angiogenesis.
Angiopoietin related protein 1	ANGPTL1	[14]	Specific for vascular endothelium and highly expressed in vascular tissue.
Aminopeptidase N	ANPEP	[6]	Processes angiotensin.
Fibroblast growth factor 1	FGF1	[6]	It has an important role in regulating cell survival, division, angiogenesis, cell differentiation and cell migration. It can induce angiogenesis.
Fibroblast growth factor 2	FGF2	[6]	Potent mitogen. Can induces angiogenesis.
Vascular endothelial growth factor receptor	FLT1	[6]	May limit VEGFA binding. Regulates angiogenesis. Can promote endothelial cell proliferation, survival, and angiogenesis in adulthood (as opposed to embryonic development).
Hypoxia inducible factor 1 alpha	HIF1A	[6]	Master regulator of hypoxia response. In hypoxic environment of tumor, it can induce angiogenesis.
Vascular endothelial growth factor receptor 2	KDR	[6]	Receptor for VEGFA, VEGFC, and VEGFD. Essential regulator of angiogenesis.
Neuropilin-2	NRP2	[6]	Positive regulator of endothelial cell migration and proliferation.
Placenta growth factor	PGF	[6]	Active in angiogenesis and simulates endothelial cell proliferation and migration.
Thymidine phosphorylase	TYMP	[6]	Maintains integrity of blood vessels and promotes endothelial cell growth and angiogenesis.

Vascular endothelial growth factor A	VEGFA	[6]	Growth factor that induces angiogenesis, vasculogenesis and endothelial cell growth.
Vascular endothelial growth factor B	VEGFB	[6]	Growth factor for endothelial cells.
Vascular endothelial growth factor C	VEGFC	[6]	Growth factor that induces angiogenesis, vasculogenesis and endothelial cell growth.

(E) Adherens Junctions

Gene Name	Abbreviation	Ref.	Function and Characteristics
Adherens junction-	AJAP1	[14]	Plays a role in cell adhesion and cell
associated protein1			migration.
E-cadherin/	CDH1	[6, 27,	Regulates cell-cell adhesions, loss during
Cadherin-1		28]	EMT, a marker of epithelial phenotype.
N-Cadherin	CDH2	[14]	Calcium-dependent cell adhesion protein.
Cadherin-2			Overexpression of N-cadherin is a hallmark
			of EMT.
Catenin delta	CTNND1	[6]	Regulates cell adhesion properties of C,E,
			and N-cadherins
Desmocollin	DSC1	[14]	Found primarily in epithelial cells where they
			constitute the desmosome cell-cell junction
			and are required for cell adhesion and
D W 0		101	desmosome formation.
Desmocollin-2	DSC2	[6]	Major component of the desmosome, which
			is an important cell-to-cell adhesion
	DOO (54.43	molecule.
Desmoglein 1	DSG1	[14]	Member of the desmoglein protein
			subfamily, which, along with desmocollins,
			are cadherin-like transmembrane
			glycoproteins that are major constituents of the desmosome.
Desmoglein 2	DSG2	[14]	Member of the desmoglein protein
Desinogieni z	0362	[14]	subfamily, which, along with desmocollins,
			are cadherin-like transmembrane
			glycoproteins that are major constituents of
			the desmosome.
Desmoglein 3	DSG3	[14]	Member of the desmoglein protein
2.000 9.000 0		J	subfamily, which, along with desmocollins,
			are cadherin-like transmembrane
			glycoproteins that are major constituents of
			the desmosome
Desmoglein 4	DSG4	[14]	Member of the desmoglein protein
		· ·	subfamily, which, along with desmocollins,
			are cadherin-like transmembrane
			glycoproteins that are major constituents of
			the desmosome.

Junctional adhesion molecule A	F11R	[6]	Involved in epithelial tight junction formation.
Purinergic receptor P2X 6	P2RX6	[14]	Associated with VE-cadherin at adherens junctions of human umbilical vein endothelial cells.
Tight-junction protein 1/ zonulin 1	TJP1	[14]	Acts as a tight junction adaptor protein that also regulates adherens junctions.
Vezatin/ adherens junctions transmembrane protein	VEZT	[14]	Transmembrane protein which has been localized to adherens junctions and shown to bind to myosin VIIA. The expression of VEZY is decreased in gastric cancer.

