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Abstract: Tumor-associated macrophages (TAMs) represent one of the most abundant components
of the tumor microenvironment and play important roles in tumor development and progression.
TAMs display plasticity and functional heterogeneity as reflected by distinct phenotypic subsets.
TAMs with an M1 phenotype have proinflammatory and anti-tumoral properties whereas M2-like
TAMs exert anti-inflammatory and pro-tumoral functions. Tumor cell debris generated during
chemotherapy can stimulate primary tumor growth and recurrence. According to our previous
study, phagocytic engulfment of breast tumor cell debris by TAMs attenuated chemotherapeutic
efficacy through the upregulation of heme oxygenase-1 (HO-1). To verify the impact of HO-1
upregulation on the profile of macrophage polarization during cytotoxic therapy, we utilized a
syngeneic murine breast cancer (4T1) model in which tumor bearing mice were treated with paclitaxel
(PTX). PTX treatment markedly downregulated the surface expression of the M1 marker CD86 in
infiltrated TAMs. Notably, there were significantly more cytotoxic CD8+ T cells in tumors of mice
treated with PTX plus the HO-1 inhibitor, zinc protophorphyrin IX (ZnPP) than in mice treated with
PTX alone. Interestingly, the tumor-inhibiting efficacy of PTX and ZnPP co-treatment was abrogated
when macrophages were depleted by clodronate liposomes. Macrophage depletion also decreased
the intratumoral CD8+ T cell population and downregulated the expression of Cxcl9 and Cxcl10.
The expression of the M1 phenotype marker, CD86 was higher in mice injected with PTX plus ZnPP
than that in mice treated with PTX alone. Conversely, the PTX-induced upregulation of the M2 marker
gene, Il10 in CD11b+ myeloid cells from 4T1 tumor-bearing mice treated was dramatically reduced
by the administration of the HO-1 inhibitor. Genetic ablation of HO-1 abolished the inhibitory effect
of 4T1 tumor cell debris on expression of M1 marker genes, Tnf and Il12b, in LPS-stimulated BMDMs.
HO-1-deficient BMDMs exposed to tumor cell debris also exhibited a diminished expression of the
M2 macrophage marker, CD206. These findings, taken all together, provide strong evidence that
HO-1 plays a pivotal role in the transition of tumor-inhibiting M1-like TAMs to tumor-promoting
M2-like ones during chemotherapy.

Keywords: breast cancer; chemotherapy; tumor-associated macrophages; phagocytosis; tumor cell
debris; heme oxygenase-1
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1. Introduction

The tumor microenvironment (TME) is a complex niche that is comprised of different
types of stromal cells and their supportive matrix as well as cancer cells [1,2]. Both cancer
cells and surrounding non-tumorigenic cells crosstalk by secreting soluble factors including
chemokines and cytokines as well as growth factors [3]. Such interactions often confer
a survival advantage for cancer cells and resistance to anticancer therapy. Macrophages
recruited into TME, termed tumor-associated macrophages (TAMs), represent the major
innate immune component of the stroma and play important roles in tumor development
and progression as well as intratumoral immune status [4–6]. There has been a growing
body of evidence supporting that high density of TAMs is associated with poor prognosis,
drug resistance, enhanced angiogenesis, and metastasis in cancer [7,8].

TAMs exhibit pronounced plasticity and dynamic nature. Further, TAMs have func-
tional heterogeneity which is reflected by distinct phenotypic subsets. In response to differ-
ent stimuli, macrophages are polarized into two subtypes [9,10]. TAMs with an M1 pheno-
type are known as classically activated macrophages capable of phagocytosing pathogens
and have proinflammatory and anti-tumoral properties. In contrast, M2-like (or alterna-
tively activated) TAMs have anti-inflammatory properties and exert pro-tumoral and tumor
supporting functions. Depending on the microenvironment, macrophages can reprogram
their phenotype toward the proinflammatory M1 phenotype or the anti-inflammatory M2
phenotype [10]. Macrophage reprogramming is a highly coordinated process mediated
by a subset of orchestrated signaling molecules [10–12]. Cancer-associated fibroblasts,
one of the most abundant cell types in the tumor stroma, play key roles in the macrophage
reprogramming to instruct the immunosuppressive TME [13]. The polarized macrophages
also direct Th1/Th2 polarization which regulates the adaptive immune responses [14].

TAMs in the vicinity of progressive tumors usually acquire an M2 phenotype, which en-
ables them to perform immunosuppressive and tumor-promoting functions [15,16]. Once re-
cruited by tumor cells secreting chemoattractants, TAMs are educated in TME. Thus, tu-
mor cells can reprogram proinflammatory M1-like macrophages into anti-inflammatory
M2-like macrophages, provoking local immune suppression [17,18]. Phenotypic switching
of pro-tumoral TAMs to the proinflammatory and tumor inhibiting M1 phenotype, thereby
restoring immune surveillance and tumoricidal effects, has been suggested as a promising
therapeutic approach towards tumor regression [16,17].

Chemotherapy is one of the common therapeutic options practiced for the treatment
of malignancies. However, the therapeutic sensitivity of tumors to chemotherapy is of-
ten diminished by disruption of patient’s anti-tumor immunity. This is mainly due to
the complex interaction of cancer cells with different immune components of the TME,
particularly TAMs [19,20]. Though chemotherapy is supposed to kill tumor cells, the re-
sulting dead/dying tumor cells or debris, the inevitable byproduct may paradoxically
stimulate tumor growth and recurrence by triggering release of inflammatory cytokines by
macrophages [21,22]. Osteopontin was found to be a critical mediator of debris-stimulated
tumor growth [22]. Dying/dead tumor cells are thought to promote the proliferation and
survival of the residual living tumor cells and thus preserve them as the seeds for tumor
repopulation [23]. They may establish an immunosuppressive TME which is favorable
for the survival of living tumor cells, and trigger the activation of dormant tumor or
tumor-initiating (stem-like) cells [23]. As chemotherapy develops an immunosuppressive
TME, reprogramming of TAMs to acquire an immunocompetent phenotype is a promising
strategy to potentiate therapeutic efficacy.

Heme oxygenase-1 (HO-1) is the rate-limiting enzyme that catalyzes the breakdown
of free heme into carbon monoxide, ferrous iron, and biliverdin. HO-1 has cytoprotective,
anti-apoptotic, anti-oxidative, and anti-inflammatory functions in physiological conditions.
However, HO-1 also plays an opposite role in the pathogenesis and progression of several
types of malignancies and resistance to chemotherapy [24]. For instance, lung cancer
cells expressing high levels of HO-1 were less sensitive to cisplatin, and the genetic or
pharmacologic inhibition of HO-1 activity by siRNA or zinc protoporphyrin IX (ZnPP),
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respectively augmented the cytotoxic effect of this anticancer drug. Administration of the
HO-1 inhibitor ZnPP significantly suppressed the growth of tumors in a murine xenograft
lung cancer model [discussed in 24 and reference therein].

