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Abstract: Airborne particulate matter (PM) is one of the indicators of air pollution, and it is also
the main factor causing oxidative stress in the skin. Oleanolic acid (OA), a natural terpenoid
compound, effectively inhibited PM-induced skin aging; however, OA has poor water solubility
and skin absorption, which limit its application in medicines and cosmetics. The aim of this study
was to prepare oleanolic acid nanofibers (OAnf) and evaluate the effects of OA and OAnf in PM-
treated keratinocytes. The results showed that OA dissolved in dissolved in dimethyl sulfoxide
(DMSO) attenuated PM-induced reactive oxygen species overproduction, stress-activated protein
kinase/Jun-amino-terminal kinase (SAPK/JNK) activation, and the expressions of inflammatory
and skin-aging-related proteins. In addition, the nanofiber process of OA effectively improved
the water solubility of OA more than 99,000-fold through changing its physicochemical properties,
including a surface area increase, particle size reduction, amorphous transformation, and hydrogen
bonding formation with excipients. The skin penetration ability of OAnf was consistently over 10-fold
higher than that of OA. Moreover, when dissolved in PBS, OAnf displayed superior antioxidant,
anti-inflammatory, and anti-skin aging activities in PM-treated keratinocytes than OA. In conclusion,
our findings suggest that OAnf could be a topical antioxidant formulation to attenuate skin problems
caused by PM.

Keywords: particulate matters; oleanolic acid; nanofiber; antioxidant; anti-inflammatory; anti-aging

1. Introduction

Air pollution is now a public health problem across the whole world. With the devel-
opment of technology, various harmful substances, including gases, chemical substances,
biological pollutants, and particles, accumulate in the atmosphere and severely affect
people’s lives and health. Particulate matter (PM), an indicator of air pollutants, is a com-
bination of various organic compounds, biologically derived materials, and particulate
carbon nuclei [1]. PM enters the lungs by inhalation and enters into the blood circulation
causing systemic health hazards such as organ inflammation and cardiovascular and respi-
ratory diseases [2,3]. In addition, PM can pass through the skin barrier and accumulate
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in the hair follicles and even penetrate into the dermis with repeated contact; therefore,
overexposure of the skin to PM has been associated with extrinsic skin aging, changes in
pigmentation, atopic dermatitis, acne, and psoriasis [2,4]. Prolonged contact with PM in-
duces the overproduction of reactive oxygen species (ROS) in keratinocytes, which triggers
several signaling pathways including the apoptosis pathway, mitogen-activated protein
kinase (MAPKs) pathways, and inflammation. Elevated expression of cyclooxygenase-2
(COX-2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) is commonly seen
in keratinocytes exposed to PM. Moreover, PM also activates matrix metalloproteinases
(MMPs) and results in the loss of skin elasticity and aging [5].

Natural products have long been used as effective cosmeceutical ingredients. Oleano-
lic acid (OA, 3β-hydroxyolean-12-en-28-oicacid), a five-ring triterpenoid compound, is
widely present in plants, fruits, and vegetables [6]. OA is well known for its hepatic protec-
tive effects such as reducing chemical-induced acute liver damage and fibrosis/cirrhosis
in chronic liver diseases [6,7]. In addition, previous studies have revealed that OA pos-
sesses antioxidant, anti-cancer, anti-inflammatory, anti-diabetics, anti-microbial effects [8].
Kim et al. revealed that OA could decrease the pro-inflammatory cytokine (TNF-α, IL-6)
and skin aging protein (MMP-1) expression in PM-treated keratinocytes [9]. However, the
physicochemical properties of OA make it difficult to dissolve in water, which limits its
application in medicines, food, and cosmetics.

