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Abstract: Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive lethal disorder
caused by the lack of dystrophin, which determines myofibers mechanical instability, oxidative stress,
inflammation, and susceptibility to contraction-induced injuries. Unfortunately, at present, there
is no efficient therapy for DMD. Beyond several promising gene- and stem cells-based strategies
under investigation, physical activity may represent a valid noninvasive therapeutic approach to
slow down the progression of the pathology. However, ethical issues, the limited number of studies
in humans and the lack of consistency of the investigated training interventions generate loss of
consensus regarding their efficacy, leaving exercise prescription still questionable. By an accurate
analysis of data about the effects of different protocol of exercise on muscles of mdx mice, the most
widely-used pre-clinical model for DMD research, we found that low intensity exercise, especially
in the form of low speed treadmill running, likely represents the most suitable exercise modality
associated to beneficial effects on mdx muscle. This protocol of training reduces muscle oxidative
stress, inflammation, and fibrosis process, and enhances muscle functionality, muscle regeneration,
and hypertrophy. These conclusions can guide the design of appropriate studies on human, thereby
providing new insights to translational therapeutic application of exercise to DMD patients.

Keywords: duchenne muscular dystrophy; training; treadmill running; swimming; voluntary exer-
cise; muscle inflammation; ROS; antioxidants

1. Introduction

This review examines the role of exercise in the modulation of muscle plasticity
and oxidative stress in the mdx mouse, the most widely used pre-clinical animal model
for Duchenne muscular dystrophy (DMD), a fatal X-linked disorders characterized by
progressive muscle weakness. Beyond the current medication, such as steroids, which
show many side effects and can only slow down disease progression, and new gene-
and stem cells-based strategies, still under experimentation [1,2], physical activity may
represent an effective noninvasive therapeutic approach for DMD. However, if on one
hand a moderate intensity exercise is usually associated to beneficial effects in healthy
muscles [3], on the other hand the limited number of investigations in DMD patients and
the lack of consensus regarding the fine balance between benefits of training and DMD
muscle overuse and damage, impede the generation of definitive guidelines for exercise
prescription [4,5].

It is well known that healthy skeletal muscle displays the ability to easily adapt to
environmental stimuli, such as exercise and physical activity, through a plastic remod-
eling of the phenotype, strictly dependent on different properties of the applied stimuli.

Antioxidants 2021, 10, 558. https://doi.org/10.3390/antiox10040558 https://www.mdpi.com/journal/antioxidants

https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-3275-9981
https://orcid.org/0000-0002-4875-7796
https://doi.org/10.3390/antiox10040558
https://doi.org/10.3390/antiox10040558
https://doi.org/10.3390/antiox10040558
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antiox10040558
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox10040558?type=check_update&version=3


Antioxidants 2021, 10, 558 2 of 55

This adaptive remodeling, which plays an essential role in improving neuromuscular
performance and/or enhancing endurance capabilities, includes metabolism modifications,
structural changes, such as muscle pennation and fiber type switch, as well as size changes
due to phenomena of hypertrophy [3,6,7]. The effects of exercise on muscle tissue affected
by chronic disorders, such as DMD, have been extensively studied and reviewed [4,5,8–12].
However, since the beneficial effects of physical exercise depend on many parameters, such
as type, duration, frequency, and intensity of training, and considering the large variation
among individuals with regard to the magnitude of muscle remodeling in response to
exercise, the lack of uniform and standardized protocols of training impairs comparisons
between studies and translation of results obtained in animals to patients.

Therefore, in order to compare and shed some light on the many existing protocols
of exercise, with the aim of identifying the best suited modality of training associated to
beneficial effect on DMD muscle, here we present an updated data report about the effects
of different protocols of physical exercise on muscles of mdx mice (Figure 1). The main
modifications induced by exercise on mdx muscles, including the mechanism of fibrosis, the
ability of satellite cells to regenerate damaged muscle tissue, the modifications of muscle
performance (in term of endurance and strength) and structure (fiber type and muscle
volume), as well as the metabolic processes associated with the control of fibers redox state
and inflammation, will be reviewed in the next paragraphs. Furthermore, a difference in
the functional response of mdx skeletal, cardiac and diaphragm muscles will be discussed,
taking into considerations that the three types of muscle are not equally affected by the
absence of dystrophin and exercise [13].
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At the end of this discussion, we propose an optimized exercise protocol able to
induce beneficial adaptive remodeling in mdx muscles, thereby providing new insights to
translational therapeutic application of exercise to DMD patients.

2. Duchenne Muscular Dystrophy

DMD is an X-linked recessive progressive lethal disorder with a worldwide incidence
of one in 5000 live male births [14]. It is caused by the lack of dystrophin, a critical muscle
protein that connects the cytoskeleton of muscle fibers to the extracellular matrix, acting as
an essential stabilizer of muscle fibers during contraction. Deletion of dystrophin, in both
mature muscle fibers and myogenic stem cells, results in myofibers mechanical instability
and susceptibility to contraction-induced injuries [15,16], as well as weakness, muscle
loss [10], oxidative stress and inflammation [17,18]. The clinical course of the pathology is
progressive and associated to life-long debilitation and shorter longevity: Patients with
DMD first develop skeletal muscle weakness in early childhood, which quickly progresses
to loss of muscle tissue, spinal curvature, paralysis, and premature death because of
cardiorespiratory failure, usually in the third or fourth decade of life [1,14].

Muscle mechanical instability in DMD is associated with degeneration and regen-
eration of myofibers and activation of satellite muscle stem cells. Indeed, muscle injury
activates satellite cells, which start to proliferate and to differentiate, leading, through
a multistep process, to the formation of new regenerating fibers with centrally located
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nuclei, which represent a distinctive histological marker of DMD muscle [19,20]. The
chronic nature of the pathology is associated at later stages to development of chronic
inflammation, increased oxidative stress, inhibition of muscle fiber regeneration, depletion
of the satellite cells pool and replacement of muscle by fibrotic and adipose tissue, and
generating weakness in the diaphragm and limb muscles [21–23]. Importantly, dystrophic
muscle fibers are more vulnerable to exercise-induced damage [24,25].

Unfortunately, at present, there is no efficient therapy for DMD. The classically avail-
able treatments, such as steroids, mostly interfere with inflammatory processes related to
the pathology, thus reducing the immunological responses involved in the progression
of the disease. However, these treatments show many adverse effects and can only slow
down disease progression [1,26–28]. Indeed, research is still ongoing, and important de-
velopments have been achieved in the field, with the discovery of emerging therapies
that are in the clinical trial phase or have already been approved. Briefly, gene-addition,
exon-skipping, stop codon readthrough, and genome-editing-based therapies can restore
the expression and the function of dystrophin, while stem cells-based therapy can par-
tially replace damaged muscle tissue. Finally, other therapeutic approaches can improve
muscle functionality by targeting pathways involved in the pathogenesis of DMD, such as
inflammation and oxidative stress [1,2,29,30]. Although genome-editing based- and stem
cells based-approaches have the potential to lead to meaningful life-changing therapeutic
interventions, they show some limitations, especially in terms of cost burden and acces-
sibility, and their therapeutic impact will be fully understood only in the next decades.
Furthermore, genetic therapy for DMD patients remains an issue, taking into considera-
tion the differences in mutations in the DMD gene and the complex mechanisms of gene
expression regulation [31]. In addition to pharmacological, gene- and stem cells-based
therapies, physical exercise, by inducing muscle plastic remodeling, represents a potential
therapeutic approach for improving DMD patient outcomes and quality of life [5,9,32].

3. The mdx Model

The mdx mouse represents the most widely used pre-clinical animal model for DMD re-
search [33–35]. mdx mouse was discovered in the early 1980s in a colony of C57BL/10ScSn,
in which a spontaneous nonsense point mutation, consisting in a C-to-T transition at exon
23, determined loss of dystrophin, elevated serum creatine kinase (CK) and muscle dam-
age [36]. Specifically, mdx skeletal muscle exhibits elevated myofiber necrosis, cellular
infiltration, a wide range of myofiber sizes and several centrally nucleated regenerat-
ing myofibers. This phenotype is particularly evident in the diaphragm, which presents
progressive degeneration, fibrosis and myofiber loss, resulting in significant strength reduc-
tion, thus closely reproducing the degenerative changes found in DMD muscles [33–35,37].
However, in general, although both mdx and DMD patients are genetically homologous
and united by a complete absence of dystrophin, loss of dystrophin in mdx mice leads
to a less severe phenotype, with minimal clinical symptoms. Indeed, the lifespan of mdx
mice is only reduced by ~25% as compared to wild type (wt) animals, probably due to
the activation of compensatory mechanisms, and/or to a species-specific feature of the
muscle [38,39] and/or to the influence of the animal house environment, which hinders
active movement and may therefore protect muscle from exercise-induced damage [40].
This experience has driven the development of new mouse models showing increased
severity of the phenotype which better recapitulates the disease [33]. Nonetheless, the mdx
mouse is still by far the most widely used animal model for DMD.

Several distinctive phases can be recognized in the pathology development in mdx
mice [34,41]. In the first 2 weeks, even if higher mortality in mdx litters has been described,
mdx muscle is still close to that of wt mice [42]. Muscle pathology becomes more pro-
nounced between 2 and 8 weeks of age, when a clear presence of necrotic areas, newly
regenerated centrally nucleated myofibers and high plasma concentrations of CK can be
observed. In this phase, chronic inflammation, as evidenced by infiltration of inflammatory
cells and high levels of inflammatory cytokines, can be also detected, together with fibrosis
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development [43–45]. However, the severity of fibrosis and loss of function in limb muscles
is less in mdx mice than in human [46–48]. Severe dystrophic phenotypes, such as muscle
loss, scoliosis, and heart failure, become evident in mice 15 months old or older, when a
second robust phase of necrosis is not compensated by a regeneration process [49–54].

4. Effects of Exercise on Plastic Remodeling of mdx Muscle

Healthy striated muscles are characterized by a remarkable plasticity, as they can
adjust the metabolic and contractile status in response to changes in functional demands.
This adaptive remodeling, which plays an essential role in improving muscle performance,
depends on the properties of the stimulus, especially in terms of intensity and duration
of training [6,55]. Exercise intensity is classified accordingly to the physical exertion that
the body uses when performing the activity [56] and is typically measured in metabolic
equivalent task (MET), defined as the rate of energy expenditure at rest [57]. Exercise
Activities with METs below 3 are considered as low intensity, with METs between 3 and 6
as moderate intensity, and with METs higher than 6 as high intensity [58].

Aerobic endurance exercise, characterized by repeated, sustained, low intensity con-
tractions (i.e., long distance running, cycling and swimming) is generally associated to the
switch of muscle fibers towards the type I, slow-twitch and fatigue-resistant [59], while
resistance training, whose intensity is above 75% of the maximal capacity, characterized by
low-frequency, high intensity contractions (i.e., body building and weight lifting), usually
determines, accordingly to the protocol used, an increase in the proportion of type II
fast-twitch myofibers and in force generation via muscle hypertrophy [55,60–62]. Generally,
exercise provides numerous beneficial effects on skeletal muscle. However, since the effects
of exercise engage several molecular and metabolic players, whose pattern of activation
depends on the modalities of training, exercise might be also associated to detrimental
effects in vulnerable DMD muscles, especially in terms of oxidative stress generation and
fiber necrosis [3].

Similar to wt muscles, plastic remodeling of mdx muscle in response to exercise de-
pends on many variables, including modality, intensity and duration of training. In rodent
models, in order to study physiological adaptation associated with exercise, treadmill,
swimming and wheel running exercise modalities have become quite popular [63]. While
wheel running rely upon voluntary exercise, treadmill running and swimming can be con-
trolled according to standardized protocols, especially in terms of duration and intensity
set by the operator, thus allowing the investigator to track changes in the muscle response
in relation to exercise parameters’ modifications. The adaptive remodeling induced by
different typology of exercise in mdx muscles will be discussed in the next paragraphs.

4.1. Effects of Forced Running on Plastic Remodeling of mdx Muscle

Treadmill running represents the most common and effective modality of training
used to investigate the effects of exercise on mouse muscles. Treadmill exercise intensity, ex-
pressed as the speed of running, can be set to low (<12 m/min), moderate (12–15 m/min),
or high (>15 m/min) levels. Regarding exercise duration, although mice can run con-
tinuously for up to 2 h at a time, most studies used a 30–60 min/day training protocol,
with a frequency ranging between 2 and 7 days/week, and a total duration lasting up to
24 weeks. When treadmill running is performed on an inclined platform, according to the
negative or positive slope, it is referred as downhill or uphill running, respectively. Uphill
running determines concentric muscle contraction and increases cardiovascular response,
while downhill running represents a physiologically relevant model of eccentric loading
associated to fiber membrane damage and subsequent metabolic adaptations [64,65]. Both
training are associated muscle-specific increased workload as compared with running on a
horizontal treadmill [8,66–69].

The main plastic remodeling induced by horizontal treadmill and downhill/uphill
running exercise in mdx muscles have been summarized in Appendix A Table A1 and
Appendix A Table A2, respectively. This remodeling modulates muscle performance
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(in term of endurance and strength) and structure (fiber type and muscle volume), the
mechanism of fibrosis, the degeneration/regeneration process, muscle metabolism together
with muscle redox and inflammatory state. These last two parameters will be reviewed
later.

Fibrosis, referred as the process of aberrant replacement of normal muscle tissue with
connective tissue as response of reactive or reparative process, is a prominent pathological
feature of skeletal muscle in patients with DMD, associated with severe muscle wasting and
impairment of the muscle contractile functions and muscle regeneration ability [22,70–72].
Several studies have shown that treadmill exercise can efficiently modulate this process.
Indeed, a low intensity exercise, at a speed of 9 m/min for two months, on a horizontal
platform reduces collagen deposition in limb muscles of mdx mice [73–75]. In addition,
low intensity running induced a strong beneficial effect on the degeneration-regeneration
process of mdx muscle and a shift in favor of regeneration, both in limb muscles and in
diaphragm [76,77], and reduced the percentage of necrotic area in mdx soleus and gastroc-
nemius muscles, while it seemed to exert opposite effects on mdx plantaris muscle [78].
These structural improvements are associated to the enhancement of muscle performances,
such as increased grip strength, tetanic and specific force and resistance to fatigue [79].