Table S2. Markers of M1 and M2 macrophages (for Fig. 5)

Gene Name	Abbreviation	Ref.	M1/M2 specificity
Scavenger receptor sys-rich	CD163	[29, 30]	M2
type 1 protein M130			
Macrosialin	CD68	[29, 30]	M1
T-lymphocyte activation	CD80	[29, 30]	M1
antigen cd80			
T-lymphocyte activation	CD86	[29, 30]	M1/ M2
antigen cd86			
MCH Class II Isotype	HLA-DMA	[29, 30]	M1/ M2
MCH Class II Isotype	HLA-DMB	[29, 30]	M1/ M2
MCH Class II Isotype	HLA-DOA	[29, 30]	M1/ M2
MCH Class II Isotype	HLA-DOB	[29, 30]	M1/ M2
MCH Class II Isotype	HLA-DPA1	[29, 30]	M1/ M2
MCH Class II Isotype	HLA-DPB1	[29, 30]	M1/ M2
MCH Class II Isotype	HLA-DQA1	[29, 30]	M1/ M2
MCH Class II Isotype	HLA-DQB1	[29, 30]	M1/ M2
MCH Class II Isotype	HLA-DRA	[29, 30]	M1/ M2
MCH Class II Isotype	HLA-DRB1	[29, 30]	M1/ M2
MCH Class II Isotype	HLA-DRB5	[29, 30]	M1/ M2
Interleukin-1 receptor type 1	IL1R1	[29, 30]	M1/ M2
Macrophage mannose	MRC1	[29, 30]	M2
receptor			
Macrophage scavenger	MSR1	[29, 30]	M2
receptor type 1			
Nitric oxide synthase	NOS2	[29, 30]	M1
(inducible)			
Suppressor of cytokine	SOCS3	[29, 30]	M1
signaling 3		-	
Toll-like receptor 2	TLR2	[29, 30]	M1
Toll-like receptor 4	TLR4	[29, 30]	M1

Table S3. Genes associated with apoptosis and proliferation (for Fig. 8).

Gene Name	Abrrev.	Function	Citation
Bcl2- associated agonist of cell death	BAD	Pro-apoptotic proteins via intrinsic apoptosis.	[31]
Caspase 9	CASP9	Activates caspase cascades and executes apoptosis. Promotes ABL1/c-Abl-dependent DNA damage apoptosis.	
TP53 binding protein 1	TP53BP1	Involved in repairing DNA double-stranded breaks.	[32]
Tyrosine- protein kinase ABL1	ABL1	Pro-apoptotic in presence of severe DNA damage by phosphorylating CASP9. Regulates actin remodeling.	[33]
Cyclin- dependent kinase 1	CDK1	Overexpression inhibits apoptosis and drives cell proliferation and promotes survival.	[34]
Proliferating cell nuclear antigen	PCNA	Processivity factor in DNA synthesis, overexpression increases cell proliferation. Reducing PCNA can induce apoptosis. Known to have divergent properties in response to p53 mutation.	[35, 36]

- Lee, H.W.; Park, Y.M.; Lee, S.J.; Cho, H.J.; Kim, D.-H.; Lee, J.-I.; Kang, M.S.; Seol, J.H.; Shim, Y.M.; Nam, D.-H.; et al. Alpha-Smooth Muscle Actin (ACTA2) Is Required for Metastatic Potential of Human Lung Adenocarcinoma. *Clin. Cancer Res.* 2013, 19, 5879–5889, doi:10.1158/1078–0432.CCR-13–1181.
- Ding, L.; Zhang, Z.; Shang, D.; Cheng, J.; Yuan, H.; Wu, Y. Song, X. α-Smooth muscle actin-positive myofibroblasts, in association with epithelial-mesenchymal transition and lymphogenesis, is a critical prognostic parameter in patients with oral tongue squamous cell carcinoma. *J. Oral. Pathol. Med.* **2014**, *43*, 335–343, doi:10.1111/jop.12143.
- 3. Sudo, H.; Tsuji, A.B.; Sugyo, A.; Abe, M.; Hino, O.; Saga, T. AHNAK is highly expressed and plays a key role in cell migration and invasion in mesothelioma. *Int. J. Oncol.* **2014**, *44*, 530–538, doi:10.3892/ijo.2013.2183.
- 4. Chang, H.; Liu, Y.; Xue, M.; Liu, H.; Du, S.; Zhang, L.; Wang, P. Synergistic action of master transcription factors controls epithelial-to-mesenchymal transition. *Nucleic Acids Res.* **2016**, *44*, 2514–2527, doi:10.1093/nar/gkw126.
- 5. Zhang, L.; Ye, Y.; Long, X.; Xiao, P.; Ren, X.; Yu, J. BMP signaling and its paradoxical effects in tumorigenesis and dissemination. *Oncotarget* **2016**, *7*, 78206–78218, doi:10.18632/oncotarget.12151.
- 6. Bateman, A.; Martin, M.J.; O'Donovan, C.; Magrane, M.; Alpi, E.; Antunes, R. UniProt: The universal protein knowledgebase. *Nucleic Acids Res.* 2017, 45, D158–D169, doi:10.1093/nar/gkw1099.
- 7. Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. *Nat Rev Mol Cell Biol.* **2014**; 15:178–96, doi:10.1038/nrm3758.
- 8. Thiery, J.P.; Acloque, H.; Huang, R.Y.J.J.; Nieto, M.A. Epithelial-Mesenchymal Transitions in Development and Disease. *Cell*, **2009**, *139*, 871–90, doi:10.1016/j.cell.2009.11.007.
- 9. Parsana, P.; Amend, S.R.; Hernandez, J.; Pienta, K.J.; Battle, A. Identifying global expression patterns and key regulators in epithelial to mesenchymal transition through multi-study integration. *BMC Cancer* **2017**, *17*, 447, doi:10.1186/s12885–017–3413–3.
- 10. Praveen Kumar, V.R.; Sehgal, P.; Thota, B.; Patil, S.; Santosh, V.; Kondaiah, P. Insulin like growth factor binding protein 4 promotes GBM progression and regulates key factors involved in EMT and invasion. *J. Neurooncol.* **2014**, *116*, 455–464, doi:10.1007/s11060–013–1324-y.
- 11. Argraves, W.S.; Pytela, R.; Suzuki, S.; Millán, J.L.; Pierschbacher, M.D.; Ruoslahti, E. cDNA sequences from the α