We previously reported that phagocytic engulfment of tumor cell debris by macrophages
hampered M1-like polarization which was associated with HO-1 upregulation [25]. This may
diminish the chemotherapeutic efficacy. In the present study, we attempted to verify these
findings in vivo by use of the HO-1 inhibitor, ZnPP and by the depletion of macrophages.

2. Materials and Methods
2.1. Bioinformatic Analysis

Microarray data were extracted from the Gene Expression Omnibus database (GSE 43816;
National Center for Biotechnology Information, Bethesda, MD, USA; https://www.ncbi.nlm.
nih.gov/.geo/ (accessed on 30 April 2019)). Heatmaps were generated using the R software
(Bioconductor, ComplexHeatmap package).

2.2. Kaplan–Meier (Relapse-Free Survival) Analysis

Kaplan–Meier analysis (http://kmplot.com/analysis (accessed on 29 January 2021))
was performed based on the RFS (relapse-free survival) data of patients with low and high
HMOX1 mRNA (HMOX1 probe set 203665_at) expression.

2.3. Syngeneic Murine Breast Tumor Model

BALB/c mice (6~9 weeks old) were purchased from Orient Bio (Gyeonggi-Do, Sung-
nam city, South Korea). HO-1 KO mice, in which the HO-1 gene was deleted by targeted
gene knockout, were kindly provided by Dr. M.A. Perrella (Harvard Medical School,
Boston, MA, USA). 4T1 murine mammary adenocarcinoma cells (1 × 105) were implanted
into the mammary glands of female BALB/c mice. The tumors were grown for 10 days be-
fore mice were treated with chemotherapeutic agents. Tumor size was measured by caliper
(width × length × height × 0.52 = mm3). All the animals were maintained according to
the relevant institutional animal care guidelines. Animal experimental procedures were
approved by the institutional animal care and use committee at Seoul National University
(IACUC number: SNU-170710-2).

2.4. Macrophages Depletion

Established 4T1 tumors were injected with clodronate liposomes (1 mg/mouse; For-
muMax Scientific, Inc., Sunnyvale, CA, USA) 3 times at 4-day intervals following the first
intraperitoneal administration of paclitaxel (PTX; 5 mg/kg). ZnPP (40 mg/kg) was injected
intraperitoneally on daily basis throughout the experiment. Depletion of macrophages was
confirmed by flow cytometry.

2.5. Cell Culture

To culture primary bone marrow derived macrophages (BMDMs), we obtained bone
marrow cells by flushing the long bones of mice (6~12 weeks old). Bone marrow cells
were plated in DMEM supplemented with 10% fetal bovine serum (FBS), 100 µg/mL
streptomycin, 100 U/mL penicillin and 20 ng/mL M-CSF (Biolegend, San Diego, CA, USA)
and cultured for 7 days to allow for macrophage differentiation. Murine 4T1 cells were
purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA) and
cultured in DMEM supplemented with 10% FBS, 100 µg/mL streptomycin and 100 U/mL
penicillin. Cells were maintained at 37 ◦C in a humidified atmosphere of 5% CO2.

2.6. Macrophage Polarization

To generate M1-polarized macrophages, BMDMs were treated with LPS (100 ng/mL)
for 24 h as described previously [25].

https://www.ncbi.nlm.nih.gov/.geo/
https://www.ncbi.nlm.nih.gov/.geo/
http://kmplot.com/analysis
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2.7. Generation of Tumor Cell Debris

Tumor cell debris was generated by incubating murine 4T1 breast cancer cells (1 × 107)
in medium supplemented with PTX (1 mM) for 24 h. The presence of dead cells among the
debris was analyzed by the Annexin V/propidium iodide (PI) assay.

2.8. Isolation of Single Cells from Mouse Tumors

Tumors isolated from mice were dissociated into single cells as described previously [21].
Specifically, tumor implanted mice were euthanized by CO2 inhalation. Collected tumors
were minced, mechanically disaggregated, and passed through a 40 µm filter using DMEM
supplemented with 2% FBS to prepare a single cell suspension.

2.9. Flow Cytometric Analysis

The cells were washed with phosphate-buffered saline (PBS) containing 1% FBS.
The CD16/32 Fc receptor was blocked by anti-mouse CD16/32 antibody (Biolegend;
San Diego, CA, USA). The cells were then stained for 30 min incubation with the following
fluorescence-conjugated antibodies: anti-mouse CD45 APC, anti-mouse CD45.2 BV510,
anti-mouse CD11b Alexa Fluor700, anti-mouse F4/80 PerCP/Cy5.5, anti-mouse F4/80
APC, anti-mouse Ly-6C PE/Cy7, anti-mouse Ly-6G APC/Cy7, anti-mouse CD3ε Alexa
Fluor 700, anti-mouse CD8a PE/Cy7, anti-mouse CD4 PE, anti-mouse CD206 FITC and
anti-mouse CD36 PE. After washing with PBS, cells were analyzed by flow cytometry.
Dead cells were excluded by DAPI (Thermo Fisher Scientific; Waltham, MA, USA) staining.

For intracellular staining, the cells were incubated with ionomycin (1 µg/mL) and
phorbol myristate acetate (PMA; 100 ng/mL) for 4 h at 37 ◦C in a humidified atmosphere of
5% CO2 in the presence of a protein transport inhibitor cocktail (Brefeldin A and Monensin).
Thermo Fisher Scientific, Waltham, MA, USA). The cells were fixed and permeabilized
with a fixation/permeabilization buffer set (Thermo Fisher Scientific; Waltham, MA, USA),
and then stained with the following antibodies: anti-mouse IL-12p40 PE, anti-mouse TNF-α
FITC, anti-mouse IFN-γ APC (all from Biolegend, San Diego, CA, USA) and anti-mouse
Foxp3 FITC-conjugated antibody (Thermo Fisher Scientific; Waltham, MA, USA).

To stain intracellular HO-1, a fixation/permeabilization buffer set (Thermo Fisher
Scientific, Waltham, MA, USA) was used according to manufacturer’s instructions. Briefly,
the cells were stained with anti-HO-1 antibody in buffer, washed with PBS and analyzed
by flow cytometry. FACS Calibur, LSR Fortessa X-20 and FACS Aria III (BD; Franklin Lakes,
NJ, USA) was used for the aforementioned analyses. All samples were quantified using
the FlowJoTM software package (Tree Star; Ashland, OR, USA).