On the contrary, higher intensity exercise, in the form of treadmill running at a speed
equal or greater than 12 m/min or downhill/uphill running, independently of train-
ing duration, mostly enhanced collagen deposition and fibrosis area [15,16,80–83], and
determined a series of detrimental effects on mdx muscles. Indeed, this type of exercise aber-
rantly up-regulated the phosphorylated form of extracellular signal-regulated kinase 1/2
(ERK1/2), p38 mitogen-activated protein kinases (p38 MAPK) and c-Jun N-terminal kinases
2 (JNK2), which might play a key role in the degeneration and regeneration process of mdx
muscles [84]. The same type of exercise enhanced Ca2+ influx and sarcolemmal permeabil-
ity [25,85], induced an increase in muscle injury/necrosis area [82,83,86–94], and promoted
sarcoplasm fragmentation, oxidative stress and muscle inflammation [15,82,87,92]. Inter-
estingly, a proteomic analysis revealed that 12 m/min treadmill running for 4 weeks failed
to stimulate the metabolic changes associated to fast-to-slow transition, usually observed
in aerobically trained muscles, decreased the expression of myosin regulatory light chain 2
and enhanced specific protein degradation, thus further reducing the amount of sarcomeres’
proteins in mdx mice [95]. All these molecular and histological changes are associated to
deficit in muscle performances, such as the increase in fatigability and the reduction of
forelimb strength [82,83,85,87,88,90,92,96–99], twitch and tetanic force [86]. In disagree-
ment with all the other data about the effects of running on an inclined platform on muscle
performance, 3 weeks of uphill running at a speed of 4 m/min initiated in three weeks old
mdx mice increased soleus twitch tension and decreased muscle necrosis [100], likely due
to the combination of low speed running and age of exercise initiation.

The equilibrium between degeneration and regeneration depends not only on the
deposition of fibrotic tissue, but also on muscle stem cells functionality. Indeed, satellite
cells impairment and, in particular, exhaustion and loss of stem cell properties seem to
promote failure of the regeneration process and the subsequent degeneration overcom-
ing [101,102]. Accordingly, stem cell-based therapies can represent a promising tool to
induce DMD muscle regeneration [103,104]. Treadmill running seems to influence satellite
cells properties of mdx muscles. Indeed, low speed treadmill running is associated to the in-
crease in the regeneration area and to the reduction of connexin 39 (Cx39), a specific marker
of injured muscle, in hind limb muscles [77], thus indirectly suggesting a beneficial effect of
exercise on muscle stem cells functionality. Accordingly, 4 weeks of noninjurious isometric
strength training, improved mdx phenotype and muscle performance, by inducing fiber
hypertrophy, reducing fibrosis and increasing the number of satellite cells [105]. Further-
more, it has been demonstrated that treadmill running induced a telomere shortening in
limb muscles in wt, but not in mdx mice, thereby suggesting that exercise might efficiently
activate in dystrophic muscles compensatory mechanisms for this process [106], which has
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been hypothesized to contribute to the deficit of regenerative activity by promoting the
premature senescence of satellite cells [107].

Based on the above reported experimental evidences, we can conclude that beneficial
effects on mdx limb muscles induced by horizontal treadmill running exercise depend
primarily on training intensity, being mainly associated to running speed ranging between
4 and 9 m/min. These positive effects, including fibrosis reduction, increased regeneration,
improvement of muscle performances and structure, such as muscle hypertrophy and
fiber type switch, seem to be not influenced by age, since they can be found in mdx mice
4–5 weeks old [108,109], 8 weeks old [74,76,77,110], and up to 20 weeks old [73,75,79], or
by the duration of training, given the persistence of positive effects for exercise duration
ranging between 1 and 6 months. On the contrary, horizontal treadmill exercise at higher
intensity, with speed equal or greater than 12 m/min, or downhill/uphill running, generally
exert detrimental effects on mdx muscles, and are often used to worsen the mdx phenotype
before assessing the efficacy of drug treatment [8,81,82,84,87,92,99].

Interestingly, another key factor that influences exercise outcome is the number of
training sessions. Indeed, while generally chronic exercise is associated to muscle beneficial
effects, a single bout of treadmill running at a speed of 12 m/min or downhill running
induced detrimental effects on mdx limb muscles, by generating membrane breakdown,
myofibers necrosis, inflammation and oxidative stress [87,111–116]. Interestingly and
consistently with mdx data, acute or single bouts of exercise resulted in increased serum
CK activity and circulating myoglobin in DMD patients [117], likely due to the fact that
the beneficial plastic muscle remodeling requires longer time to overwhelm muscle stress
induced by acute exercise. In this context, another critical factor that seems to influence the
outcome of exercise in mdx muscles is the sampling time following exercise. Indeed, it seems
that tissue samples collected immediately after an acute o chronic high intensity treadmill
running protocol is associated to increased damage, oxidative stress and inflammation
as compared to samples collected 24 h or 96 h after the completion of the last training
session [87], which may reflect a muscle adaptive response to exercise-dependent stress
over time.

It is evident that exercise protocol might discordantly affect different muscles in
mdx mice, mainly according to different muscle workload in response to training, and to
specific muscle morphometric features. For example, as general principle, compared to the
diaphragm, mdx limb muscles present larger necrosis area, but reduced fibrosis, following
regeneration [13]. Furthermore, even skeletal limb muscles can differently respond to
exercise, as, for example, low intensity training induced a decrease in gastrocnemius and
soleus muscles necrotic area, while it exerted opposite effects on plantaris mdx muscle [78].

Similar to limb muscles, treadmill intensity strongly influences adaptive remodeling
of cardiac muscle and diaphragm. Indeed, low intensity exercise, at a speed of 4–8 m/min
on a treadmill, besides enhancing cardiac function, improved respiratory capacity [79]
and increased the ratio between diaphragm regeneration and necrosis areas [76] without
worsening cardiac and diaphragmatic fibrosis [79]. Conversely, higher intensity exercise
seems to be associated to deleterious effects and enhancement of fibrotic tissue depo-
sition in cardiac muscle and diaphragm. Indeed, running on a horizontal treadmill at
12 m/min induced a reduction in diaphragm twitch and tetanic tension [86], an increase in
diaphragm necrosis [87] and an increase in cardiac collagen deposition and fibrosis [15].
Uphill running induced upregulation of phosphorylated p38 MAPK, phosphorylated
ERK1/2 and calcineurin, extensive infiltration of inflammatory cells, together with in-
creased interstitial fibrosis and adipose tissue in heart [118]. Similarly, downhill running
increased the expression of Transforming Growth Factor Beta 1 (TGFβ1), a key modu-
latory of fibrosis deposition, on biceps brachii and heart [83], and enhanced diaphragm
necrosis [25,93]. However, in contrast to these data, other papers have rather reported no
detrimental effects to diaphragm muscle associated to running on a horizontal treadmill at
12 m/min [80,92,99].
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Finally, diaphragm response to exercise seems to depend also on the sex of the sub-
jects. Indeed, male mdx mice submitted to a 4-week period of 15–30 min running on a
treadmill at a speed of 6 m/min, showed increased CK levels and inflammatory area as
compared to trained females, suggesting that estrogens, whose receptor expression was
increased following exercise in female mdx mice, may have contributed to the prevention
of increased inflammatory process and diaphragm injury [119]. Accordingly, some inves-
tigations suggest that there are differences between female and male muscles, such as
energy metabolism, fiber type composition, and contractile speed, greatly dependent on
estrogen levels present in females [120]. Interestingly, estrogens may play an important
protective role against muscle damage, by attenuating the inflammatory and oxidative
process [121–123] and/or influencing muscle regeneration [124,125], thus affecting all the
parameters modulated by exercise.

However, a similar protocol of training, consisting in 4 weeks of 30–60 min running
on a treadmill at a speed of 4–4.8 m/min, did not seem to induce detrimental effects
on male mdx diaphragm [76], thus suggesting the need for more specific comparative
studies in order to address the impact of animal sex on training-induced muscle plastic
remodeling. Nonetheless, it is worth emphasizing that the pre-training and the warm-
up phase consisting of progressive increasing in muscle workload (in terms of intensity
and duration of a single session of training) employed by Morici et al. [76] might have
limited exercise-induced detrimental effects associated to diaphragm overload, promoting
gradual plastic remodeling associated to morphological and functional improvement of
male dystrophic muscle [76]. In support to the beneficial role of pre-training, it seems
that even a treadmill exercise at a speed of 12 m/min was able to induce a reduction
of serum CK levels if preceded by a warm-up period and a gradual increase of running
speed [126], which is also responsible for the increased ability of mdx mice to complete a
30 min treadmill exercise session [87].

In conclusion, despite the limited available data on heart and diaphragm plastic
remodeling in response to treadmill running complicate the definition of a reliable overview,
they suggest that, similarly to limb muscles, beneficial effects on these muscles are mostly
associated to low intensity treadmill training.

4.2. Effects of Swimming Exercise on Plastic Remodeling of mdx Muscle

Swimming training, although less extensively used in mice exercise interventions,
presents some advantages compared to treadmill training. Indeed, swimming recruits all
body muscles and ligaments, thus representing an effective form of aerobic endurance
training. On the other hand, swimming represents a quite stressful modality of training,
and requires careful and constant monitoring during the entire experiment to prevent mice
from drowning or floating [67]. Swimming training intensity can be classified, according
to the amount of swimming that takes place each day, as low intensity (20–59 min/day),
moderate intensity (60–89 min/day), and high intensity (≥90 min/day) [67].

The effects of swimming on mdx muscle plastic remodeling have been summarized
in Appendix A Table A3. Swimming, with variable duration up to 10 weeks, seems to
produce adaptation to the functional demand and beneficial effects on mdx limb muscles,
independently on intensity of exercise. Indeed, low intensity swimming for 30 min once a
day, for 4 weeks, increased forelimb grip strength and decreased inflammation [127] and
oxidative stress [128]. Interestingly, swimming exercise protracted for as long as possible,
but never exceeding 25 min of training, once a day, for 10 weeks, exerted no detrimental
effect even on 24 months old mdx mice, and increased relative tetanic tensions [129].
Even a more intense swimming exercise, executed for 2 h once a day for 15 weeks, but
associated to a pre-training protocol, produced beneficial effects on limb muscles, by
reducing muscle fatigability [130] and by increasing the proportion of oxidative fibers and
twitch tension [130,131], confirming the beneficial effects of pre-training on mdx muscle
adaptive response. Surprisingly, low intensity swimming consisting of 30 min bouts of
training per day conducted on 4 consecutive days, seems to rather increase muscle necrosis



Antioxidants 2021, 10, 558 8 of 55

and induce an increase in serum CK [132], maybe due to the short training duration which
might prevent long-term beneficial muscle adaptation to training. Furthermore, a moderate
protocol of swimming for 60 min once a day, for 2 months, produced detrimental effects
on heart and diaphragm, exacerbating muscle degeneration, inflammation, and fibrosis in
11 months old mdx mice [133]. These data suggest that, similar to the effects of treadmill
training, limb muscles, heart and diaphragm do not show the same adaptive remodeling
in response to swimming training. Interestingly, a single 20 min swimming session seems
to be detrimental for mdx muscle by inducing a membrane breakdown in tibialis anterior
muscle [134], thereby confirming that acute exercise is generally associated to deleterious
muscle remodeling.

4.3. Effects of Voluntary Running on Plastic Remodeling of mdx Muscle

Different to forced running, voluntary wheel running allows mice to exercise at a lower
intensity and to freely run. Although this training may generate individual differences in
the amount of exercise among mice, the animals are subjected to a lower stress [67]. The
effects of voluntary running on mdx muscle plastic remodeling have been summarized in
Appendix A Table A4. Voluntary exercise, independently of training duration, seems to
be generally associated to beneficial effects on the functional properties of mdx muscles.
Indeed, short-term (1 week) voluntary wheel running, initiated when mice were 2-4 months
old, by activating calcineurin pathway and modifying the expression program of genes
involved in excitability and slower contractile phenotype, preserved muscle excitability and
improved tibialis anterior muscle fragility in mdx mice, without worsening weakness [135].
Longer periods of voluntary exercise seem to positively affect mdx muscle physiology
as well. For example, 3 weeks of voluntary wheel running in maturing 21 days old
mdx mice was not detrimental and enhanced endurance capacity by inducing molecular
adaptions in both skeletal and cardiac muscle, such as increased total contractile protein
content and markers of aerobic metabolism [136]. Four weeks of voluntary wheel running
initiated when mice were 2 months old, increased cross sectional area and reduced protein
ubiquitination in triceps brachialis muscle [137], while 8–9 weeks of voluntary wheel
running, initiated at the age of 3–4 weeks, improved muscle performance and induced
adaptive response in mdx muscles, such as increased muscle mass in soleus and the
shift of fibers toward a less fatigable phenotype [138,139], without improving the activity
of mitochondrial enzymes of the Krebs cycle, β-oxidation, and the electron transport
chain [138]. This nonadaptive mitochondrial response is unusual considering that adaptive
myosin heavy chain isoform response and the shift from IIb toward IIa fibers typically
occurs together with the enhancement of mitochondrial enzyme activities.

Continuing with the review of positive effects associated to voluntary exercise,
12–18 weeks of low resistance wheel running initiated in 4 weeks old mdx mice led to
increased utrophin, a dystrophin protein homologue that enhances dystrophic muscle func-
tion [140], improved contractile function and reduced fatigability, and increased aerobic
metabolism along with a trend of fiber type transformation toward a slower-contracting
and less fatigable fiber type [141–143]. Beneficial results were also obtained with 12 weeks
of voluntary progressive resistance wheel running, which was able to increase forelimb
muscles performance in 4–5 weeks old mdx mice [144]. Noteworthy, 3 or 11 months of
wheel running seem to exert positive effects on mdx limb muscles even when initiated at
an age of 6 or 7 months, by ameliorating the age-associated loss in tension production
and fatigability [145,146]. Finally, 1 year of voluntary wheel running induced positive
exercise-induced remodeling of limb muscles, such as the increase in the muscle mass and
tetanic force [147].

In addition to this large body of evidence, mostly demonstrating beneficial effects
of voluntary exercise on dystrophic limb muscle, other studies have rather described
detrimental roles associated to this type of training. Indeed, 2–3 weeks of voluntary wheel
running started in 9–12 weeks old mice exacerbated limb mdx phenotype and increased
the amount of damaged necrotic tissue and macrophage infiltration, associated to a more
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pronounced inflammation and fibrosis genes dysregulation [148–150]. Moreover, wheel
running for 8 weeks increased skeletal muscle fibers and endothelial cells apoptosis in
young mdx mice [151], although it remains controversial whether this process is related
to repair/regeneration mechanisms or may contribute to the pathogenesis of muscle
damage [152].