subunit of the fibronectin receptor predict a transmembrane domain and a short cytoplasmic peptide. *J. Biol. Chem.* **1986**, *261*, 12922–12924.

- Dravis, C.; Spike, B.T.; Harrell, J.C.; Johns, C.; Trejo, C.L.; Southard-Smith, E.M.; Perou, C.M.; Wahl, G.M. Sox10 Regulates Stem/Progenitor and Mesenchymal Cell States in Mammary Epithelial Cells. *Cell Rep.* 2015, *12*, 2035–2048, doi:10.1016/j.celrep.2015.08.040.
- 13. Lili, L.N.; Matyunina, L.V.; Walker, L.D.; Wells, S.L.; Benigno, B.B.; McDonald, J.F. Molecular profiling supports the role of epithelial-to-mesenchymal transition (EMT) in ovarian cancer metastasis. *J. Ovarian Res.* **2013**, *6*, 49, doi:10.1186/1757–2215–6-49.
- 14. O'Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* **2016**, *44*, D733–D745, doi:10.1093/nar/gkv1189.
- Xiang, J.; Hu, Q.; Qin, Y.; Ji, S.; Xu, W.; Liu, W.; Shi, S.; Liang, C.; Liu, J.; Meng, Q.; et al. TCF7L2 positively regulates aerobic glycolysis via the EGLN2/HIF-1α axis and indicates prognosis in pancreatic cancer. *Cell Death Dis.* 2018, 9, 321, doi:10.1038/s41419–018–0367–6.
- D'Angelo, R.C.; Liu, X.-W.; Najy, A.J.; Jung, Y.S.; Won, J.; Chai, K.X.; Fridman, R.; Choi Kim, H. TIMP-1 via TWIST1 Induces EMT Phenotypes in Human Breast Epithelial Cells. *Mol. Cancer Res.* 2014, 12, 1324–1333, doi:10.1158/1541–7786.MCR-14–0105.
- 17. Tadokoro, A.; Kanaji, N.; Liu, D.; Yokomise, H.; Haba, R.; Ishii, T.; Takaji, T.; Watanabe, N.; Kita, N.; Kadowaki, N.; et al. Vimentin Regulates Invasiveness and Is a Poor Prognostic Marker in Non-small Cell Lung Cancer. *Anticancer Res.* **2016**, *36*, 1545–1551.
- 18. Mendez, M.G.; Kojima, S.-I.; Goldman, R.D. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. *FASEB J.* **2010**, *24*, 1838–1851, doi:10.1096/fj.09–151639.
- 19. Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. *Nature* 2005, 434, 843–850, doi.org/10.1038/nature03319.
- 20. Shen, X.; Kramer, R.H. Adhesion-Mediated Squamous Cell Carcinoma Survival through Ligand-Independent Activation of Epidermal Growth Factor Receptor. *Am. J. Pathol.* **2004**, *165*, 1315–1329, doi:10.1016/S0002–9440(10)63390–1.
- 21. Yang, J.; Hou, Y.; Zhou, M.; Wen, S.; Zhou; J.; Xu, L.; Tang, X.; Du, Y.-E.; Hu, P.; Liu, M. Twist induces epithelialmesenchymal transition and cell motility in breast cancer via ITGB1-FAK/ILK signaling axis and its associated downstream network. *Int. J. Biochem. Cell Biol.* **2016**, *71*, 62–71, doi:10.1016/j.biocel.2015.12.004.
- 22. Lin, J.; Myers, A.L.; Wang, Z.; Nancarrow, D.J.; Ferrer-Torres, D.; Handlogten, A.; Leverenz, K.; Bao, J.; Thomas, D.G.; Wang, T.D.; et al. Osteopontin (OPN/SPP1) isoforms collectively enhance tumor cell invasion and dissemination in esophageal adenocarcinoma. *Oncotarget* **2015**, *6*, 22239–22257, doi:10.18632/oncotarget.4161.
- 23. Guo, X.; Xu, Y.; Zhao, Z. In-depth genomic data analyses revealed complex transcriptional and epigenetic dysregulations of BRAF V600E in melanoma. *Mol. Cancer* **2015**, *14*, 1–9, doi:10.1186/s12943–015–0328-y.
- 24. Chowdhury, R.; Webber, J.P.; Gurney, M.; Mason, M.D.; Tabi, Z.; Clayton, A. Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. *Oncotarget* 2015, *6*, 715–731, doi:10.18632/oncotarget.2711.
- 25. Núñez-Wehinger, S.; Ortiz, R.J.; Díaz, N.; Díaz, J.; Lobos-González, L.; Quest, A.F.G. Caveolin-1 in cell migration and metastasis. *Curr. Mol. Med.* **2014**, *14*, 255–274, doi:10.2174/1566524014666140128112827.
- Yamasaki, T.; Seki, N.; Yoshino, H.; Itesako, T.; Hidaka, H.; Yamada, Y.; Tararano, S.; Yonezawa, T.; Kinoshita, T.; Nakagawa, M.; Enokida, H. MicroRNA-218 Inhibits Cell Migration and Invasion in Renal Cell Carcinoma through Targeting Caveolin-2 Involved in Focal Adhesion Pathway. *J. Urol.* 2013, 190, 1059–1068, doi:10.1016/j.juro.2013.02.089.
- 27. Ohashi, S.; Natsuizaka, M.; Wong, G.S.; Michaylira, C.Z.; Grugan, K.D.; Stairs, D.B.; Kalabis, J.; Vega, M.E.; Kalman, R.A.; Nakagawa M; et al. Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors. *Cancer Res.* **2010**, *70*, 4174–4184, doi:10.1158/0008–5472.CAN-09–4614.
- 28. Xu, J.; Lamouille, S.; Derynck, R. TGF-beta-induced epithelial to mesenchymal transition. *Cell Res.* **2009**, *19*, 156-72, doi:10.1038/cr.2009.5.
- 29. Roszer, T.; Corporation, H.P. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. *Mediators Inflamm.* **2015**, 2015, 816460, doi:10.1155/2015/816460.
- 30. Duluc, D.; Delneste, Y.; Tan, F.; Moles, M.; Grimaud, L.; Lenoir, J.; Preisser, L.; Anegon, I.; Catala, L.; Ifrah, N.; et al. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated-