2.10. Cell Sorting

Single cells obtained from tumors were stained with DAPI, anti-CD45 APC and anti-
CD11b Alexa Fluor700 and subjected to FACS using a FACS Aria III (BD; Franklin Lakes,
NJ, USA). Live cells were identified as CD45+ CD11b+.

2.11. Immunofluorescence Analysis

For immunofluorescence staining, paraffin-embedded tumor tissue sections were
boiled in 10 mM sodium citrate buffer (pH 6), subjected to serial washing, blocked with
5% FBS in PBST (PBS + 0.1% Tween 20) and stained with CD8 Alexa Fluor 594 (Biolegend;
San Diego, CA, USA) and DAPI (Thermo Fisher Scientific; Waltham, MA, USA) overnight at
4 ◦C. Immunofluorescence images were analyzed by a Zeiss LSM 710 confocal microscope.

2.12. Phagocytosis Assay

PTX-induced tumor cell debris was stained with 1 µL of 1 mg/mL pHrodo-SE (Thermo
Fisher Scientific, Waltham, MA, USA) for 30 min at room temperature. BMDMs were co-
cultured with pHrodo-SE-labeled tumor cell debris. After incubation for 8 h, the phagocytic
activity of BMDMs was assessed by flow cytometry or confocal microscopy.
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2.13. Quantitative PCR

The total RNA isolated from cells and tumor tissues was reverse transcribed using
murine leukemia virus reverse transcriptase (Promega; Madison, WI, USA). qPCR analysis
was conducted by a 7300 Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA,
USA). Gene expression was normalized relative to internal control. The sequences of
primers used are as Table 1.

Table 1. The sequences of primers used for PCR amplification.

Gene Symbol Primer Sequences

Hmox1
Forward: GATAGAGCGCAACAAGCAGAA
Reverse: CAGTGAGGCCCATACCAGAAG

Cxcl9
Forward: GGAGTTCGAGGAACCCTAGTG
Reverse: GGGATTTGTAGTGGATCGTGC

Cxcl10
Forward: CCAAGTGCTGCCGTCATTTTC
Reverse: GGCTCGCAGGGATGATTTCAA

Il10
Forward: GCTCTTACTGACTGGCATGAG
Reverse: CGCAGCTCTAGGAGCATGTG

Tnf Forward: CCCTCACACTCAGATCATCTTCT
Reverse: GCTACGACGTGGGCTACAG

Il12b
Forward: TGGTTTGCCATCGTTTTGCTG
Reverse: ACAGGTGAGGTTCACTGTTTG

Actb
Forward: TGCTAGGAGCCAGAGCAGTA
Reverse: AGTGTGACGTTGACATCCGT

Gapdh Forward: GGGAAGCCCATCACCATCT
Reverse: CGGCCTCACCCCATTTG

2.14. Statistical Analysis

The statistical significance was determined by one-way ANOVA analysis with a
Tukey’s post hoc test. The Student’s t-test was used to compare data from control and
experimental group. The analyses were conducted by SigmaPlot 12 (Systat Software;
San Jose, CA, USA). Data are presented as the mean ± SEM (standard error of the mean).

3. Results
3.1. Chemotherapy Induces TAM Polarization toward the M2 Phenotype

To investigate the impact of chemotherapy on host immunity, we analyzed a public
gene expression dataset obtained from breast cancer patients who received chemotherapy
(GSE 43816). We found that the expression levels of immunosuppressive genes were largely
elevated, while some of the genes associated with immune stimulation were downregu-
lated after chemotherapy (Figure 1). To verify the impact of cytotoxic therapy on anti-tumor
immunity in the TME, we utilized a syngeneic murine breast cancer (4T1) model in which
mice were treated with PTX (Figure S1A), one of the most commonly used chemotherapeu-
tic agents. As expected, systemic administration of PTX inhibited the growth of 4T1 tumors
(Figure S1B). To determine whether PTX treatment could alter the proportion of TAMs in a
4T1 breast cancer model, we stained infiltrating TAMs with fluorochrome-conjugated anti-
bodies for flow cytometric analysis. We found that administration of PTX downregulated
the surface expression of the M1 marker CD86 in infiltrated TAMs (Figure S1C).

3.2. Phagocytic Engulfment of Tumor Cell Debris Re-Educates Macrophages toward
M2-Like Polarization

TAMs undergo polarization into an M2 phenotype that suppresses anti-tumor immunity.
We hypothesized that phagocytic engulfment of tumor cell debris by macrophages in TME
may facilitate such polarization. To test this hypothesis, we co-cultured murine BMDMs and
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4T1 breast cancer cells killed by PTX treatment for 24 h. PTX-induced cell death was confirmed
by flow cytometric analysis of annexin V/PI-stained cells (Figure S2A). After co-culture,
we examined the markers of M1- and M2-polarized macrophages. Tumor necrosis factor
alpha (TNF-α) and interleukin 12 (IL-12) are two major macrophage-derived mediators of
inflammatory responses in mammals [26]. We observed significant decreases in the proportions
of BMDMs expressing TNF-α (Figure 2A) and IL-12p40 (Figure 2B). Proteins secreted from
tumor cells have been shown to inhibit M1 polarization to reduce the anti-tumor immune
response [27], suggesting that TME-mediated M1 TAM inactivation is accelerated by tumor cell
debris produced during chemotherapy. We also confirmed that the proportion of macrophages
expressing TNF-α (Figure 2A) or IL-12p40 (Figure 2B) following co-culture with viable 4T1
breast cancer cells was decreased.
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In another experiment, BMDMs co-incubated with breast tumor cell debris exhibited
a robust upregulation of Il10 which is known to stimulate the M2 polarization (Figure 3A).
Danger-associated molecular patterns (DAMPs) released from dead cells contribute to pro-
moting tumors by triggering immunosuppression [28]. Macrophages treated with DAMPs
also induced Il10 mRNA expression (Figure 3A). These results suggest that engulfment
of tumor cell debris by TAMs may provoke an immunosuppressive microenvironment
through M2 polarization whereas it suppresses the M1 polarization. To verify the expres-
sion of phosphatidylserine (PS) recognition receptor on the surface of TAMs, we measured
the expression of CD36 in BMDMs treated with tumor debris. The expression levels of
CD36 were higher in macrophages exposed to breast cancer cell debris compared to those
co-cultured with viable breast cancer cells (Figure 3B).