Based on the above reported literature data, it is possible to conclude that voluntary
wheel running seems to be definitely associated to beneficial effects on mdx limb muscles
especially if initiated early, at an age ranging between 1 and 6 weeks, and independently
on the duration of training. On the contrary, under the same conditions of training dura-
tion, a later initiation of voluntary exercise is associated to discordant outcomes, either
beneficial [135,145,146] or detrimental, such as the enhancement of inflammation, necrosis
and fibrosis [148–150,153]. These differences, in addition to be influenced by changes
in the age and the subsequent stage of the dystrophic process, which may affect muscle
regeneration and remodeling ability [154], are likely dependent on the large individual
variations associated to this typology of exercise. Furthermore, as already pointed in
relation to other modalities of training, sex of studied animals and the presence of estrogen
receptors may contribute to the prevention of muscle injury in mdx mice and affect muscle
response to exercise [119]. Accordingly, voluntary activity was not detrimental for mdx
limb and cardiac muscles of either sex but increased absolute maximal force and muscle
weight only in female mice [146].

Independently of age of exercise initiation, another factor that strongly influences
voluntary exercise outcome is the number of training session. Indeed, a single bout of
training seems to be detrimental and induces muscle damage, fiber apoptosis [152,155–157],
and an increase in membrane permeability [157], thereby confirming acute deleterious
effects associate to training.

Like treadmill running and swimming, cardiac and diaphragm muscles, as compared
to limb muscles, need different generalizations. Indeed, for example, while long term wheel
running, initiated when mice were 4 weeks of age, improved cardiac and plantarflexor
function in the mdx mouse, it greatly impaired diaphragm function, likely due to increased
respiratory muscle workload and frequency of eccentric contractions during exercise
training [147]. However, other studies have rather demonstrated that 1 year of wheel
running in young mdx mice increased diaphragm active tension [139], while lifetime wheel
running increased its contraction time [158], thereby decreasing progression of muscular
dystrophy. A large variation in muscle response to voluntary training can be also observed
in cardiac muscle. For example, 12 weeks of low resistance wheel running initiated in
4 weeks old mdx mice led to the increase in heart mass [141], while a similar protocol of
training in age-matched mdx mice did not seem to produce variation in cardiac relative
mass [144]. Furthermore, 3 or 8 weeks of voluntary wheel running did not exacerbate
heart mdx phenotype in aged [159] and maturing mdx mice [136], respectively, and, in
the latter case, enhanced the expressions of aerobic metabolism markers, such as citrate
synthase (CS) and β-hydroxyacyl-CoA dehydrogenase activities [136]. On the contrary, 4 to
4.5 months of voluntary wheel running, initiated when mice were 4–5 weeks old, reduced
left ventricular function [143]. Finally, 4 weeks of voluntary wheel running accelerated the
progression of ventricular dilation and fibrosis in 7 weeks old mdx mice [160], while a longer
training period in 7 months old mice, did not affect left ventricular function, structural heart
dimensions, cardiac gene expression of inflammation, fibrosis, or remodeling markers [146].

In conclusion, although experimental evidence has demonstrated muscle beneficial
effects induced by voluntary exercise, especially in limb muscles, the large individual
variation in terms of effective muscle load associated to this modality of training impedes a
clear correlation between exercise and observed effects and hinders an exercise protocol
standardization [67,148], thus suggesting that this modality of training might not represent
the most efficient therapeutic approach for DMD patients.
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5. Mitochondria Impairment and Redox Equilibrium in DMD Muscles

Loss of dystrophin in DMD muscles generates a systemic metabolic impairment,
which is a key contributor to the etiology of the disease. Indeed, DMD is characterized
by a significant dysregulation of intracellular Ca2+ homeostasis and by a deficiency in
glycolysis, purine nucleotide, and tricarboxylic acid cycle, as well as in oxidative phosphory-
lation [161–169], which result in bioenergetic impairment and reduced ATP levels [170,171].
This, in turn, leads to the impairment of muscle contraction and, ultimately, to cell necrosis.

Muscle necrosis is closely associated with increased inflammation and oxidative
stress [172], and both these processes can be efficiently modulated by exercise.

Oxidative stress is a cell condition caused by an excess of intracellular free radicals,
such as reactive oxygen species (ROS) and radical nitrogen species (RNS). Normally, the
levels of free radicals inside the muscle fibers are strictly balanced by controlling the rate
of their synthesis and removal by antioxidants defenses. Usually ROS are physiologically
produced at low amount in healthy cells and an accurate and well organized control of
their levels guarantees the maintenance of physiological cell functions involving ROS
as cell signaling molecules, i.e., control of gene expression, regulation of cell signaling
pathways and modulation of skeletal muscle force production [173–175]. On the other
hand, excessive ROS/RNS production and/or defects of antioxidant systems may impair
the cellular redox balance, inducing oxidative stress in cells, subsequent damage to biologic
macromolecules, and cell death [176,177].

A large body of evidence shows that oxidative stress, driven by free radicals produced
in damaged myofibers or released by inflammatory infiltrating cells, represents a key
pathogenic event in DMD [18,172,178–181]. Accordingly, antioxidant drugs (coenzyme
Q10, green tea extracts, resveratrol, N-acetylcysteine), although with several caveats, are
considered a promising treatment strategy in muscular dystrophy [182,183]. The promi-
nent role of oxidative stress in the pathology has been suggested quite early by observing
that muscles from DMD patients showed higher level of lipid peroxidation and enhanced
antioxidant enzymes activity [184]. In general, abnormal enzymatic antioxidant responses
and increased levels of oxidant molecules and markers of oxidative damage to macro-
molecules, such as 8-hydroxy-2′-deoxyguanosine, oxidized proteins, and lipids, have been
found in DMD muscles and blood [185–189]. Interestingly, the extent of oxidative damage
further increased with pathology progression and aging of affected subjects [189].

Mitochondria represent a crucial site of ROS production, and impairment of mito-
chondrial respiration strongly contributes to DMD pathogenesis in both patients and
animal models [164,190,191]. Specifically, DMD-induced perturbation of intracellular Ca2+

homeostasis, metabolism and ATP production seems to be bidirectionally associated with
mitochondria impairment [165,179,190]. Under physiological conditions, the mitochon-
drial electron transport chain transfers a single electron to molecular oxygen leading to the
synthesis of ATP and superoxide ions that can be neutralized by antioxidant systems [192].
Loss of dystrophin in DMD induces destabilization of cell membrane and disruption of
cytoskeleton organization, and the subsequent abnormal Ca2+ influx, which activates
proteases and leads to mitochondrial Ca2+ overload and dysfunction [193,194]. Specifi-
cally, Ca2+ overload triggers mitochondrial permeability transition pore (PTP) opening,
alteration in mitochondrial membrane potential and swelling of the organelles, ROS over-
production, and oxidative stress generation, which result in the subsequent exacerbation of
mitochondrial dysfunction that further impairs cell bioenergetics, Ca2+ homeostasis and
cell viability [185,195,196]. In other words, loss of dystrophin generates a feed-forward
loop in which mitochondria impairment induces muscle ROS increase and oxidative stress,
which further compromise mitochondria functions, leading to even greater production of
ROS and muscle necrosis [197]. Furthermore, monoamine oxidase (MAO), a mitochondria
enzyme catalyzing the oxidative deamination of biogenic amines to generate H2O2, is in-
creased in mdx muscles [198], contributing to the overall oxidative imbalance by generating
higher levels of H2O2, which in turn alter the redox homeostasis and causes myofibrillar
protein oxidation, muscle damage and impairment of contractile function [198]. In addition



Antioxidants 2021, 10, 558 11 of 55

to the alteration in mitochondria enzymatic activity, reduced density of sub-sarcolemmal
mitochondria and abnormal localization of inter-myofibrillar mitochondria contribute to
the overall mitochondria dysfunction in mdx mice [191]. Notable, elevated levels of mito-
chondria H2O2 in mdx mice, due to impaired oxidative phosphorylation, aberrant MAO
expression and activity and altered mitochondria biogenesis and dynamics, occur very
early in the disease process in 4 weeks old mice, before the onset of the disease and myofiber
necrosis, and are associated with the induction of mitochondrial-linked caspase 9, necrosis,
and severe myopathy in skeletal muscles and diaphragm [166,199,200]. These pieces of
evidence indicate that mitochondria dysfunction is likely involved in the initial phases of
pathology, being an essential contributor to DMD pathogenesis [178]. Accordingly, genetic
or pharmacological overexpression of Peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1α), a master regulator of mitochondria functions, ameliorates
mdx mice phenotype [201–203].

Besides mitochondria, NADPH oxidase (NOX), phospholipase A2 (PLA2), and xan-
thine oxidase (XO) are other important muscle sources of ROS in DMD. NOX enzymes trans-
port electrons across biological membranes to reduce oxygen to superoxide or
H2O2 [204,205]. Skeletal muscles express three isoforms of NOX (NOX1, NOX2, and
NOX4) that have been described as key regulators of redox homeostasis [206,207]. In partic-
ular, NOX2 represents the major source of skeletal muscle ROS during contractions, while
NOX4 is mostly involved in skeletal muscle hypertrophy induced by muscle overload [206].
Indeed, muscle contraction induces the association of NOX2 regulatory subunits, leading
to its activation and the subsequent ROS generation [208]. NOX2 is also involved in the
regulation of excitation-contraction coupling, since moderate levels of superoxide anion
produced by its activity in the sarcoplasmic reticulum (SR) can activate ryanodine recep-
tors and regulate the proper release of calcium from intracellular stores [209,210]. PLA2
stimulates NOX activity [211] and cleaves arachidonic acid, a lipoxygenases substrate for
ROS production, from phospholipids contained in membranes, both in resting conditions
and during contraction [212]. XO is a cytosolic enzyme that catalyzes the hydroxylation of
hypoxanthine to xanthine and of xanthine to uric acid, generating ROS [213]. Several pieces
of evidence have demonstrated a large enhancement of NOX-dependent ROS production
in dystrophin-deficient heart and skeletal muscle [214], together with a hyper-activation
of XO enzyme [215]. Accordingly, pharmacological inhibition of NOX and XO activity
significantly ameliorated mdx muscle function by protecting from tissue damage and
inflammation [215,216].

Importantly, membrane damage during DMD and subsequent muscle necrosis activate
resident mast cells, which in turn secrete inflammatory mediators to recruit circulating
inflammatory cells from the surrounding vasculature, like neutrophils and macrophages,
which contribute to ROS generation to promote phagocytosis [217]. However, the chronic
inflammatory state of DMD muscle leads to excessive ROS generation, oxidative stress
exacerbation and to secondary damage of previously uninjured fibers [218,219].

In summary, inflammatory cells, mitochondria, NOX, and XO are the main sources of
ROS in DMD [219,220]. Although mitochondria in muscle fibers have traditionally been
considered the major intracellular generator of ROS, many recent evidences have suggested
NOXs as the most significant source in DMD muscles, especially during contractions,
since the increase in cytosolic ROS is quicker and greater than the rise in mitochondrial
ROS [207,219,221]. In support to this thesis, pharmacologic o genetic blockade of NOX
activity inhibits or attenuates contraction-induced increase in ROS [222–224].

In order to counteract the excessive increase in radicals and oxidative stress, muscle
cells arrange enzymatic and non-enzymatic defenses. The primary enzymes in cells are
represented by superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase.
Other antioxidant enzymes, such as peroxiredoxins, glutaredoxins, and thioredoxin re-
ductases, and non-enzymatic antioxidants (e.g., glutathione, uric acid, and bilirubin) also
contribute to cellular protection against oxidation [225]. SODs catalyze the dismutation of
superoxide in molecular oxygen and hydrogen peroxide [226], which, in turn, is converted
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into water by catalase or GPX. Three isoforms of SOD (SOD1, SOD2, and SOD3) were
identified in mammalian cells. SOD1, which uses copper-zinc as a cofactor, is mainly
located in the cytosol. SOD2 requires manganese as a cofactor and is localized in the
mitochondria, while SOD3, which contains copper-zinc as a cofactor, is mainly located
in the extracellular space [174]. In skeletal muscle fibers, SOD isoforms are involved in
contraction of myogenic fibre [219] and their activity is greatly dependent on muscle fiber
type and modality of exercise. Specifically, slow twitch and Type IIa fibers have higher
levels of SOD2 and SOD1 than Type IIb and IIx fibers [226,227].

Similar to SOD, Activity of GPX and catalase changes according to fiber types, being
highest in skeletal muscles composed of highly oxidative fibers compared to fibers with
lower mitochondrial content [174,175]. Interestingly, muscles from mdx mice exhibit in-
creased expression of antioxidant enzymes, such as SOD1, SOD2, GPX, and catalase, in the
pre-necrotic state, indicative of a cellular response to oxidative stress [178,219], although
other studies have provided contrasting results about the levels of antioxidant enzyme
activities in dystrophin-deficient muscle, likely due to the different stage progression of the
pathology [184,228–230]. On the contrary, decreased levels of glutathione, accompanied
by a concomitant increase in the activity of glutathione metabolizing enzymes (GPX and
glutathione reductase), have been detected in DMD muscles, contributing to the generation
of oxidative stress in these muscles [181,231].

Finally, the overall control of fibers redox state is also dependent on SR and on its
role in protein-folding homeostasis [232,233]. Indeed, the accumulation of unfolded or
misfolded proteins within the SR leads to SR stress and to the activation of an adaptive
complex intracellular signal transduction pathway aimed to resolve protein misfolding
and re-establish SR proteostasis through autophagy and enhancement of nuclear factor E2-
related factor 2 (Nrf2)-dependent gene transcription [17,234,235], involved in mitochondrial
biogenesis [236] and in the upregulation of antioxidant enzymes in response to oxidative
stress [237,238]. However, depending on the severity of SR stress, activation of alternative
pathways can even enhance ROS production, leading to further oxidative stress, and,
eventually, apoptosis [239]. It has been reported that skeletal muscles in mdx mice are
more susceptible to oxidative stress compared to those of wt animals [240], and that this
difference might be, at least in part, attributed to the deregulation of Nrf2 signaling in
mdx muscles [241]. Furthermore, SR stress markers, such as caspase-12, are increased in
dystrophic muscle of mdx mice and DMD patients, suggesting that dystrophin deficiency
leads to disruption of muscle SR homeostasis, which contributes to the worsening of
oxidative stress, inflammation and DMD phenotype [242]. Accordingly, SR stress inhibitors
restore mitochondria functions, mitochondrial Ca2+ uptake, and improve contractility of
the diaphragm in mdx mice [243].