macrophage-like cells. Blood 2007, 110, 4319-4331, doi:10.1182/blood-2007-02-072587.

- 31. Kiraz, Y.; Adan, A.; Kartal Yandim, M.; Baran, Y. Major apoptotic mechanisms and genes involved in apoptosis. *Tumor Biol.* **2016**, *37*, 8471–8486, doi:10.1007/s13277–016–5035–9.
- 32. Callen, E.; Di Virgilio, M.; Kruhlak, M.J.; Nieto-Soler, M.; Wong, N.; Chen, H.T.; Faryabi, R.B.; Polato, F.; Santos, M.; Stranes, L.M.; et al. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. *Cell* **2013**, *153*, 1266–1280, doi:10.1016/j.cell.2013.05.023.
- 33. Wang, J.Y. Regulation of cell death by the Abl tyrosine kinase. *Oncogene* **2000**, *19*, 5643–5650, doi:10.1038/sj.onc.1203878.
- 34. Liu, P.; Kao; T.P.; Huang, H. CDK1 promotes cell proliferation and survival via phosphorylation and inhibition of FOXO1 transcription factor. *Oncogene* **2008**, *27*, 4733–4744, doi:10.1038/onc.2008.104.
- 35. Fukami-Kobayashi, J.; Mitsui, Y. Overexpression of proliferating cell nuclear antigen in mammalian cells negates growth arrest by serum starvation and cell contact. *Jpn. J. Cancer Res.* **1999**, *90*, 286–293, doi:10.1111/j.1349–7006.1999.tb00746.x.
- 36. Paunesku, T.; Mittal, S.; Protić, M.; Oryhon, J.; Korolev, S.V.; Joachimiak, A.; Woloschak, G.E. Proliferating cell nuclear antigen (PCNA): Ringmaster of the genome. *Internat. J. Radiat. Biol.* 2001, 77, 1007–1021, doi:10.1080/09553000110069335.