3.3. Chemotherapy Enhances Expression of HO-1 Which Is Associated with Poor Prognosis

The stress-responsive enzyme, HO-1 is often upregulated in tumor tissues, and its
expression is further increased in response to therapies [29]. We first examined the prog-
nostic significance of the expression level of HO-1 using the public dataset. Kaplan-Meier
analysis revealed the correlation between expression levels of HO-1 and prognosis of
breast cancer. The probabilities of relapse free survival (RFS) among ER-PR-HER2- breast
cancer patients who received chemotherapy were significantly reduced with an increased
Hmox-1 transcript level (Figure 4A). However, these predictions are just based on the
association, and do not necessarily reflect the cause-result relationship. HO-1 is a stress
responsive enzyme, and its gene expression is prone to be inducible by various external
and internal factors.
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Figure 3. Effects of PTX-generated tumor cell debris on expression of CD36 in BMDMs. (A) The Il10 mRNA levels of
BMDMs incubated for 8 h with or without 4T1 cell debris or DAMPs from 4T1 tumor cell debris were analyzed by qPCR.
(B) The expression of CD36 on macrophages co-cultured with viable 4T1 cells or 4T1 tumor cell debris for 24 h was analyzed
by flow cytometry. *, **, *** Significantly different between groups compared (* p < 0.05; ** p < 0.01; *** p < 0.001).

HO-1 is highly expressed in TAMs in TME [24]. We first attempted to confirm its
gene expression in macrophages in the 4T1 murine breast cancer model. Hmox1 mRNA
expression levels of tumor-infiltrating myeloid cells were enhanced in the PTX-treated 4T1
breast cancer group relative to an untreated 4T1 breast cancer group (Figure 4B). Consistent
with the mRNA levels, the protein expression of HO-1 in TAMs was also increased in the
PTX treated group compared to the untreated group (Figure 4C). To determine whether HO-
1 upregulation contributes to the M2 polarization of macrophages we used ZnPP, which is
a chemical inhibitor of HO-1. As shown in Figure 4D, the expression of an M1 macrophage
marker, CD86 was upregulated in mice injected with PTX plus ZnPP compared to that in
mice treated with PTX alone. In contrast, the PTX-induced upregulation of the M2 marker
gene, Il10 in CD11b+ myeloid cells isolated from 4T1 tumor-bearing mice was abolished
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by administration of ZnPP (Figure 4E). These results suggest that inactivation of HO-1
stimulates the polarization of TAMs toward the M1 phenotype during chemotherapy.
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Figure 4. Induction of HO-1 by chemotherapy and its effects on macrophage polarization. (A) Kaplan–Meier analysis
(http://kmplot.com/analysis (accessed on 29 January 2021)) of RFS (relapse-free survival) based on low or high HMOX1
mRNA (HMOX1 probe set 203665_at) expression in breast cancer patients who had chemotherapy. For animal experiments
(B–E), 4T1 murine cancer cells were implanted into the mammary glands of female mice. Mice implanted with 4T1 cancer
cells received vehicle or PTX (5 mg/kg, i.p.) for 5 days with or without daily intraperitoneal injection of ZnPP (40 mg/kg).
Mice were sacrificed on day 15 after PTX injection, and breast tumor tissues were analyzed. (B) Relative mRNA levels of
Hmox1 in CD45+CD11b+ tumor-associated myeloid cells isolated from 4T1 tumors were assessed by qPCR. (C) The HO-1
expression levels in TAMs from 4T1 tumor-bearing mice injected with or without PTX were analyzed by flow cytometry.
(D) CD45+CD11b+Ly6G−Ly6C−F4/80+ TAM subsets of 4T1 tumors were subjected to flow cytometry to measure CD86
expression. (E) The mRNA levels of Il10 were measured in TAMs. *, ** Significantly different between groups compared
(* p < 0.05; ** p < 0.01).

Notably, the genetic ablation of HO-1 abolished the inhibitory effect of 4T1 tumor cell
debris on expression of two representative M1 marker genes, Tnf (Figure 5A) and Il12b
(Figure 5B), in LPS-stimulated BMDMs. We then investigated the possible involvement of
HO-1 in M2 polarization. IL-10 is known to play a role in M2-like polarization in murine
macrophages. The inhibition of HO-1 activity with ZnPP decreased the expression of
Il10 (Figure S2B) and the proportion of BMDMs expressing CD206 (Figure S2C). HO-1-
deficient BMDMs exposed to tumor cell debris also exhibited a diminished expression
of CD206 (Figure 5C) and the scavenger receptor CD36 (Figure 5D) compared to the
corresponding wild type (WT) macrophages. Likewise, both constitutive and tumor cell
debris-induced expression of CD36 was downregulated in the ZnPP-treated macrophages
(Figure S2F). Taken together, these results suggest that HO-1 signaling induced by tumor
cell debris modulates the polarization of macrophages into an M2 phenotype in the TME
following chemotherapy. We found that BMDMs from HO-1 knock out (KO) mice did
not significantly differ from WT macrophages in their ability to take up tumor cell debris
(Figure S3A,B). Therefore, anti-tumor strategies could potentially target the HO-1-mediated
reprogramming of TAMs without altering their clearance efficiency.

http://kmplot.com/analysis
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Figure 5. Modulation of macrophage polarization by tumor cell debris-induced HO-1. (A,B) BMDMs
derived from WT or HO-1 KO mice were treated with LPS (100 ng/mL) for 24 h. The mRNA expression
levels of Tnf (A) and Il12b (B) in the above-treated macrophages co-cultured with or without 4T1 cell
debris for 30 h were measured by qPCR. (C,D) BMDMs from WT or HO-1 KO mice were co-cultured
with or without 4T1 tumor cell debris. After 24 h of incubation, the proportion of macrophages expressing
CD206 (C) or CD36 (D) was assessed by flow cytometry. *, **, *** Significantly different between groups
compared (* p < 0.05; ** p < 0.01; *** p < 0.001). NS; not significant.

3.4. HO-1 Inhibition Potentiates Anti-Tumor T Cell Function in Response to PTX Treatment

In the context of an anti-tumor immune response, a sufficient number of infiltrating T
cells is needed to achieve a favorable clinical outcome. Notably, there were significantly
more CD8+ T cells in tumors of mice treated with PTX plus ZnPP compared to those from
mice treated with PTX alone (Figure 6A,B). Elevated levels of the chemokines, such as
CXC-chemokine ligand 9 (CXCL9) and CXC-chemokine ligand 10 (CXCL10) are reportedly
associated with the increased number of tumor-infiltrating CD8+ T cells [30]. Therefore,
we examined whether HO-1 inhibition could accelerate the infiltration of CD8+ T cells
by upregulating expression of these chemokines. Indeed, the mRNA levels of Cxcl9
(Figure 6C) and Cxcl10 (Figure 6D) were higher in tumors from mice treated with PTX plus
ZnPP, and this coincided with enhanced CD8+ T cell recruitment.