6. Exercise Modulation of mdx Muscle Oxidative Stress and Inflammation

It is known that muscle cells can generate ROS in resting conditions, and even more
during exercise [244,245]. Indeed, during exercise, the increased energy demand leads to
the boost in mitochondrial activity and oxygen consumption and subsequent muscle ROS
generation [212]. The exercise-induced increase in ROS levels is essential to modulate mus-
cle adaptation and force production, and exerts beneficial or detrimental effects according
to ROS concentration, which mostly depends on duration and intensity of exposure and
training status of the subject [174,205,245].

Usually, endurance training produces low concentrations of ROS, which in turn in-
duce the expression of antioxidant enzymes and other defense mechanisms [226,246] and
beneficial muscle adaptations [247,248]. Noteworthy, the beneficial effects of exercise are
inhibited by administration of antioxidant compounds, such as vitamin C and E [249–251]
thus suggesting that ROS, at moderate levels, act as critical signals in exercise promoting
useful plastic adaptations in muscle. Endurance training compensates also for the decrease,
during aging, PGC-1α pathway [252], the master transcriptional coactivator involved in
the regulation of mitochondrial biogenesis and metabolism. Specifically, exercise-induced
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PGC-1α expression strongly improves the control of energy metabolism by promoting
mitochondrial oxidative metabolism and mitochondrial biogenesis, protects against de-
velopment of sarcopenia, muscle oxidative stress, and inflammation, and drives angio-
genesis [203,253]. In addition, exercise, by activating several interconnected intracellular
signaling, including PGC-1α and AMP-activated protein kinase (AMPK) pathways, in aged
muscles, ameliorates mitochondrial quality by altering mitochondrial dynamics [254–256]
and promoting mitophagy of damaged or dysfunctional mitochondria [257,258]. All the
above mentioned processes contribute to guarantee muscle mass and strength preservation
in senior sportsmen compared to age-matched sedentary subjects [259]. These beneficial
effects of exercise on aged muscles strongly support the potential positive effect of low
intensity training on DMD patients, which show progressive muscle weakness and deterio-
ration with age [1,54]. Indeed, although the shorter longevity, DMD muscles share several
features with aged muscles, such as increased oxidative stress, fibrosis, sarcopenia, altered
properties of satellite cells and impaired regeneration [260], which might be efficiently
compensated by low intensity training. Accordingly, increasing, for example, PGC-1α
expression (by exercise, pharmacologic agents, genetic manipulation, etc.) exerts beneficial
effects on aged muscles as well as on DMD muscles [203,261].

In order to regulate the overall muscle redox state, exercise can also influence activity
and expression of antioxidants systems. In details, regular/moderate exercise enhances
antioxidant defenses by inducing the activity of endogenous antioxidant enzymes such as
SOD, GPX and catalase [262,263]. Moderate exercise, indeed, promotes the activation of
Mitogen-activated protein kinase (MAPK) pathway, which in turn increases the expression
of antioxidant enzymes, thus counteracting excessive ROS generation and stimulating
adaptation to exercise [264]. Specifically, although some studies reported that prolonged
endurance exercise training does not enhance muscle SOD activity [225,246], most investi-
gations have shown that endurance exercise increases SOD muscle activity [227,265–269]
proportionally to the intensity and duration of exercise [227,267]. Specifically, endurance
training, or moderate exercise, seem to primarily induce the enhancement of SOD2 protein
and activity in type IIa fibers [226,246,270,271], even if several reports have also described
SOD1 activation [272]. More recently, the increased expression of SOD3 mRNA has been
also reported in skeletal muscle after acute exercise [273].

While is still controversial whether catalase expression in skeletal muscle is enhanced
by chronic exercise [225,227,268], GPX, similarly to SOD, is strongly increased in muscle
fibers during training [246,265,274–277], according to both intensity and duration of exer-
cise. Specifically, high intensity exercise induces a greater increase in muscle GPX activity
if compared to low intensity exercise [227].

Similarly to wt muscle, low intensity exercise seems to be able to counteract oxidative
stress in mdx muscles. Indeed, 6 months of low intensity treadmill running increased PGC-
1α expression in mdx cardiac muscle [79], which acts as a central inducer of mitochondrial
biogenesis and a primary regulator of redox balance inside contracting muscle [253,278].
8 weeks of low intensity treadmill running, at a speed of 9 m/min, started when mice
were 4 weeks old, reversed lipid and protein oxidation in the gastrocnemius of mdx
mice [108,109], increased the antioxidant activity of glutathione, free thiols concentrations
and reversed the changes in mitochondrial respiratory chain complex activity associated to
the disease, thus improving energy metabolism [108]. The same exercise protocol, started
when mice were 11 weeks old, although associated with higher levels of lipid peroxidation
and protein carbonylation in the tibial anterior and gastrocnemius muscles, was also able
to enhance SOD activity and total antioxidant capacity [73]. These observations suggest
that the exercise-dependent increase in antioxidant enzymes is not sufficient to reverse
oxidative damage to macromolecules, likely due to the age of treatment initiation, but can
sustain the attenuation of intramuscular collagen fibers deposition [73], which occurs in
mdx mice after the tenth week of age [8]. A modulation of antioxidant defenses was also
observed following 30 days of low intensity endurance exercise on rotating treadmill, which
produced an increase in quadriceps SOD1 levels [110]. In agreement with the beneficial
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effects associated to exercise and dependent on the up-regulation of antioxidant systems,
the catalytic mimetic of SOD and catalase or catalase overexpression have been shown to
reduce muscle damage and markers of oxidative stress [279] and ameliorate functions of
skeletal muscles in mdx mice [280].

Different protocols of low intensity training, such as 30 min of swimming per day for
4 weeks, corroborated the positive effects of training on mdx oxidative stress, showing a
decrease in protein carbonylation in the gastrocnemius muscle when compared with the
non-exercised mdx group [128]. The only exception to positive effect associated to low
intensity training is represented by the study of Faist et al., in which running on a treadmill
at a speed of 8 m/min, even in presence of a pre-training, decreased oxygen consumption,
respiratory control indices and GPX activity and increased lipid peroxidation in young
(4 weeks) mdx muscle [281]. Surprisingly, no effects or even opposite effects were obtained
by the same protocol of exercise in adult (16 weeks), suggesting that young mdx muscle
is more vulnerable to exercise-induced to oxidative stress as compared to adult muscle,
likely due to the higher degree of regenerating fibers in adult mdx mice [281]. However,
as already described, other studies have shown beneficial effects associated to a similar
protocol of exercise in young mdx mice [108,109], thus suggesting the need for further
investigations finalized at a more reliable standardization of a training protocol associated
to a reduction of DMD muscle oxidative stress.

The role of voluntary exercise on mdx oxidative stress regulation is controversial. On
one hand, 7 weeks of voluntary run in 6 to 7 weeks old mdx mice enhanced autophagy and
reversed the oxidative phenotype by counteracting the decrease of PGC1-α content [282],
whose increased activation has been shown to ameliorate DMD pathology [202,283]. On the
other hand, the same protocol of exercise, performed by age-matched mdx mice, increased
oxidized glutathione and protein carbonyl levels in gastrocnemius, without increasing
ER stress [284]. One week of voluntary wheel running promoted the slower contractile
phenotype switch in tibialis anterior muscle of 2–4 months old mdx mice and up-regulated
the expression of Mitochondrial transcription factor A (Tfam), Nuclear respiratory factor 1
(Nrf1), and peroxisome-proliferator-activated receptor-gamma co-activator 1 beta (PGC1-
β) [135], which are important regulators of the oxidative metabolism [285,286]. Three weeks
of voluntary wheel running in 21 days old mdx mice increased serum antioxidant capacity
and markers of oxidative metabolism, such as CS and β-oxidation activity, necessary to
determine metabolic adaptations to endurance exercise, in both quadriceps and heart
muscles [136]. Similar metabolic modifications were also observed in the gastrocnemius of
4 weeks old mdx mice submitted to 12 weeks of voluntary wheel running together with the
up-regulation in cytochrome c oxidase subunit 4 levels and a trend PGC-1α increase [141],
which suggest enhanced mitochondria metabolism and biogenesis in response to training.
However, given the limited amount of available data and the large variability associated to
voluntary training, further studies are necessary to clarify the role of this type of exercise
on mdx oxidative stress.

In healthy muscle cells, when ROS amount reaches a maximum peak, the linear re-
lationship between ROS and muscle generated force fails and a further increase in ROS
induces a strong reduction in the force and muscle oxidative damage, such as protein
carbonylation, DNA damage, and RNA oxidation [287]. Usually, oxidative damage and
inflammatory processes in active myofibers are associated to prolonged and intense exer-
cise [288–290]. One of the main mechanism involved in oxidative damage to muscle fibers
following strenuous exercise, which is associated to ROS production, proinflammatory cy-
tokines and increased Nuclear factor-kB (NF-kB) activation, is the impairment of pathways
involved in maintaining mitochondrial integrity and morphology [291,292]. Moreover,
excessive ROS production is associated with the impairment of PGC-1α pathway and
alters calcium homeostasis, leading to aberrant NF-kB transcriptional activity, activation of
proteolytic systems and muscle wasting [293]. Finally, during intense prolonged exercise,
XO activity is significantly increased leading to the excessive ROS generation, oxidative
stress and muscle damage [294], while a single session of exhaustive exercise is able to
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determine oxidative damage only in untrained persons or senescent muscle, due to a higher
vulnerability to oxidative stress [295]. In addition to these intracellular sources, ROS can
also be produced from non-muscle sources during training, especially by immune cells
activated by exercise-elicited muscle injuries [296,297], and by oxidation of catecholamines,
whose plasmatic concentrations increase in response to exercise [298].

Similar to wt muscle, high intensity exercise is mostly associated to worsening of mdx
phenotype and muscle redox status. Indeed, acute downhill treadmill running at a speed
of 15 m/min caused significant increases of XO activity and the subsequent systemic ROS
generation as indicated by elevated urinary isoxanthopterin in mdx mice [215]. Four weeks
of moderate intensity treadmill running at 12 m/min speed increased ROS [92] and oxi-
dized glutathione levels [15], and further worsened calcium homeostasis and sarcolemmal
permeability [85]. Similarly, 6 weeks of the same protocol of exercise increased protein
thiol oxidation [111], which was also significantly enhanced even after a single treadmill
session [87]. Finally, 12 weeks of treadmill running at 12 m/min induced a significant
reduction in PGC-1α expression, accompanied by a marked downregulation of Sirtuin 1
(Sirt1) and Peroxisome proliferator-activated receptor γ (Pparγ) [88], which play key roles
in exercise-induced adaptation, via stimulation of the fast-to-slow transition, mitochondrial
biogenesis and cellular antioxidant response [283,299]. The same exercise is associated also
to a reduction of the autophagy marker BCL2 Interacting Protein 3 (Bnip3) [88]. Interest-
ingly, a single session of the same protocol of exercise executed by 16 weeks mdx mice did
not influence the expression of PGC-1α, Sirt1 and Pparγ [88], in contrast to all the other
data on muscle plastic remodeling demonstrating mostly detrimental effects associated to
acute exercise [87,111–116,134,152,157].

It is well known that inflammation process is strictly linked to oxidative stress. Indeed,
oxidant species can mediate activation of NF-kB [300] which in turn regulates the expression
of genes involved in the inflammatory and stress response [301]. Conversely, inflammation
leads to immune cells infiltration in damaged muscled, which in turn determine the release
of free radicals, generation of oxidative stress and chronic inflammation, thereby forming a
self-propelled vicious cycle [302].

Inflammation is an early event in the pathological process of DMD, closely associ-
ated with myonecrosis, already evident in 3–4 weeks old mdx mice [303]. Indeed, loss of
dystrophin leads to a fragility of plasma membrane that is easily injured during muscle
contraction, inducing extracellular calcium influx, which in turn activates the NF-kB inflam-
matory pathway and enhance inflammatory cytokine release, e.g., Tumor Necrosis Factor
α (TNFα) and Interleukin (IL)-1β, which further impair muscle regeneration [304]. Hence,
activation of NF-kB is an important mediator of muscle damage and DMD pathology
in both humans [305] and mdx mice [303,305,306]. Accordingly, calcium influx is suffi-
cient to induce muscular dystrophy [307], while genetic ablation [306] or pharmacological
blockade [305,308,309] of NF-kB alleviate the severity of the disease and improves muscle
phenotype of mdx mice. Glucocorticoid therapy interferes with inflammatory processes
related to the pathology and mitigates elevation of NF-kB and oxidative stress, determin-
ing the subsequent reduction of fiber damage and the enhancement of muscle functional
properties [151,310]. However, this treatment is associated to severe side effects such as
weight gain, behavioral changes, growth issue, late puberty, bone demineralization, and
gastroesophageal reflux, and can only slow down disease progression [26–28,311].

Interestingly, emerging evidence described the beneficial effects induced by exercise
on mdx inflammatory processes. In details, low intensity swimming training decreased
Monocyte chemoattractant protein-1 (a chemoattracting agent playing a crucial role in
the coordination of the inflammatory response) levels and, although increased CD68+

macrophage numbers, shifted the macrophage population from to M1 pro-inflammatory
type to the regenerative M2 type, thus inducing a modulation of inflammatory state of gas-
trocnemius, a switch of fibers to the oxidative slow type and a grip strength increase [127].
A low intensity running exercise on treadmill, preceded by a pre-training, exerted anti-
inflammatory effects on mdx quadriceps muscles by reducing NF-kB expression [76] and
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increased serum adiponectin, which shows anti-inflammatory properties as well as modu-
latory effects on oxidative stress [79].

On the contrary, acute or chronic treadmill running at higher intensity (12 m/min
speed) or downhill/uphill running generally worsened the inflammatory status of mdx
mice [98], leading to increased infiltration of inflammatory cells [90,118] and expression for
pro-inflammatory cytokines IL-1β, IL-6 [87], and TGFβ1 [81–83], and decreased expression
of protective factors such as insulin-like growth factor 1 [89], PGC-1α and Pparγ [88],
which exert anti-inflammatory actions by inhibition of NF-kB [299,312]. Moderate exercise,
even in the swimming modality, is also associated to the worsening of inflammatory status,
leading to the increase of inflammatory cells in cardiac muscle of 11 months old mdx male
mice [133]. Increased inflammation and macrophages number were also observed after
3 weeks of voluntary running initiated when mice were 9 weeks old [149].

In summary, although the few available data prevent definitive conclusions, low
intensity exercise and voluntary wheel running, with only few exceptions, besides improv-
ing structural and metabolic adaptions to exercise, seem to reverse oxidative stress and
inflammation associated to DMD pathology, while higher intensity exercise worsens these
processes. This conclusion mostly applies to limb muscles, whereas few data are available
for cardiac and diaphragm muscles. The lack of an adequate amount of experimental data
affects also the evaluation of mdx redox and inflammatory muscle state after acute training,
which is usually associated to the worsening of mdx phenotype.

In addition to training modality, duration, intensity, and frequency as major deter-
minants of muscle adaptation to exercise, other parameters, including age, sex, training
status of the animal and time point of sacrifice following exercise, may strongly affect mdx
muscle response to exercise. Age of exercise initiation represents a key factor in influencing
muscle plastic remodeling, in both healthy and diseased subjects. DMD is a progressive
chronic muscle degenerative disorder, whose symptomatology worsens with age [5]. Con-
sequently, timing of therapy initiation, including exercise, can strongly affect the severity of
clinical outcome. Accordingly, voluntary exercise is mostly associated to beneficial effects
if initiated in mdx mice not older than 6 weeks.

DMD mainly affects boys, although female symptomatic carriers, with a different
severity of DMD phenotypes, have been frequently described [313,314]. Gender, and the
related hormonal variations, may greatly influence muscle physiology [315,316], disease
progression and therapeutic outcome, even in response to exercise. Accordingly, female
gender is associated to muscle beneficial effects in response to exercise [146] and seems to
protect diaphragm from exercise-induced damage [119].

Training status of the subject, and the presence of a pre-training period and a warm-up
phase associated to the main protocol of exercise, by limiting exercise-induced detrimental
effects associated to sudden muscle overload, represent another key factor influencing
muscle plastic remodeling in response to exercise. Indeed, pre-training and warm up, by
inducing gradual metabolic adaptation to exercise and increased blood flow and tempera-
ture into the involved muscles, can decrease the risk of muscle injuries, as well as reduce
heavy loads on the heart, which can occur when high intensity exercises are suddenly
applied [317]. Accordingly, the presence of a pre-training phase seems to contribute to
the enhancement of mdx muscle performance [87] and to preserve mdx muscles from high
intensity exercise-induced damage [126,130,131].

Finally, the time of muscle sampling following exercise seems to influence the results
of post-mortem analysis. Indeed, a later sampling following the last session of exercise
is associated to decreased muscle damage and oxidative stress as compared to samples
collected immediately after the last training session [87,113], likely due to the activation of
muscle compensatory and adaptive response to exercise-dependent stress, including the
activation of muscle regeneration and antioxidant defense.

The investigation of the burden and the combination of all these parameters, not
enough explored in comparative studies, may strongly contribute to explain the differ-
ences in mdx response to similar protocols of training and to a better understanding of
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pathways involved in DMD pathophysiology, as well as testing of therapeutics hypotheses,
including exercise.

7. Conclusions and Future Perspectives

Our comparative analysis of the existing literature clearly suggests that physical
exercise, by inducing beneficial muscle plastic adaptations, represents a potential not
invasive therapeutic approach for improving DMD patient outcomes and quality of life.

Specifically, chronic low intensity treadmill running, at a speed less than or equal to 9
m/min, might represent the most suitable exercise modality associated to beneficial effects
on mdx muscle, especially hind limb muscles. This typology of exercise is mostly associated
to the improvement of mdx phenotype, including the reduction of muscle oxidative stress,
inflammation and fibrosis process, and the increase in muscle functionality (force, fatigue
resistance), muscle regeneration and hypertrophy (Appendix A Table A5 and Figure 2). In
addition, this modality of training generates reproducible results that seem to be little or
not influenced by other variables, such as duration of training and age of subjects, which,
on the contrary, appear to affect the outcomes of voluntary exercise, per se associated to
larger individual variability.

Figure 2. Effects of low intensity treadmill running on mdx muscle pathological changes. Exercise
can reverse: (a) Inflammatory response, by inducing a shift of macrophage population from to M1
pro-inflammatory type to the regenerative M2 type, and by modulating inflammatory pathways
and molecules, including NF-kB (Nuclear factor-kB), CCL2 (Monocyte chemoattractant protein-1),
Adiponectin and PGC-1α (Peroxisome proliferator-activated receptor gamma coactivator 1-alpha);
(b) Fibrosis, by reducing collagen deposition; (c) Muscle degeneration, likely by activating satellite
cells; (d) Oxidative stress and metabolic impairment, and the related mitochondria and SR (sar-
coplasmic reticulum) stress, NOX (NADPH oxidase) and XO (xanthine oxidase) hyperactivation, by
inducing activation of antioxidants, mitochondria metabolism and PGC-1α pathway. Created with
BioRender.com.

However, when considering exercise as a therapy for DMD patients, it is essential to
take into account the overall effect on patients and particularly to heart and respiratory
muscles, whose failure is typically responsible of DMD patient death. Accordingly, an
exercise protocol that protects or improves limb muscle function while impairing respira-

BioRender.com
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tory or cardiac function provides no or little therapeutic benefit to DMD patients. With
respect to this key point, our analysis highlights the huge necessity for conducting new
studies to deeply assess the benefits of exercise on all mdx muscles, including heart and
diaphragm, whose functionality is poorly investigated in preclinical research. Moreover,
we have shown that differences in the age, sex and training status of animals, time point
of sacrifice following exercise, number of training sessions, exercise modality, intensity
and frequency, might affect mdx muscle response to exercise, thereby pointing out the
importance of new comparative studies finalized to investigate the burden of all these
variables on muscle functional response to training. Given the ethical and practical issues
of determining exercise prescription for DMD patients, these studies should be conducted
first in dystrophic animals in order to determine functional thresholds to maximize the
benefits of training and minimize the potential for exacerbating muscle injury.

These preclinical data can guide the design of appropriate studies on DMD patients.
The main limitations in translational therapeutic application of mdx results to humans
are the differences in phenotypic expression and biomechanics between humans and
genetically homologous animal models. However, several studies performed in DMD
patients seems to corroborate our conclusions, suggesting that submaximal low intensity
exercise may be beneficial, especially if performed early in the course of the disease, while
eccentric high intensity exercise is mostly associated to muscle injury.
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Appendix A

Table A1. Effects of treadmill running on mdx mouse muscles.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Faist, V.,
et al. (2001)

[281]

4 weeks
(young mice)

16 weeks
(adult mice)

Pre-training + LIT
Pre-training:

4 to 8.3 m/min,
2 × 5 to 2 × 30

min/day, 8 days
Training:

8.3 m/min,
2 × 30 min/day,

6 weeks

Femoris
GAST
QUAD

Young mice:
= body weight

Adult mice:
= body weight

Young mice:
↑ CK

Adult mice:
= CK

Young mice:
↓ oxygen

consumption
↓ RCI

= pADP/OC
Adult mice:
↑ oxygen

consumption
= RCI

= pADP/OC

Young mice:
↑ TBARS
↑ Lipofuscin

= peroxyl radicals
↓ GSH

= SOD activity
= α-tocopherol

Adult mice:
= TBARS

= Lipofuscin
= peroxyl radicals

= GSH
= SOD activity
= α-tocopherol

(−) Young
(±) Adult

Fernandes,
D.C., et al.

(2019)
[73]

11 weeks

LIT
9 m/min,

30 min/ day,
3 days/week,

60 days

GAST
TA

↓ collagen
fiber area

↑ TBARS
↑ carbonylated

protein in GAST
and TA

↑ SOD activity
↑ FRAP activity

in TA

(±)

Fontana, S.,
et al. (2015)

[110]
Male

8 weeks

Pre-training + LIT
Pre-training:
3.2 m/min,

15 to 30 min/day,
5 days/week,

2 weeks.
Training: workload

progressive
increase,

4 to 4.8 m/min,
30 to 60 min/day,

5 days/week,
4 weeks

QUAD ↑ SOD1
↓ CA3 (+)
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Table A1. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Frinchi, M.,
et al. (2013)

[77]
Male

8 weeks

Pre-training + LIT
Pre-training:
3.2 m/min,

15 to 30 min/day,
5 days/week,

2 weeks.
Training: workload

progressive
increase,

4 to 4.8 m/min,
30 to 60 min/day,

5 days/week,
4 weeks

GAST
QUAD

↓
degenerative

myofibers
↓ Cx39

(+)

Gaiad, T.P.,
et al. (2017)

[74]
Male

8 weeks

Pre-training + LIT
Pre-training: Speed

progressive
increase.

Training: 9 m/min,
30 min/day, 3

days/
week, 60 days

TA = CLN

↓ fibrosis
deposition

(↑ Col 3
and

= Col 1)

(+)

Hermes,
T.A., et al.

(2018)
[119]

Male and
female

2 months

LIT
6 m/min,

15 to 30 min/day,
2 days/week,

4 weeks

DIA
↑ CK (in
males)
= CNF

↑ inflam-
matory
area (in
males)

(−) males
(±) females

Hoepers,
A., et al.
(2020)
[108]

Male
28 days

Pre-training + LIT
Pre-training:

7 days, 4 m/min.
Training:

6 and 9 m/min,
30 min/day,

2 days/week,
8 weeks

GAST
↓ activity of
complex II,
II-III and IV

↓ lipid
peroxidation
↓ carbonylated

proteins
↑ free thiols

(+)
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Table A1. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Kaczor, J.J.,
et al.

(2007)
[109]

28 days

LIT
9 m/min,

30 min/day,
2 days/week,

8 weeks

DIA, EDL,
GAST
SOL

= CLN in
DIA

↓MDA in white
GAST

↓ carbonylated
protein

= OGDH activity
in GAST

= COX activity in
GAST

= SOD1 and
SOD2 activity in

GAST
= CAT activity in

GAST
= GPX in EDL

and SOL

(+) GAST
(±) EDL,
SOL, DIA

Morici, G.,
et al. (2017)

[76]
Male

8 weeks

Pre-training + LIT
Pre-training:
3.2 m/min,

15 to 30 min/day,
5 days/week,

2 weeks.
Training: workload

progressive
increase,

4 to 4.8 m/min,
30 to 60 min/day,

5 days/week,
4 weeks

DIA, GAST
QUAD

↑
regeneration

area
↓ necrotic

area in DIA

↓ NF-kB
in QUAD (+)

Pinto,
P.A.F., et al.

(2018)
[75]

Male
11 weeks

LIT
9 m/min,

30 min/day,
3 days/week,

8 weeks

Lateral
GAST = CLN

↓ Col fibers
type I

= Col fibers
type III

(+)
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Table A1. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Zelikovich,
A.S., et al.

(2019)
[79]

16–20 weeks

LIT
4 m/min or

8 m/min,
30 min/day,

3 days/week,
6 months

(Each session
consisted of 7’30”

warm up followed
by 22’30” training

at target speed)

DIA, GAST
Heart

TA

↑ grip strength
↑ tetanic force in

TA
↑ specific force in

TA
↑ resistance to
fatigue in TA
↑ type IIa fibers

in TA
↓ Adipocyte CSA

in GAST

↑MV
↓ Ti
↓ Te

↓ LVIDD
and

LVPWT
thickness

= CNF in
GAST, DIA
and Heart

= serum CK

= fibrosis
in GAST,
DIA and

Heart

↑ PGC-1α in
Heart

Trend ↑
PGC-1α in

GAST
↑ Adipoq

serum and in
GAST

(+)

Zeman,
J.R.,

et al. (2000)
[78]

10 weeks

LIT
9 m/min,
1 h/day,

5 days/week,
10 weeks

GAST
Plantaris

SOL

↓ necrotic
area in GAST

and SOL
↑ necrotic

area in
Plantaris

(+) GAST,
SOL
(−)

Plantaris

Burdi, R.,
et al. (2009)

[92]
Male

4–5 weeks

MIT
12 m/min,

30 min/day,
2 days/week,

4–8 weeks

DIA, EDL
GAST

TA
↓ forelimb
strength

= isometric
tetanic

tension in
DIA

↑ CK

= antioxidant
activity

↑ plasma ROS
level

↑ O-
2 in TA

(−) EDL,
GAST, TA
(±) DIA

Burdi, R.,
et al. (2006)

[99]
Male

4–5 weeks

MIT
12 m/min,

30 min/day,
2 days/week,

4–8 weeks

DIA, EDL
GAST

TA
↓ forelimb
strength

= serum CK
↓ gCl in EDL
= gCl in DIA

= gK

↓ TGFβ1 in
DIA

Trend ↑
TGFβ1 in
TA and
GAST

(−) EDL,
GAST, TA
(±) DIA
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Table A1. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Camerino,
G.M., et al.

(2014)
[88]

Male
4–5 weeks

MIT
A:

12 m/min,
30 min/day,

2 days/week,
4 weeks.

B:
12 m/min,

30 min/day,
2 days/week,

12 weeks

EDL
GAST
SOL

A:
↓ forelimbs

strength
↑ fatigue
↓MHC2b
= SERCA1
= SERCA2
↓ HDAC5

= MHC isoforms
= Utrn = Cn

= MEF2 isoforms
↓ HDAC5

B:
↓ forelimbs

strength = MHC
isoforms = SERCA1
↓ SERCA2
↑ Cn = MEF2

isoforms
↓ HDAC5

A:
= Fst

= Myog
= IGF1
= Svil
↓ BNIP3
↓ LC3

B:
↓ Fst
↓Myog
= IGF1
= Svil
↓ BNIP3
↓ LC3

A:
= TGFβ
= Mstn

= Atrogin1
B:

= TGFβ
= Mstn

= Atrogin1

A:
= PGC-1α

= Sirt1
= Pparγ
= COX4

= CS
= Utrn

= VEGF-a
and –b

B:
↓ PGC-1α
↓ Sirt1
↓ Pparγ
= COX4

= CS
= Utrn

= VEGF-a
and -b

A:
= TNFα

= Adipoq
= Adipor1

B:
= TNFα

= Adipoq
= Adipor1

A:
= Tubα
= NOX2
= c-Src

B:
= Tubα
= NOX2
= c-Src

A: (−)
B: (−)

Capogrosso,
R.F., et al.