The functions of cytotoxic T lymphocyte effectors are mediated through secretion
of cytokines, such as interferon (IFN)-γ [31]. The proportion of T cells producing IFN-γ
was significantly increased in mice treated with PTX and ZnPP compared to those treated
with PTX alone (Figure 6E,F). Furthermore, the proportion of FOXP3+ regulatory T cells
(Tregs) from 4T1 tumor-bearing mice injected with PTX plus ZnPP was lower than that
from 4T1 tumor-bearing mice treated with PTX alone (Figure 6G). Consistent with the
ability of PTX plus ZnPP to increase the anti-tumor immune responses, the same combined
treatment increased the proportion of macrophages phagocytosing breast tumor cell debris
to a greater extent than that achieved with the chemotherapy alone (Figure 6H).

3.5. HO-1 Inactivation-induced M1 TAMs Are Crucial for the Enhanced Response to
PTX Therapy

To further determine whether macrophages are necessary to support the T cell function
in PTX and ZnPP co-treatment, we used a clodronate liposome to deplete macrophages
(Figure 7A). We then compared the effects of macrophage depletion on therapeutic activity
of PTX and ZnPP in the 4T1 syngeneic murine breast tumor model (Figure S3C). Of note, the
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tumor-inhibiting efficacy of PTX and ZnPP co-treatment was abrogated in the macrophage
depletion group (Figure 7B,C). Macrophage depletion also reduced the intratumoral CD8+

T cell population (Figure 7D) and attenuated the expression of M1-associated genes, Cxcl9
(Figure 7E) and Cxcl10 (Figure 7F) in mice treated with PTX and ZnPP.
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(A) CD45+CD3+CD8+ tumor-infiltrating lymphocyte populations (as percentages) were identified by flow cytometry. (B)
Representative images of tumor sections stained for CD8+ T cells and DAPI are shown. Scale bar, 200 µm. (C,D) The
whole-tumor mRNA expression levels of Cxcl9 (C) and Cxcl10 (D) were analyzed by qPCR. (E) The percentages of IFN-
γ+CD8+ T cells in CD45+ populations were detected by flow cytometry. (F) The proportions of IFN-γ+CD4+ T cells in the
CD45+ populations were analyzed by flow cytometry. (G) The percentages of Foxp3+CD4+ T cells were analyzed by flow
cytometry. (H) Engulfment of breast tumor cell debris was analyzed as the proportion of F4/80+ macrophages found to
contain intracellular EpCAM (a standard epithelial tumor cell marker), as assessed by flow cytometry. *, **, *** Significantly
different between groups compared (* p < 0.05; ** p < 0.01; *** p < 0.001).
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injected with vehicle or PTX (5 mg/kg, 5 days) in combination with daily intraperitoneal injection of ZnPP (40 mg/kg).
For macrophage depletion, mice were treated with clodronate liposomes 3 times at 4-day intervals as described in Materials
and Methods. Representative photographs of tumors are shown for each group. (C) Tumor volume was calculated as a
relative change and plotted as the mean ± SEM. (D) Representative images of tumor sections stained for CD8+ T cells
and DAPI are shown. (E,F) The whole-tumor mRNA expression levels of Cxcl9 and Cxcl10 were analyzed by qPCR.
*, **, *** Significantly different between groups compared (* p < 0.05; ** p < 0.01, *** p < 0.001).

4. Discussion

HO-1 in TAMs modulates immunosuppressive TME [29,32,33]. Here, we found
that inhibition of tumor cell debris-induced HO-1 expression in TAMs potentiates anti-
tumor functions of T cells. Tumor cell debris formed as a consequence of chemotherapy
is a key factor to reprogram the macrophages in the breast cancer. The macrophage
polarization is subjected to redox regulation [34]. HO-1 expression is mainly regulated
by the redox sensitive transcription factor Nrf2 that plays vital roles in cellular protection
against oxidative stress and inflammatory insults [24]. After the engulfment of cell debris,
the macrophages form phagolysosome to degrade the cell debris. This results in the high
acidity condition in macrophages and generation of reactive oxygen species (ROS) [35].
The tripeptide glutathione (GSH) eliminates/neutralizes ROS and consequently protects
cells from oxidative stress [36]. The GSH levels determine the intracellular redox status
and hence influence macrophage polarization [36]. Collectively, tumor cell debris-induced
macrophage reprogramming could be regulated by intracellular redox status.

The major approaches currently used to target TAMs for anti-cancer therapy include
inactivating/depleting them or reprogramming to attain an anti-tumor phenotype [37,38].
The targeting of PS receptors, which recognize dead tumor cells, has been shown to yield
therapeutic effects by reprogramming TAMs to the M1 phenotype [39–41]. However, block-
ing PS receptors present on the surface of macrophages could decrease their clearance of
dead tumor cells [40], which may influence the therapeutic efficacy of anticancer treat-
ment [42]. It has been suggested that it may be unwise to deplete TAMs in combination with
cytotoxic anti-tumor therapy due to the potential for aberrant immune responses [43,44].
Thus, it is far more attractive to consider targeting macrophages for anti-cancer therapy
while enabling them to maintain ability to efficiently clear dead cancer cells [43]. We found
that HO-1-deficient macrophages did not significantly differ from WT macrophages in
their ability to take up tumor cell debris (Figure S2B,C). Therefore, anti-tumor strategies
could potentially target the HO-1-mediated reprogramming of TAMs without altering their
clearance efficiency.

Previous studies have shown that therapeutic inefficacy can be caused by Tregs, which
suppress lymphocytic activity via HO-1-mediated mechanisms [45,46]. M2 TAMs play a key
role in enhancing the immunosuppressive activity of Tregs through IL-10 [36]. In line with
the decreased mRNA levels of Il10 in TAMs observed herein, we found that the proportion
of Tregs was decreased in mice treated with PTX and a HO-1 inhibitor compared to that
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in mice treated with PTX alone. Modulation of the ability of conventional chemotherapy-
generated tumor cell debris to change the TME could be a novel approach for preventing
unwanted therapy-induced effects [21,22]. Recent studies have shown that 5-FU-generated
tumor cell debris stimulates tumor growth [22]. Although we focused on PTX in the present
study, 5-FU, which is another first-line chemotherapeutic agent, also showed similar results
in a 4T1 breast cancer model (S.H. Kim and Y.-J, Surh, unpublished observation).