(2017)
[86]

Male
4–5 weeks

MIT
A:

12 m/min,
30 min/day,

2 days/week,
4 weeks

B:
12 m/min,

30 min/day,
2 days/week,

12 to 20 weeks

DIA
EDL

GAST
TA

A:
↓ forelimbs

strength
= twitch and

tetanic tension
= torque

= resistance to
eccentric

contractions
= fatigue
in EDL

B:
↓ forelimbs

strength
↓ twitch and

tetanic tension
= torque

= resistance to
eccentric

contractions
= fatigue
↑ AChR1
↓MHC1
in EDL

A:
= twitch

and tetanic
tension

= fatigue
B:

= twitch
and tetanic

tension
= fatigue

B:
↓ Fst in EDL
= pAMPK/

AMPK in TA
= CNF in

GAST and
DIA

= TGFβ1 in
GAST

= MMP9
serum

B:
= Col 1

= ITGA7
= Eln

in EDL

B:
↑ PGC-1α
↓ Sirt1
= FIH1
= CD31
in EDL

B:
= Tubα
= NOX2
in EDL

A: (−)
EDL, TA
(±) DIA

B: (−) EDL,
TA

(±) DIA,
GAST
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Table A1. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

De Luca,
A., et al.
(2003)
[90]

Male
3–4 weeks

MIT
12 m/min,

30 min/day,
2 days/week,

4–8 weeks

DIA
EDL
TA

↓ forelimb
strength
↑ RM in EDL
= RM in DIA
↓ gCl in EDL
= gCl in DIA

↑ necrotic cell
in TA

↑ inflam-
matory

infiltrated
cells in TA

(−) EDL,
TA

(±) DIA

De Luca,
A., et al.
(2005)
[96]

Male
4–5 weeks

MIT
12 m/min,

30 min/day,
2 days/week,

4–8 weeks

DIA
EDL,

GAST

= body weight
↓ forelimb
strength
↓ % fiber

expressing slow
MHC in EDL

↑ serum CK
= Utrn level

in DIA

Trend ↑
TGFβ1 in

GAST
Trend ↑ %

area of
connective

tissue in
GAST

(−) EDL,
GAST

(±) DIA

Fraysse, B.,
et al. (2004)

[85]
3–4 weeks

MIT
12 m/min,

30 min/day,
2 days/week,

4–8 weeks

EDL

↓ forelimb
strength

Any fast-to-slow
fiber transition

↑ resting
[Ca2+]i
↑

Sarcolemmal
permeability

= CK

(−)

Gamberi,
T.,

et al. (2018)
[95]

Male
4–5 weeks

MIT
12 m/min,

30 min/day,
2 days/week,

4 weeks

TA

↑ Tnnt3
↑ Tnnt2
↑MYOZ1
↑ Actin
↑ LDB3
↓MYLPF
↓ TPM1
↓MYL1

↑ CK

↑ ALDOA
↑ TPI1
↑ Eno3
↑ UGPR
↑ FH
↑MDH2
↑ ALDH4A1
↑ complex II
↑ AK1

↓ Complex I,
III

↓ NDUFB7
↓ ATP5a1

= Complex
IV, V

= PGC1-α
= Sirt1

(−)
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Table A1. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Hall, J.E.,
et al. (2007)

[126]
Male

4 weeks

Pre-training + MIT
Pre-training:

workload
progressive

increase 8 to 12
m/min, 4 weeks.

Training: 12
m/min,

30 min/day,
6 weeks

EDL
GAST
QUAD

↓ serum CK (+)

Morales,
M.G., et al.

(2013)
[82]

Male
8 weeks

MIT
12 m/min,

30 min/day,
3 days/week,

6 months

GAST ↓ Net Force ↑
degeneration

↑ Col 3
↑ Fn
↑ CTGF
↑ TGFβ
↑ SMAD3

phosphory-
lation

(−)

Pessina, P.,
et al. (2014)

[81]
3–4–5

months

MIT
12 m/min,

30 min/day
(with a rest of

5 minutes every 10
minutes of
exercise),

3 days/week,
1, 2 or 3 months

GAST ↓ tetanic force

↑ fibrosis
(↑ Col 1,
↑ Fn

deposition,
↑ TGFβ1

and CTGF
mRNA,
↑

SMAD2/3
protein
level)

(−)
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Table A1. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Radley-
Crabb, H.,

et al. (2012)
[87]

Male
8–12 weeks

MIT
12 m/min,

30 min/day,
2 days/week,

4 weeks

DIA
EDL

GAST
QUAD

TA
Triceps

↓ forelimb grip
strenght

Necrosis:
DIA (↑

(0 min, ↑ 24 h,
= 96 h)

GAST (trend
↑ 0 min,

trend ↑ 24 h,
= 96 h)
QUAD

(trend ↑ 0
min,
↑ 24 h,
= 96 h)

TA (= 0 min,
↑ 24 h, ↓ 96 h)
Triceps (= 0

min, ↑ 24 h, =
96 h)

↑ CK (24 h)
= CK (96 h)

↓ IL-1β (96
h)

↓ IL-6 (96
h)

↓ TNF (0
min)

= TNF (24
h)

in QUAD

↑ thiol oxidation
(0 min)

= thiol oxidation
(24 h)

= MDA
in QUAD

(−) 0 min,
24 h

(±) 96 h

Rocco,
A.B., et al.

(2014)
[80]

Male
8 weeks

Pre-training +MIT
Pre-training:

5 m/min,
5 min/day, 3 days.

Training:
(5 min at 0 m/min +
2 min at 5 m/min +
8 min at 8 m/min +

30 min at 12
m/min)/day,
2 days/week,

4 weeks

DIA, GAST
Pectoralis

QUAD
TA
TB

= muscle mass
↑ Col in all

muscles
except DIA

= VO2max
= time to

exhaustion, =
speed at

exhaustion
= total energy

= VO2cv
= VO2min

(−) GAST,
TA,

QUAD,
TB,

Pectoralis
(±) DIA

Schill, K.E.,
et al. (2016)

[15]

Male and
female

4 weeks

MIT
12 m/min,

30 min/day,
2 days/week,

4 weeks

Abdominal
Heart

QUAD
↓ exhaustion

times

↑
intracellular
IgG in Heart

=
intracellular

IgG in
QUAD

↑ hydrox-
yproline in
QUAD and

Heart
= hydrox-

yproline in
Abdominal
↑ Col 1 in

Heart

↓ basal
oxygen

consumption
= maximal

oxygen
consumption

↑ GSH oxidized
by ROS in QUAD
and Abdominal

Trend ↑ GSH
oxidized by ROS

in Heart

(−)
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Table A1. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Van Putten,
M., et al.

(2012)
[16]

Female
4 weeks

MIT
12 m/min,

30 min/day,
3 days/week,

12 weeks

QUAD ↑ CK ↑ fibrosis
in QUAD (−)

Vita, G.L.,
et al. (2020)

[106]
4–5 weeks

MIT
12 m/min,

30 min/day,
2 days/week,
8–10 weeks

DIA, GAST
TA

= Minimum
telomere length

↑ TRF1 in TA
↓ TRF1 in

DIA
= TRF1 in

GAST
= PARP1 in
GAST, TA
and DIA
↑MTERT

protein level
and activity

in DIA
= MTERT in
GAST and

TA

(±)

B. Acute exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration
/Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant
/Antioxidant

Markers

Exercise
Muscle
Effects

Camerino,
G.M.,

et al. (2014)
[88]

Male
16 weeks

MIT
12 m/min, 30 min GAST

= Mhc1
= Cn

= Serca2
= Fst

= PGC-1α
= Sirt1

= PPARγ
(±)

Capogrosso,
R.F., et al.

(2017)
[86]

Male
16 weeks

MIT
12 m/min, 30 min

DIA
EDL

↓ twitch and
tetanic tension
↓ TTP
↓ HRT

↑ resistance to
eccentric

contractions
= fatigue

↓ twitch
and tetanic

tension
= fatigue

(−)
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Table A1. Cont.

B. Acute exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration
/Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Radley-
Crabb, H.,

et al. (2012)
[87]

Male
8–12 weeks

MIT
12 m/min, 30 min

EDL
GAST
QUAD

TA
Triceps

↑ necrosis in
QUAD (24 h,

48 h)
= necrosis in

TA, EDL,
Triceps and

GAST
↑ CK (0 h)

= CK (24 h)

↑ IL-1β (2
h)
↑ IL-6

(0 min, 2 h)
= IL1β and
IL-6 (24 h),
↓ TNF

(0 min, 2 h,
24 h)

in QUAD

↑ thiol oxidation
(0 min, 2 h)

= thiol oxidation
(24 h)

in QUAD

(−) QUAD
(±) EDL,

GAST, TA,
Triceps

Terrill, J.R.,
et al. (2012)

[111]
Male

12 weeks
MIT

12 m/min, 30 min
GAST
QUAD

↑ necrosis
↑ CK ↑ thiol oxidation (−)

Abbreviations: (+)—Beneficial effects, (±)—No effects or discordant effects; (−)—Detrimental effects; AChR1—Acetylcholine receptor 1; Adipoq—Adiponectin; Adipor1—Adiponectin receptor 1; ALDH4A1—
Delta 1 pyrroline 5 carboxilate dehydrogenase; ALDOA—Fructose-bisphosphate aldolase A; AK1—Adenilate kinase 1; ATP5a1—ATP synthase subunit alpha; BNIP3—BCL2/adenovirus E1B 19 kDa
protein-interacting protein 3; CA3—Carbonic anhydrase 3; CCL2 (Monocyte chemoattractant protein-1); CD31—Cluster of differentiation 31; CK—Creatine kinase ; CLN—Centrally located nuclei; Cn—
Calcineurin; CAT—Catalase; CNF—Centrally nucleated fibers, Col—Collagen; COX—Cytochrome c oxidase; CS—Citrate synthase; CSA—Cross sectional area; c-Src—cellular Src; CTGF—Connective tissue
growth factor; Cx39—Connexin 39; DIA—Diaphragm; EDL—Extensor digitorum longus; Eln—Elastin; Eno3—Enolase 3; FH—Fumarate hydratase; FIH1—Hypoxia-inducible factor-1; Fn—Fibronectin;
FRAP—Ferric reducing ability of plasma; Fst—Follistatin; GAST—Gastrocnemius; gCl—Chloride conductance; gK—Potassium conductance; GPX—glutathione peroxidase; GSH—Glutathione; HDAC5—Histone
deacetylase 5; HRT—Half relaxation time; IGF1—Insuline growth factor 1; IL—Interleukin; ITGA7—Integrin Subunit Alpha 7; LC3—Microtubule-associated protein 1 light chain 3 alpha; LDB3—LIM domain
binding protein 3; LIT—Low intensity training (speed of running <12 m/min); LVIDD—Left ventricle internal diameter during diastole; LVPWT—Left ventricle posterior wall tickness; MDA—Malondialdehyde;
MDH2—Malate dehydrogenase; MEF2—myocyte enhancer factor 2; MHC—Myosin heavy chain; MIT—Moderate intensity training (speed of running ranging between 12 m/min and 15 m/min); MMP9—Matrix
metallopeptidase 9; Mstn—Myostatin; MTERT—Mouse telomerase reverse transcriptase; MYL1—Myosin light chain 1/3; MYLPF– Myosin light chain, phosphorylatable, fast skeletal muscle; Myog—Myogenin;
MYOZ1—Myozenin 1; MV—Minute Volume; NDUFB7—NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7; NF-kB- Nuclear factor-κB; NOX2—NADPH oxidase 2; OGDH—2-oxoglutarate
dehydrogenase; pADP/OC—Phosphorilated Adenosine di-phosphate/oxigen consumption; PARP1—Poly [ADP-ribose] polymerase 1; PGC-1α- Peroxisome proliferator-activated receptor gamma coactivator 1-
alpha; Pparγ—Peroxisome proliferator-activated receptor gamma; QUAD—Quadriceps; RCI—Respiratory control index; RM—Membrane resistance; ROS—Reactive oxygen species; SERCA—Sarco/endoplasmic
reticulum Ca2+-ATPase; Sirt1—Sirtuin 1; SMAD- Small mother against decapentaplegic; SOD—Superoxide dismutase; SOL—Soleus; Svil—Supervillin; TA—Tibial Anterior; TB—Triceps brachii; TBARS—
Thiobarbituric acid reactive substance; TGFβ1—Transforming growth factor beta 1; Ti—Inspiratory time; Te—Expiratory time; TNF—Tumor necrosis factor; Tnnt—Troponin; TPI1—Triosophosphate isomerase;
TPM1—Tropomyosin alpha 1 chain; TRF1—Telomeric Repeat Factor 1; TTP—time-to-peak; Tubα—Tubulin α; UGPR—UTP glucose-1 phosphate uridyl transferase; Utrn—Utrophin; VEGF—Vascular endothelial
growth factor; VO2cv—coefficient of variation for VO2; VO2max—maximum oxygen consumption; VO2min—Minimum oxygen consumption.
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Table A2. Effects of downhill and uphill running on mdx mouse muscles.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Anderson,
C.L.,

et al. (2006)
[93]

Male
7 weeks

−15◦,
10 m/min,

10 min/day,
3 days

BB
DIA
EDL

GAST
SOL
TA

↑ damaged
fibers in TA,
BB and DIA

(−) TA,
BB, DIA

Brussee, V.,
et al. (1997)

[25]
Male

8 weeks

−15◦,
10 m/min,

10 min/day,
3 days

BB
DIA
EDL,

GAST, SOL
TA
TB

↑
degenerating
muscle fibers

(−)

Cerri, D.G.,
et al. (2009)

[94]
Male

4 weeks

Downhill,
12 m/min,

20 min/day,
3 days/week,

5 weeks

DIA, GAST ↑ Gal-1 (−)

Fowler,
W.M.,

et al. (1990)
[100]

3 weeks
+18◦,

4 m/min,
3 weeks

EDL, SOL

↑ twitch tension
↑ rate of twitch

tension
development
↑ rate of twitch

tension relaxation
↑ twitch/tetanus

in SOL

↓ CLN
↓ necrosis
↓ fibers
splitting

↓moth-eaten
fibers

(+)

Kobayashi,
Y.M., et al.

(2012)
[98]

Male
10 weeks

−15◦,
5 min at

3 m/min +
10 min at

15 m/min,
2 weeks

EDL
GAST
QUAD

↓ strength in EDL
↑myoglobin-

uria
= CK

↑ oedema
and inflam-
mation in

QUAD and
GAST

(−)

Mokhtarian,
A., et al.
(1995)
[91]

14 days

+15◦,
4 m/min,

30 min/days,
7 days

EDL, SOL

= ratio of type I
and type II

myofibers in SOL
= ratio of type IIa

and type IIb
myofibers in EDL

↑ necrosis (−)
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Table A2. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Nakamura,
A., et al.
(2002)
[118]

Male
6 weeks

+7◦,
15 m/min,

60 min/day,
2 days/week,

5 weeks
+

23 m/min,
60 min/day,

2 days/week,
5 weeks

Heart
↑

heart/body
weight

↑ % area of
dystrophic

lesion
↑ pERK1/2
↑ p38 MAPK
↑ calcineurin

= pJNK1

↑ fibrotic
area

↑ inflam-
matory

cells
(−)

Nakamura,
A., et al.
(2005)
[84]

Male
6 weeks

+7◦,
15 m/min,

60 min/day,
2 days/week,

5 weeks
+

23 m/min,
60 min/day,

2 days/week,
5 weeks

GAST

↑ pERK1/2
↑ p38 MAPK
↑ JNK2
= JNK1

↑MMP9 (−)

Okano, T.,
et al. (2005)

[89]
Male

6 weeks

+7◦,
15 m/min,

60 min/day,
2 days/week,

5 weeks
+

23 m/min,
60 min/day,

2 days/week,
5 weeks

GAST
QUAD

SOL
TA

= body weight
= Serum albumin

levels
↓ large-sized
DRGs in SOL,

GAST and
QUAD

= small-sized
DRGs

Trend ↓
medium-sized

DRGs

↓ IGF1
mRNA in

SOL, GAST
and TA
↓MyoD

mRNA in
SOL, GAST

and TA

= Col 3 in
SOL and

GAST
(−)

Taniguti,
A.P.,

et al. (2011)
[83]

Male and
female

6 months

−17◦,
17 m/min,

60 min/day,
7 weeks

BB
DIA

Heart, TA

↓ grip strength
and normalized
forelimb muscle

strength
= body mass

↑ serum CK

↑ TGFβ1 in
BB and
Heart

↑ fibrosis in
TA and BB
= fibrosis

in DIA and
Heart

(−) TA,
BB, Heart
(±) DIA
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Table A2. Cont.

B. Acute exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Clarke,
M.S.F., et al.

(1993)
[116]

12 weeks
−16◦,

0.6 m/min,
5 min

Triceps ↑ damaged
myofibers ↓ bFGF (−)

Lindsay, A.,
et al. (2018)

[215]

Male
3 months

−10◦,
workload

progressive
increase

10 to 15 m/min,
5 min

+
15 m/min,

30 min

↑ Isoxan
thopterin (−)

Mathur, S.,
et al. (2011)

[115]
Male

5–12 months

−14◦,
workload

progressive
increase

8 to 10 m/min,
45 min

Lower
hindlimbs

↑membrane
breakdown
↑ T2

(−)

Quinlan,
J.G.,

et al. (2006)
[112]

5–7 weeks

−10◦,
8 m/min,

10 min
+

workload
progressive

increase 8 to 16
m/min, up to 90

min or fatigue

QUAD
SOL
TB

↑membrane
breakdown
in QUAD

(−)

Vilquin,
J.T.,
et al.

(1998)
[113]

Male and
female

9–14 months

−16◦,
10 m/min,

5 min

↑ serum CK
(1 h)

= serum CK
(3 days)

(−) 1 h
(±) 3 days

Whitehead,
N.P., et al.

(2006)
[114]

Male
7–10 weeks

−17◦,
10 m/min,

45 min
EDL ↓ isometric force ↑membrane

breakdown (−)

Abbreviations: (+)—Beneficial effects, (±)—No effects or discordant effects; (−)—Detrimental effects; BB—Biceps brachii; bFGF—basic fibroblast growth factor; CK—Creatine kinase; CLN—Centrally located
nuclei; Col—Collagen; DIA—Diaphragm; DRG—Degenerative regenerative group; EDL—Extensor digitorum longus; Gal-1—Galectin 1; GAST—Gastrocnemius; IGF1—Insuline growth factor 1; MMP9—Matrix
metallopeptidase 9; MyoD—Myoblast determination protein 1; pERK1/2—Phosphorylated extracellular signal-regulated kinase 1/2; pJKN—Phosphorylated c-Jun N-terminal kinase; p38 MAPK—p38
mitogen-activated protein kinases; QUAD—Quadriceps; SOL—Soleus; T2—Transverse relaxation time constant; TA—Tibial Anterior; TB—Triceps brachii; TGFβ1—Transforming growth factor beta 1.
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Table A3. Effects of swimming on mdx mouse muscles.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Hayes, A.,
et al. (1998)

[129]

Male
24 months

LIT
25 min/day,

4 or 5 days/week,
10 weeks

EDL
SOL

↑ relative tetanic
tension

= absolute force
↓ RT1/2 in SOL
= % of type I,

type IIa and type
IIb fibers

(+)

Hyzewicz,
J.,

et al. (2015)
[128]

Male
4 weeks

LIT
30 min/day,

4 days/week,
4 weeks

GAST
↑ grip strength
↑ fast isoform of

Tnnt
↑ MyBP-C ↑ CK (1 h)

= CK(2 h)

↑ respiratory
chain protein
↑ UDPGP
↑ CA3

↓
carbonylated

proteins
(VDAC1,

fast isoform
of Tnnt,

MyBP-C and
PGM1)

(+)

Hyzewicz,
J.,

et al. (2017)
[127]

Male
4 weeks

LIT
30 min/day,

4 days/week,
4 weeks

GAST ↑ grip strength
= CK

= CNF
= IgG+ cells

↓ CCL2
↓ TIMP-1

= C5α
↑ CD68+/

CD11b+ cells
↑ F4/80+/

CD11+cells
Trend ↓ Ly6C+

/ CD11b+ cells
Trend ↑ Ly6C+/

CD11b-cells
↓ iNOS
↑ CD68

= CD206
= CD163

(+)

Matsakas,
A.,

et al. (2013)
[132]

Male
6–8 weeks

LIT
30 min/day,

4 days

GAST
TA ↑ CK

↑ Hypoxia in
GAST and

TA
(−)
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Table A3. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle

Hindlimb
Muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Barbin,
I.C.C., et al.

(2016)
[133]

Male
11 months

MIT
60 min/day,

6 days/week,
2 months

DIA
Heart

↑ wall
thick-

ness/lumen
diameter of

the
pulmonary

trunk

↑
degenerating

cardio-
myocytes

↑ fibrosis
in DIA and

Heart
↑

pro-MMP2,
pre-MMP2
and active
MMP2 in
DIA and

Heart
↑ TGFβ in

Heart

(−)

Hayes, A.,
et al. (1993)

[130]
5 weeks

Pre-training + HIT
Pre-training:

workload
progressive

increase
5 min to 2 h/day

Training:
2 h/day,

5 days/week,
5 weeks

EDL
SOL

↓muscle mass in
EDL (↓ type IIa
fiber area) and

SOL (↓ type I and
type IIa fiber

area)
↑ RT1/2 in EDL
↑ twitch tension

in SOL
↑ resistance to
fatigue in EDL

and SOL

(+)

Lynch, G.S.,
et al. (1993)

[131]
5 weeks

Pre training + HIT
Pre-training:

workload
progressive

increase
5 min to 2 h/day

Training:
2 h/day,

5 days/week,
5 weeks

EDL
SOL

↑ intermediate
type fiber in SOL
↑ sensitivity to
Sr2* in type IIa

fiber in EDL
↓ sensitivity to

Ca2+ and Sr2+ in
EDL

type IIB fibers
↓ sensitivity to

Ca2+ and Sr2+ in
SOL type IIA

fibers

(+)
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Table A3. Cont.

B. Acute exercise

Reference Sex/Age Protocol Muscle

Hindlimb
muscle

(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers
Exercise
Muscle
Effects

Bouchentouf,
M., et al.

(2006)
[134]

Male
2 months

LIT
20 min TA ↑ fiber

damage (−)

AbbAbreviations: (+)—Beneficial effects, (−)—Detrimental effects; C5α—Complement component C5 alpha; CA3—Carbonic Anhydrase 3; CCL2—chemokine ligand 2; CD—Clusters of differentiation;
CK—creatine kinase; CNF—Centrally nucleated fibers; DIA—Diaphragm; EDL—Extensor digitorum longus; GAST—Gastrocnemius; HIT—High intensity training (≥90 min/day); IgG—immunoglobulin G;
iNOS—Inducible Nitric Oxide Synthase; LIT—Low intensity training (20–59 min/day); Ly6—lymphocytes antigen 6; MyBP-C—myosin-binding protein C; MIT—Moderate intensity training (60–89 min/day);
MMP2—Matrix metallopeptidase 2; PGM1—phosphoglucomutase-1; RT1/2—one-half relaxation time; SOL—Soleus; TA—Tibial Anterior; TGFβ—Transforming growth factor beta; TIMP1—tissue inhibitor of
metalloproteinases-1; Tnnt—troponin; UDPGP—UTP-glucose-1-phosphate uridylyltransferase; VDAC1—voltage-dependent anion-selective channel protein 1.

Table A4. Effects of voluntary wheel running on mdx mouse muscles.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle
Hindlimb Muscle
(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Baltgalvis,
K.A.,

et al. (2012)
[141]

Male and
female

4 weeks

12 weeks
low-

resistance
wheel

running

DIA
GAST

Heart, TA

= muscle mass
↑maximal

isometric torque in
GAST

= concentric and
passive torque in

GAST
↑ fatigue resistance
↑ type IIx fiber in

GAST

↑ Heart mass

= CK
= CNF in TA

and DIA
↓ CNF in

GAST

↑ CS, β-HAD
in GAST

= CS, β-HAD
in TA

↑ COXIV in
GAST

(+) GAST,
Heart

(±) TA,
DIA

Brereton,
D., et al.
(2012)
[153]

4 months 4 weeks
erector
spinae
muscle

↑ Fibrosis
↑ Kyphosis (−)

Bueno, Jr.
C.R., et al.

(2012)
[137]

Male
2 months 1 month TB

↑ aerobic capacity
↑ CSA

= Myoglobin

↓ ubiquiti-
nated

proteins
↑ CK

↑ p-AMPKα
(Thr172)

= AMPKα
↑

p-ACC/ACC
= Pparδ
= SCD

(+)
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Table A4. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle
Hindlimb Muscle
(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Call, J.A.,
et al. (2008)

[136]
Male

21 days 3 weeks
EDL

GAST
Heart
SOL

↑muscle mass in
GAST

↑ weekly distance
↑ tetanic stress
output in EDL
↑ active stifness in

EDL
↑ total contractile

protein in EDL
↑ actin in EDL
↑myosin in EDL
shift to fatigue-
resistant fibers

(↑ Type I fibers and
↓ Type IIb fibers) in

EDL

↑muscle mass
in Heart

↑ CS in Heart
= CS in

GAST and
SOL

↑ β-HAD in
GAST and

Heart
= β-HAD in

SOL

(+) EDL,
GAST,
Heart

(±) SOL

Call, J.A.,
et al. (2010)

[144]
Male

4–5 weeks

12 weeks of
voluntary

free wheel or
resistance

wheel
running

EDL
GAST
Heart

QUAD
SOL
TA

Triceps

↑ grip strength
= dorsiflexion

torque and whole
body tension
↑ specific tetanic

force in SOL
↑ specific eccentric

force (only free
wheel) in SOL

= absolute twitch,
tetanic or eccentric

force in SOL
↑ relative mass in
SOL and TA (only

free wheel)
↑ relative mass in
Triceps (only in
Resist Wheel)

= relative mass in
GAST and EDL
↑ β-dystroglycan in

GAST
↑ Vinculin in SOL
= α-7 integrin in
SOL, GAST and

Triceps
= Talin in SOL,

GAST and Triceps

= relative mass
in Heart = CK (+)

(±) Heart
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Table A4. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle
Hindlimb Muscle
(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Coles, C.A.,
et al. (2020)

[149]
Male

9 weeks 3 weeks QUAD ↑ necrosis
↑ CNF

↑ Extracel-
luar matrix
genes (i.e.
Col 1a2,
Col 3a1,

Fn1,
PCOLCE,

etc.)
↓ EGLN1

↑ F4/80+ cell
↑M1

macrophages
(F4/80+/CD206-)

Trend ↑M2a
macrophages

(CD206+/CD163-)
= M2c

(CD206+/CD163+)
↑ inflammation

related genes (i.e.
CD14, IFi30,
IL10rα, etc.)
↓ Pde4d
↑ Receptors
recognising
extracellular

DAMPs (TLR2,
TLR4, TLR6,
P2XR4, etc.)

(+)

Costas,
J.M.,

et al. (2010)
[160]

Female
7 weeks 4 weeks Heart

= body mass
↓ LVLWT
↑ LVSLD

↑ fibrosis (−)



Antioxidants 2021, 10, 558 37 of 55

Table A4. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle
Hindlimb Muscle
(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Delacroix,
C.,

et al. (2018)
[135]

2–4 months 1 week
EDL

GAST
Plantaris

TA

↑muscle excitability
in TA and EDL (↑

CMAP
↑ SLC8A1
↓ SCN4A
↓ Cacna1s)
↑ calcineurine

pathway in TA and
EDL (↑Rcan3,
↓ Cmya5,
↓Myoz1
= Rcan1)
↑ fast to slow

transition in TA
(↑MHC2, MHC7,

Tnni1)
= MHC3

↓MHC4, Tnni2
↓muscle fragility

in TA and EDL
No effect in GAST

and Plantaris

= Myog
in TA

= TGFβ
= Col 1a1

in TA

↑ TFAM
↑ Nrf1
↑ PGC-1β
= PGC-1α
= SDHB

= NDUF5
in TA

= TNF in TA
(+) TA,
EDL

(±) GAST,
Plantaris

Dupont-
Versteegden,

E.E.,
et al. (1994)

[158]

3 weeks 37–49 weeks DIA
SOL

↑muscle/body
weight in SOL

= fatigue in SOL

↑ active
tension in

DIA
↑ CT in

DIA
= fatigue in

DIA

(+)

Dupont-
Versteegden,

E.E.,
et al. (1996)

[139]

Male
3 weeks

9 (A) or 49
(B) weeks

DIA
SOL

↑muscle/body
weight in SOL

(A and B)
↑Myosin in SOL

(B)

↑ active
tension of

DIA (B)
↑

contraction
time of
DIA (A)
↑

Fatigability
of DIA (A)

= CK A: (+)
B: (+)
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Table A4. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle
Hindlimb Muscle
(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Ferry, A.,
et al. (2015)

[146]

Male and
female

7 months
3 months Heart

TA

= force drop
= specific maximal

force
↑ absolute maximal

force (only in
female)

↑muscle weight
(only in female)

= ejection and
shortening

fraction
= BNP

= MHC7
↑ ANF

= fibrosis
in Heart
= Col 1a1
= Col 3a1
= CTFG
= TGFβ1

(+) TA
in female
(±) Heart

Gordon,
B.S.,

et al. (2014)
[140]

Male and
female

4 weeks
12 weeks QUAD

SOL = CSA in QUAD

↑ CLN in
QUAD
↑ Utrn in
QUAD

Trend ↑ Utrn
in SOL

Trend ↓ CD45+ (+)