The fact that dying/dead cancer cells may orchestrate tumor repopulation warns
about the dark side of cytotoxic therapy, so we need to develop new strategies to overcome
this paradoxical dilema [23]. The low-dose metronomic (LDM) chemotherapy is a form
of continuous use of low doses of conventional chemotherapeutics [47]. This strategy has
been utilized in elderly patients with lower dose treatment than conventional maximum
tolerated dose chemotherapy [47,48]. In particular, LDM is an emerging therapeutic
strategy for treating metastatic breast cancer though its mechanistic basis remains to be
clarified [48]. The maximal dose of conventional chemotherapy generates tumor cell debris
which can accelerate the immunosuppressive M2-like macrophage polarization in TME.
On the other hand, the LDM sustains therapeutic efficacy by generating relatively small
amounts of tumor cell debris, so can be clinically beneficial as an emerging alternative to
conventional chemotherapy [48].

In summary, the inactivation of HO-1 in tumor cell debris-phagocytosing macrophages
critically polarizes them toward the M1 phenotype, which contributes to enhancement of cy-
totoxic T cell responses. Therefore, the HO-1-targeted reprogramming of TAMs toward the
M1 phenotype may be a promising strategy for maximizing the efficacy of chemotherapy.
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1/10/3/470/s1. Figure S1: Effect of PTX on 4T1 tumor growth in mice. Figure S2: Modulation of
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WT or HO-1 KO macrophages to clear tumor cell debris.

Author Contributions: Conceptualization, S.H.K. (Seung Hyeon Kim) and Y.-J.S.; Formal analysis,
S.H.K. (Seung Hyeon Kim), S.H.K. (Seong Hoon Kim), S.-J.K., S.E.L., S.S., X.Z. and J.P.; Resources,
Y.J.; S.-A.P., H.-K.N. and H.T.C.; Supervision, Y.-J.S.; Writing—original draft, S.H.K. (Seung Hyeon
Kim) and Y.-J.S.; Writing—review & editing, Y.-J.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the Global Core Research Center (GCRC) grant (No. 2011-
0030001 to Y.-J.S.), the Priority Research Centres Programme (2014R1A6A1030318 to H.T.C.) and the
BK21 FOUR Program (5120200513755) from the National Research Foundation, Republic of Korea.

Institutional Review Board Statement: The study was approved by the institutional animal care
and use committee at Seoul National University.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data presented in this study are included in the article and its supple-
mentary material file.

Acknowledgments: The authors acknowledge the technical support by Shin-Young Gwak and Ishrat
Aklima Muna.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Spill, F.; Reynolds, D.S.; Kamm, R.D.; Zaman, M.H. Impact of the physical microenvironment on tumor progression and metastasis.

Curr. Opin. Biotechnol. 2016, 40, 41–48. [CrossRef]
2. Wang, J.; Li, D.; Cang, H.; Guo, B. Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the

tumor microenvironment. Cancer Med. 2019, 8, 4709–4721. [CrossRef]
3. Nishida-Aoki, N.; Gujral1, T.S. Emerging approaches to study cell–cell interactions in tumor microenvironment. Oncotarget 2019,

10, 785–797. [CrossRef]
4. Zhu, S.; Luo, Z.; Li, X.; Han, X.; Shi, S.; Zhang, T. Tumor-associated macrophages: Role in tumorigenesis and immunotherapy

implications. J. Cancer 2021, 12, 54–64. [CrossRef]

https://www.mdpi.com/2076-3921/10/3/470/s1
https://www.mdpi.com/2076-3921/10/3/470/s1
http://doi.org/10.1016/j.copbio.2016.02.007
http://doi.org/10.1002/cam4.2327
http://doi.org/10.18632/oncotarget.26585
http://doi.org/10.7150/jca.49692


Antioxidants 2021, 10, 470 13 of 14

5. Noy, R.; Pollard, J.W. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014, 41, 49–61. [CrossRef]
6. Pathria, P.; Louis, T.L.; Varner, J.A. Targeting tumor-associated macrophages in cancer. Trends Immunol. 2019, 40,

310–327. [CrossRef]
7. Puthenveetil, A.; Dubey, S. Metabolic reprograming of tumor-associated macrophages. Ann. Transl. Med. 2020, 8, 1030. [CrossRef]
8. Lin, Y.; Xu, J.; Jan, H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications.

J. Hematol. Oncol. 2019, 12, 76. [CrossRef]
9. Wang, S.; Liu, R.; Yu, Q.; Dong, L.; Bi, Y.; Liu, G. Metabolic reprogramming of macrophages during infections and cancer.

Cancer Lett. 2019, 452, 14–22. [CrossRef]
10. Malyshev, I.; Malyshev, Y. Current concept and update of the macrophage plasticity concept: Intracellular mechanisms of

reprogramming and M3 macrophage (Switch) phenotype. BioMed Res. Int. 2015, 2015, 341308. [CrossRef]
11. Genard, G.; Lucas, S.; Michiels, C. Reprogramming of tumor-associated macrophages with anticancer therapies: Radiotherapy

versus chemo- and immunotherapies. Front. Immunol. 2017, 8, 828. [CrossRef]
12. Schultze, J.L. Reprogramming of macrophages-new opportunities for therapeutic targeting. Curr. Opin. Pharmacol. 2016,

26, 10–15. [CrossRef]
13. Gok Yavuz, B.; Gunaydin, G.; Gedik, M.E.; Kosemehmetoglu, K.; Karakoc, D.; Ozgur, F.; Guc, D. Cancer associated fibroblasts

sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Sci. Rep. 2019, 28,
3172. [CrossRef] [PubMed]

14. Italiani, P.; Boraschi, D. From Monocytes to M1/M2 macrophages: Phenotypical vs. functional differentiation. Front. Immunol.
2014, 17, 514. [CrossRef] [PubMed]

15. Yang, Q.; Guo, N.; Zhou, Y.; Chen, J.; Wei, Q.; Han, M. The role of tumor-associated macrophages (TAMs) in tumor progression
and relevant advance in targeted therapy. Acta Pharm. Sin. 2020, 10, 2156–2170. [CrossRef]

16. Zhang, F.; Parayath, N.N.; Ene, C.I.; Stephan, S.B.; Koehne, A.L.; Coon, M.E.; Holland, E.C.; Stephan, M.T. Genetic programming
of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun. 2019, 10, 3974. [CrossRef]

17. Hörhold, F.; Eisel, D.; Oswald, M.; Kolte, A.; Röll, D.; Osen, W.; Eichmüller, S.B.; König, R. Reprogramming of macrophages
employing gene regulatory and metabolic network models. PLoS Comput. Biol. 2020, 16, e1007657. [CrossRef] [PubMed]

18. Sarode, P.; Schaefer, M.B.; Grimminger, F.; Seeger, W.; Savai, R. Macrophage and tumor cell cross-talk is fundamental for lung
tumor progression: We need to talk. Front. Oncol. 2020, 10, 324. [CrossRef]