Hayes, A.,
et al. (1996)

[142]

Male
4 weeks 16 weeks EDL

SOL

↑ absolute and
relative muscle

mass of SOL
↑ absolute twitch of

SOL
↑ tetanic tension of

SOL
↑ Fatigue resistance

of EDL and SOL
↑ Type IIa fibers in

EDL
↓ Type IIb fibers in

EDL
↑ Type I fibers in

SOL
↓ Type IIa fibers in

SOL

(+) SOL,
EDL

Hourdé, C.,
et al. (2013)

[143]
Female

4–5 weeks 4.5 months Heart
TA

↑ Absolute
maximal force
↑Muscle weight
↓ susceptibility to

contraction
induced-injury

= MHC1, MHC2x,
MHC2b

↑MHC2a mRNA
but not protein
↓ ACTG1

↓ ejection and
shortening

fraction
↓ LVPWT
↑ LVEDD

=
regeneration

(= MHC,
eMHC, IL6,

Myog, MyoD,
CyclinD1)

= fibrosis
(= Col 1α1,

TGFβ1,
PKC)

= BNIP3,
LC3, Atrogin
= Mstn, Fst,

REDD1,
REDD2

= PGC1-α
= Sirt1

= SERCA2

= NFAT (+) TA
(−) Heart
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Table A4. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle
Hindlimb Muscle
(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Hulmi, J.J.,
et al. (2013)

[282]
Male

6–7 weeks 7 weeks
EDL, GAST

MQF
SOL
TA

= weight mass = CK
in GAST

↑ PGC-1α
↑ LC3
↑ CS
↑ Cyt-C
↑ SDH

in GAST

= TNFα
in GAST (+) GAST

Hulmi, J.J.,
et al. (2016)

[284]
Male

6–7 weeks 7 weeks GAST
= grip strenght,
Shift to smaller

fibers

↑ p-Sirt1
= pAMPKα

at Thr172

= AMPK
= p-

AMPK/AMPK
= PDI

= IRE1α
= pERK
= eIF2α

= p-eIF2α
= GRP78
= TxNIP
= TRX

= Hsp70
= Hsp60
= Hsp90
= Hsp47
= Hsp25

↑ protein
carbonyl

levels
↑ GSSG
↑

GSSG/GSH
↑ TPOR
= GSH,

GRD, GST
= GPX

(−)

Hunt, L.C.,
et al. (2011)

[150]
Male

10 weeks 2 weeks QUAD
↑ necrosis

= LIFR
= LIF
= IL-6

(−)
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Table A4. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle
Hindlimb Muscle
(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Kogelman,
B.,

et al. (2018)
[159]

Female
15 months

3–4
days/week,

8 weeks

Anterior
and

posterior
hindlimb

Heart
QUAD

Left ventricular
functions:

= Heart/body
mass

= ejection
fraction

= end systolic
volume
= stroke
volume

= cardiac
output
Right

ventricular
functions:
↑ end systolic

volume
Trend ↓ ejection

fraction
= stroke
volume

= cardiac
output

= fibrosis
= Col 1a1

= Lox
= Lgals3
= CD68 (±)

Landisch,
M.R.,

et al. (2008)
[138]

Male and
female

4 weeks
8 weeks

EDL
SOL
TA

↑muscle mass in
SOL

↑ type IIa fiber and
↓ type IIb fibers in

EDL
↓ large fibers in
SOL and EDL

= CNF in
EDL and SOL
= eMHC in

SOL

↑ CS activity
in EDL

= CS activity
in

SOL and TA
= CCO

activity in
EDL, SOL

and TA
= β-HAD

activity in TA

(+) EDL,
SOL

(±) TA

Lim, J.H.,
et al. (2004)

[151]
28 days 12 h/day,

8 weeks SOL

↑
degeneration
(↑ apoptotic
myonuclei,
↑ Bax, ↓ Bcl2)

(−)
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Table A4. Cont.

A. Chronic Exercise

Reference Sex/Age Protocol Muscle
Hindlimb Muscle
(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Selsby, J.T.,
et al. (2013)

[147]

Male
4 weeks 1 year

DIA
EDL

GAST
Heart

QUAD
SOL
TA

↑ absolute mass of
GAST and SOL

= absolute mass of
EDL, TA, QUAD

= specific tension in
EDL and soleus
↑ CSA and tetanic

force in SOL

↓ specific
tension

↑ Heart mass
↑ LVDd and

LVDs
↑ LVEDV
↑ LVESV

↑stroke volume

(+) SOL,
GAST,
Heart

(±) EDL,
TA, QUAD

(−) DIA

Smythe,
G.M.,

et al. (2012)
[148]

Male
10–12 weeks 2 weeks GAST

QUAD = CSA
↑ necrosis in

QUAD
↑ CNF in
QUAD

(−)

Wineinger,
M.A.,

et al. (1998)
[145]

6 months 11 months EDL, SOL
↑muscle mass in

SOL
↑ fatigue resistance

in EDL
(+)

B. Acute exercise

Reference Sex/Age Protocol Muscle
Hindlimb Muscle
(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Archer,
J.D.,

et al. (2006)
[157]

4 weeks 24 h
DIA

GAST
QUAD

TA

↑ fiber
damage in

DIA, QUAD,
GAST, TA
↑Myf5 in

QUAD

(−)

Sandri, M.,
et al. (1995)

[155]
4 weeks 16 h

EDL
SOL
TA

↑ DNA Frag-
mentation
↑ apoptotic
myonuclei
↑ ubiquiti-

nated
protein

(−)
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Table A4. Cont.

B. Acute exercise

Reference Sex/Age Protocol Muscle
Hindlimb Muscle
(Morphological
and Functional

Changes)

Respiratory
Function

Cardiac
Function

Degeneration/
Regeneration Fibrosis

Metabolic
Adaptive
Changes

Inflammatory
Markers

Oxidant/
Antioxidant

Markers

Exercise
Muscle
Effects

Sandri, M.,
et al. (1997)

[156]
4 weeks 16 h TA

↑ DNA Frag-
mentation
↑ apoptotic
myonuclei
↑ ubiquiti-

nated protein
↓ Bcl2

= BAG1
= FASL

(−)

Abbreviations: (+)—Beneficial effects, (±)—No effects or discordant effects; (−)—Detrimental effects; ACC—Acetyl-CoA carboxylase ; ACTG1—Actin Gamma 1; AMPK—AMP-activated protein kinase; ANF—
Atrial natriuretic factor; BAG1—BAG family molecular chaperone regulator 1; Bax—Bcl2 Associated X; Bcl2—B-cell lymphoma 2; β-HAD—Beta-hydroxy acyl-CoA dehydrogenase; BNIP3—BCL2/adenovirus
E1B 19 kDa protein-interacting protein 3; BNP—Brain natriuretic peptide; CA3—Carbonic Anhydrase 3; Cacna1s—Calcium voltage-gated channel subunit alpha1 S; CCO—Cytochrome c oxidase; CD—Clusters
of differentiation; CK—creatine kinase; CLN—Centrally located nuclei; CMAP—Compound muscle action potential; Cmya5—Cardiomyopathy Associated 5; CNF—Centrally nucleated fibers; Col—Collagen;
COXIV—Mitochondrial cytochrome c oxidase subunit IV; CS—Citrate synthase; CSA—Cross-sectional area; CT—Contraction time; CTGF—Connective tissue growth factor; DAMPs—Damage-associated
Molecular Patterns; Cyt-C—Cytochrome C; DIA—Diaphragm; EDL—Extensor digitorum longus; EGLN1—EGL nine homolog 1; EI2α—Eukaryotic initiation factor 2 subunit α; eMHC—Embryonic myosin
heavy chain; FASL—FAS ligand; Fn1—Fibronectin 1; Fst—Follistatin; GAST—Gastrocnemius; GPX—Glutathione peroxidase; GRP78—Glucoseregulated protein 78; GRD—Glutathione reductase; GSH—
Glutathione; GSSG—Oxidized glutathione; GST—Glutathione S-transferase; Hsp—Heat shock protein; IFi30—Interferon gamma inducible protein 30; IL-6—Interleukin 6; IL-10rα—Interleukin 10 receptor alpha;
IRE1α—Inositol-requiring enzyme 1α; Lc3—Microtubule-associated protein 1 light chain 3 alpha; Lgals3—Galectin 3; LIF—Leukemia inhibitory factor; LIFR—Leukemia inhibitory factor receptor; Lox—Lysyl
Oxidase; LVDd—Left Ventricle end-diastolic dimension; LVDs—Left Ventricle end-systolic dimension; LVEDD—Left Ventricle end systolic diameter; LVEDV—Left Ventricle end-diastolic volume; LVESV—Left
Ventricle end-sistolic volume; LVLWT—Left ventricle lateral wall thickness; LVPWT—Left Ventricle posterior wall Thickness; LVSLD—Left ventricle Septolateral diameter; MQF—Musculus quadriceps femoris;
MHC—Myosin heavy chain; MMP—Matrix metallopeptidase; Mstn—Myostatin; MyBP-C—Myosin-binding protein C; Myf5—Myogenic factor 5; MyoD—Myoblast determination protein; Myog—Myogenin;
Myoz1—Myozenin 1; Nduf5—NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 5; NFAT—Nuclear Factor of Activated T-Cells; Nrf—Nuclear Respiratory Factor; P2XR4—Purinergic
receptor P2X, ligand-gated ion channel 4; p-ACC—Phosphorilated Acetyl-CoA carboxylase; p-AMPK—Phosphorilated AMP-activated protein kinase; PCOLCE—Procollagen C-endopeptidase enhancer
protein; Pde4d—Phosphodiesterase 4D, CAMP specific; PDI—Protein disulfide isomerase; p-ERK—Phosphorylated extracellular signal-regulated kinase; PGC-1—Peroxisome proliferator-activated receptor
gamma coactivator 1; PGM1—Phosphoglucomutase-1; RT1/2—one-half relaxation time; PKC—Protein kinase C; Pparδ—Peroxisome proliferator-activated receptor delta; p-Sirt—Phosphorilated Sirtuin 1;
Rcan—Calcipressina; REDD—Regulated in development and DNA damage responses; SCD—Stearoyl-CoA desaturase; Scn4α—Sodium Voltage-Gated Channel Alpha Subunit 4; SDH—succinate dehydrogenase;
SDHB—Succinate dehydrogenase complex iron sulfur subunit B; SERCA—Sarco/endoplasmic reticulum Ca2+-ATPase; Sirt—Sirtuin 1; Slca81—Solute Carrier Family 8 Member A1; SOL—Soleus; TA—Tibial
Anterior; TB—Triceps brachii; Tfam—Transcription Factor A, Mitochondrial; TGFβ—Transforming growth factor beta; TLR—Toll like receptor; TNF—Tumor necrosis factor; Tnn—Troponin I; Tnnt—Troponin T;
TPOR1—Thiol protein oxidoreductase; TRX—Thioredoxin; TxNIP—thioredoxin-interacting protein; Utrn—Utrophin; VDAC1—Voltage-dependent anion-selective channel protein 1.
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Table A5. Beneficial effects of low intensity treadmill running on mdx mice.

Reference Sex/Age Protocol Muscle Low Intensity Treadmill Outcomes

Fernandes, D.C., et al.
(2019)
[73]

11 weeks

9 m/min,
30 min/day,

3 days/week,
60 days

GAST
TA

Reduces collagen deposition and
induces a modulation of the redox

status.

Fontana, S., et al.
(2015)
[110]

Male
8 weeks

Pre-training:
3.2 m/min,

15 to 30 min/day,
5 days/week, 2 weeks

Training:
workload progressive increase,

4 to 4.8 m/min,
30 to 60 min/day,

5 days/week, 4 weeks

QUAD
Contributes to reduce cell
degeneration process, by

counteracting oxidative stress.

Frinchi, M., et al.
(2013)
[77]

Male
8 weeks

Pre-training:
3.2 m/min, 15 to 30 min/day, 5

days/week, 2 weeks
Training:

workload progressive increase,
4 to 4.8 m/min,

30 to 60 min/day,
5 days/week, 4 weeks

GAST
QUAD

Induces a strong beneficial effect on
the degeneration-regeneration

process.

Gaiad, T.P., et al
(2017)
[74]

Male
8 weeks

9 m/min,
30 min/day, 3 days/week,

60 days
TA

Induces adaptations in extracellular
matrix, increasing elasticity of
dystrophic muscle tissue and
delaying fibrosis deposition.

Hoepers, A., et al.
(2020)
[108]

Male
28 days

Pre training:
7 days at 4 m/min

Training:
6 or 9 m/min, 30 min/day,

2 days/week, 8 weeks

GAST
Reverses lipid and protein damage

and increases the antioxidant
activity.

Kaczor, J.J., et al.
(2007)
[109]

28 days

9 m/min,
30 min/day,

2 days/week,
8 weeks

GAST
EDL
SOL

Decreases oxidative stress markers in
white muscle.

Morici, G., et al.
(2017)
[76]

Male
8 weeks

Pre-training:
3.2 m/min, 15 to 30 min/day, 5

days/week, 2 weeks
Training:

workload progressive increase,
4 to 4.8 m/min,

30 to 60 min/day,
5 days/week, 4 weeks

DIA
GAST
QUAD

Induces a trend for regeneration
areas to be larger than necrosis areas

in diaphragm and modulates the
inflammatory status of hindlimb

muscle.

Pinto, P.A.F., et al.
(2018)
[75]

Male
11 weeks

9 m/min,
30 min/day, 3 days/week,

8 weeks
Lateral GAST

Reduces intramuscular fibrosis
deposition and does not exacerbates

markers of muscle injury.

Zelikovich, A.S., et al.
(2019)
[79]

4–5 months

4 m/min or
8 m/min, 30 min/day,

3 days/week, 6 months
(Each exercise session consisted of

7’30” warm up followed by a 22’30”
training at target speed)

DIA
GAST
Heart

QUAD
TA

Improves tetanic and specific force in
TA muscle, increases respiratory

capacity, attenuates cardiac decline
associated with disease progression,
increases adiponectin and reduces
adipocyte cross sectional area, and

induces a modest increase in
expression of the PGC-1α gene in the

gastrocnemius muscle.

Abbreviations: DIA-Diaphragm; EDL-Extensor digitorum longus; GAST-Gastrocnemius; PGC-1α-Peroxisome proliferator-activated
receptor gamma coactivator 1-alpha; QUAD-Quadriceps; SOL-Soleus; TA-Tibial Anterior.
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