19. Larionova, I.; Cherdyntseva, N.; Liu, T.; Patysheva, M.; Rakina, R.; Kzhyshkowska, J. Interaction of tumor-associated macrophages
and cancer chemotherapy. Oncoimmunology 2019, 8, e1596004. [CrossRef] [PubMed]

20. Duan, Q.; Zhang, H.; Zheng, J.; Zhang, L. Turning cold into hot: Firing up the tumor microenvironment. Trends Cancer 2020, 6,
605–618. [CrossRef] [PubMed]

21. Sulciner, M.L.; Serhan, C.N.; Gilligan, M.M.; Mudge, D.K.; Chang, J.; Gartung, A.; Lehner, K.A.; Bielenberg, D.R.; Schmidt, B.;
Dalli, J.; et al. Resolvins suppress tumor growth and enhance cancer therapy. J. Exp. Med. 2018, 215, 115–140. [CrossRef]

22. Chang, J.; Bhasin, S.S.; Bielenberg, D.R.; Sukhatme, V.P.; Bhasin, M.; Huang, S.; Kieran, M.W.; Panigrahy, D. Chemotherapy-
generated cell debris stimulates colon carcinoma tumor growth via osteopontin. FASEB J. 2019, 33, 114–125. [CrossRef]

23. Jiang, M.J.; Gu, D.N.; Dai, J.J.; Huang, Q.; Tian, L. Dark side of cytotoxic therapy: Chemoradiation-induced cell death and tumor
repopulation. Trends Cancer. 2020, 6, 419–431. [CrossRef]

24. Jozkowicz, A.; Was, H.; Dulak, J. Heme oxygenase-1 in tumors: Is it a false friend? Antioxid. Redox Signal. 2007, 9,
2099–2117. [CrossRef]

25. Kim, S.H.; Saeidi, S.; Xiancai, Z.; Gwak, S.-Y.; Muna, I.K.; Park, S.-A.; Kim, S.H.; Na, H.-K.; Joe, Y.; Chung, H.T.; et al. Breast
cancer cell debris diminishes therapeutic efficacy through heme oxygenase-1-mediated inactivation of M1-like tumor-associated.
Neoplasia 2020, 22, 606–616. [CrossRef]

26. Ma, X. TNF- and IL-12: A balancing act in macrophage functioning. Microbes Infect. 2001, 3, 121–129. [CrossRef]
27. Ubil, E.; Caskey, L.; Holtzhausen, A.; Hunter, D.; Story, C.; Earp, H.S. Tumor-secreted Pros1 inhibits macrophage M1 polarization

to reduce antitumor immune response. J. Clin. Investig. 2018, 128, 2356–2369. [CrossRef]
28. Pandolfi, F.; Altamura, S.; Frosali, S.; Conti, P. Key role of DAMP in inflammation, cancer, and tissue repair. Clin. Ther. 2016,

38, 1017–1028. [CrossRef]
29. Alaluf, E.; Vokaer, B.; Detavernier, A.; Azouz, A.; Splittgerber, M.; Carrette, A.; Boon, L.; Libert, F.; Soares, M.; Le Moine, A.; et al.

Heme oxygenase-1 orchestrates the immunosuppressive program of tumor-associated macrophages. JCI Insight 2020, 5, e133929.
30. House, I.G.; Savas, P.; Lai, J.; Chen, A.X.-Y.; Oliver, A.J.; Teo, Z.L.; Todd, K.L.; Henderson, M.A.; Giuffrida, L.; Petley, E.V.; et al.

Macrophage-derived CXCL9 and CXCL10 are required for antitumor immune responses following immune checkpoint blockade.
Clin. Cancer Res. 2020, 26, 487–504. [CrossRef] [PubMed]

31. Bhat, P.; Leggatt, G.; Waterhouse, N.; Frazer, I.H. Interferon-γ derived from cytotoxic lymphocytes directly enhances their motility
and cytotoxicity. Cell Death Dis. 2017, 8, e2836. [CrossRef]

32. Deng, R.; Wang, S.-M.; Yin, T.; Ye, T.-H.; Shen, G.-B.; Li, L.; Zhao, J.-Y.; Sang, Y.-X.; Duan, X.-G.; Wei, Y.-Q. Inhibition of tumor
growth and alteration of associated macrophage cell type by an HO-1 inhibitor in breast carcinoma-bearing mice. Oncol. Res.
2013, 20, 473–482. [CrossRef]

33. Arnold, J.N.; Magiera, L.; Kraman, M.; Fearon, D.T. Tumoral immune suppression by macrophages expressing fibroblast activation
protein- and heme oxygenase-1. Cancer Immunol. Res. 2014, 2, 121–126. [CrossRef] [PubMed]

http://doi.org/10.1016/j.immuni.2014.06.010
http://doi.org/10.1016/j.it.2019.02.003
http://doi.org/10.21037/atm-20-2037
http://doi.org/10.1186/s13045-019-0760-3
http://doi.org/10.1016/j.canlet.2019.03.015
http://doi.org/10.1155/2015/341308
http://doi.org/10.3389/fimmu.2017.00828
http://doi.org/10.1016/j.coph.2015.09.007
http://doi.org/10.1038/s41598-019-39553-z
http://www.ncbi.nlm.nih.gov/pubmed/30816272
http://doi.org/10.3389/fimmu.2014.00514
http://www.ncbi.nlm.nih.gov/pubmed/25368618
http://doi.org/10.1016/j.apsb.2020.04.004
http://doi.org/10.1038/s41467-019-11911-5
http://doi.org/10.1371/journal.pcbi.1007657
http://www.ncbi.nlm.nih.gov/pubmed/32097424
http://doi.org/10.3389/fonc.2020.00324
http://doi.org/10.1080/2162402X.2019.1596004
http://www.ncbi.nlm.nih.gov/pubmed/31143517
http://doi.org/10.1016/j.trecan.2020.02.022
http://www.ncbi.nlm.nih.gov/pubmed/32610070
http://doi.org/10.1084/jem.20170681
http://doi.org/10.1096/fj.201800019RR
http://doi.org/10.1016/j.trecan.2020.01.018
http://doi.org/10.1089/ars.2007.1659
http://doi.org/10.1016/j.neo.2020.08.006
http://doi.org/10.1016/S1286-4579(00)01359-9
http://doi.org/10.1172/JCI97354
http://doi.org/10.1016/j.clinthera.2016.02.028
http://doi.org/10.1158/1078-0432.CCR-19-1868
http://www.ncbi.nlm.nih.gov/pubmed/31636098
http://doi.org/10.1038/cddis.2017.67
http://doi.org/10.3727/096504013X13715991125684
http://doi.org/10.1158/2326-6066.CIR-13-0150
http://www.ncbi.nlm.nih.gov/pubmed/24778275


Antioxidants 2021, 10, 470 14 of 14

34. Muri, J.; Kopf, M. Redox regulation of immunometabolism. Nat. Rev. Immunol. 2020. [CrossRef]
35. Boada-Romero, E.; Martinez, J.; Heckmann, B.L.; Green, D.R. The clearance of dead cells by efferocytosis. Nat. Rev. Mol. Cell Biol.

2020, 21, 398–414. [CrossRef]
36. Limongi, D.; Baldelli, S.; Checconi, P.; Marcocci, M.E.; De Chiara, G.; Fraternale, A.; Magnani, M.; Ciriolo, M.R.; Palamara,

A.T. GSH-C4 Acts as anti inflammatory frug in different models of canonical and cell autonomous inflammation through NF B
inhibition. Front. Immunol. 2019, 6, 155.

37. Mantovani, A.; Marchesi, F.; Malesci, A.; Laghi, L.; Allavena, P. Tumour-associated macrophages as treatment targets in oncology.
Nat. Rev. Clin. Oncol. 2017, 14, 399–416. [CrossRef]

38. Guerriero, J.L. Macrophages: The road less traveled, changing anticancer therapy. Trends Mol. Med. 2018, 24, 472–489. [CrossRef]
39. Kumar, S.; Calianese, D.; Birge, R.B. Efferocytosis of dying cells differentially modulate immunological outcomes in tumor

microen vironment. Immunol. Rev. 2017, 280, 149–164. [CrossRef]
40. Georgoudaki, A.M.; Prokopec, K.E.; Boura, V.F.; Hellqvist, E.; Sohn, S.; Ostling, J.; Dahan, R.; Harris, R.A.; Rantalainen, M.;

Bring, D.K.; et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and
metastasis. Cell Rep. 2016, 15, 2000–2011. [CrossRef] [PubMed]

41. Stanford, J.C.; Young, C.; Hicks, D.; Owens, P.; Williams, A.; Vaught, D.B.; Morrison, M.M.; Lim, J.; Williams, M.; Brantley-Sieders,
D.M.; et al. Efferocytosis produces a prometastatic landscape during postpartum mammary gland involution. J. Clin. Investig.
2014, 124, 4737–4752. [CrossRef] [PubMed]

42. Lauber, K.; Ernst, A.; Orth, M.; Herrmann, M.; Belka, C. Dying cell clearance and its impact on the outcome of tumor radiotherapy.
Front. Oncol. 2012, 2, 116. [CrossRef]

43. Shree, T.; Olson, O.C.; Elie, B.T.; Kester, J.C.; Garfall, A.L.; Simpson, K.; Bell-McGuinn, K.M.; Zabor, E.C.; Brogi, E.; Joyce, J.A.
Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer. Genes Dev. 2011, 25, 2465–2479.
[CrossRef] [PubMed]

44. Poh, A.R.; Ernst, M. Targeting macrophages in cancer: From bench to bedside. Front. Oncol. 2018, 8, 49. [CrossRef]
45. El Andaloussi, A.; Lesniak, M.S. CD4+ CD25+ FoxP3+ T-cell infiltration and heme oxygenase-1 expression correlate with tumor

grade in human gliomas. J. Oncol. 2007, 83, 145–152. [CrossRef]
46. Choi, B.M.; Pae, H.O.; Jeong, Y.R.; Kim, Y.M.; Chung, H.T. Critical role of heme oxygenase-1 in Foxp3-mediated immune

suppression. Biochem. Biophys. Res. Commun. 2005, 327, 1066–1071. [CrossRef] [PubMed]
47. Lien, K.; Georgsdottir, S.; Sivanathan, L.; Chan, K.; Emmenegger, U. Low-dose metronomic chemotherapy: A systematic literature

analysis. Eur. J. Cancer 2013, 49, 3387–3395. [CrossRef] [PubMed]
48. Krajnak, S.; Schnatz, C.; Almstedt, K.; Brenner, W.; Haertner, F.; Heimes, A.S.; Lebrecht, A.; Makris, G.M.; Schwab, R.;

Hasenburg, A.; et al. Low-dose metronomic chemotherapy as an efficient treatment option in metastatic breast cancer-results
of an exploratory case-control study. Breast Cancer Res. Treat. 2020, 182, 389–399. [CrossRef]

http://doi.org/10.1038/s41577-020-00478-8
http://doi.org/10.1038/s41580-020-0232-1
http://doi.org/10.1038/nrclinonc.2016.217
http://doi.org/10.1016/j.molmed.2018.03.006
http://doi.org/10.1111/imr.12587
http://doi.org/10.1016/j.celrep.2016.04.084
http://www.ncbi.nlm.nih.gov/pubmed/27210762
http://doi.org/10.1172/JCI76375
http://www.ncbi.nlm.nih.gov/pubmed/25250573
http://doi.org/10.3389/fonc.2012.00116
http://doi.org/10.1101/gad.180331.111
http://www.ncbi.nlm.nih.gov/pubmed/22156207
http://doi.org/10.3389/fonc.2018.00049
http://doi.org/10.1007/s11060-006-9314-y
http://doi.org/10.1016/j.bbrc.2004.12.106
http://www.ncbi.nlm.nih.gov/pubmed/15652505
http://doi.org/10.1016/j.ejca.2013.06.038
http://www.ncbi.nlm.nih.gov/pubmed/23880474
http://doi.org/10.1007/s10549-020-05711-5

	Introduction 
	Materials and Methods 
	Bioinformatic Analysis 
	Kaplan–Meier (Relapse-Free Survival) Analysis 
	Syngeneic Murine Breast Tumor Model 
	Macrophages Depletion 
	Cell Culture 
	Macrophage Polarization 
	Generation of Tumor Cell Debris 
	Isolation of Single Cells from Mouse Tumors 
	Flow Cytometric Analysis 
	Cell Sorting 
	Immunofluorescence Analysis 
	Phagocytosis Assay 
	Quantitative PCR 
	Statistical Analysis 

	Results 
	Chemotherapy Induces TAM Polarization toward the M2 Phenotype 
	Phagocytic Engulfment of Tumor Cell Debris Re-Educates Macrophages toward M2-Like Polarization 
	Chemotherapy Enhances Expression of HO-1 Which Is Associated with Poor Prognosis 
	HO-1 Inhibition Potentiates Anti-Tumor T Cell Function in Response to PTX Treatment 
	HO-1 Inactivation-induced M1 TAMs Are Crucial for the Enhanced Response to PTX Therapy 

	Discussion 
	References