The formulation designs of drug delivery such as polymer-based nanocarriers, li-
posomes, and nanofibers are usually used to improve physicochemical properties of the
active ingredients. Encapsulation of active ingredients with excipients in these pharma-
ceutical formulations could enhance their water solubility and skin absorption and lower
potential toxicity and irritation to the skin. Among them, nanofibers are an emerging
nanosized formulation, with a large surface area, low density, and a high pore volume,
and are already widely used in biomedicine, which can reduce the volume of oral drugs,
increase the stability of active ingredients, control release, improve bioavailability, and
make artificial tissues [10]. Electrospinning is a common technology used to produce
nanofibers and is highly compatible with mass production [11]. Therefore, the preparation
of nanofiber using the electrospinning process can simultaneously improve the bioavailabil-
ity and production efficiency of an active ingredient with poor water solubility. Polyvinyl
pyrrolidone (PVPK90) and 2-hydroxypropyl-β-cyclodextrin (HPBCD) are FDA-approved
compounds for solubilizing and delivering hydrophobic active pharmaceutical ingredients
in humans. Previous studies showed that nanofibers prepared with HPBCD and PVPK90
significantly improved the water solubility and skin penetration of resveratrol [12] and plai
oil [13]. Thus, the aim of this study was to use PVPK90 and HPBCD as delivery carriers to
prepare the oleanolic acid nanofibers (OAnf) and to evaluate the effects of OA and OAnf in
PM-treated keratinocytes.

The aim of the present study was to evaluate the biological effect of OA dissolved in
DMSO in PM-induced keratinocytes damage. To overcome the poor water solubility of
OA, we used PVPK90 and HPBCD as delivery carriers to prepare oleanolic acid nanofibers
(OAnf) by an electrospinning process and then determined the changes of physicochemical
properties between raw OA and OAnf to elucidate the improvement of water solubility
and skin penetration. To compare the biological effect after the nanofiber process of
OA, a PM-induced keratinocytes damage model was used to evaluate the antioxidative,
anti-inflammatory, and anti-aging activity of OAnf and OA.

2. Materials and Methods
2.1. Materials

Oleanolic acid hydrate (OA) was purchased from Tokyo Chemical Industry Co., Ltd.
(Tokyo, Japan). Polyvinyl pyrrolidone (Luviskol® K90 Powder, PVP) was purchased from
Wei Ming Pharmaceutical Mfg. Co., Ltd. Taipei, Taiwan). Hydroxypropyl-beta-cyclodextrin
(HPBCD) was obtained from Zibo Qianhui (Zibo, China). Methanol and dimethyl sulfoxide
(DMSO) were purchased from Aencore Chemical (Surrey Hills, Australia). All chemicals
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or reagents for cell cultures were biological grade, and other chemicals of physicochemical
determination were of high-performance liquid chromatography (HPLC) grade.

2.2. Cell Viability Assay

The cell viability determination of an active ingredient is a common method used to
choose the proper concentration ranges for active ingredients to evaluate their biological
activity. HaCaT keratinocytes were purchased from Istituto Zooprofilattico Sperimen-
tale della Lombardia edell’Emilia Romagna (Brescia, Italy). HaCaT cells were cultured
in DMEM (Himedia Laboratories, Mumbai, India) containing 10% fetal bovine serum
(Hazelton Product, Denver, PA, USA) with 1% penicillin–streptomycin (Biological Indus-
tries, Connecticut, NE, USA), and HaCaT cells were incubated in an incubator (Thermo
Fisher Scientific, Waltham, MA, USA) with the conditions set at 37 ◦C with 5% CO2. For
preparation of the test samples, OA and OAnf were dissolved in DMSO and PBS, respec-
tively, and then each sample was diluted in DMEM without fetal bovine serum for cell
viability determination. The HaCaT cells were seeded in 96-well plates at a density of
1 × 104 cells/100 µL/well for 24 h. The culture medium was then removed, and the cells
were treated with different concentrations of OA and OAnf ranging from 5 to 80 µM in
serum-free DMEM for 24 h. At the time of assay, the treatment medium was removed, and
150 µL of 0.5 mg/mL MTT solution was added into each well. After 3 h of incubation, the
MTT solution was removed, and the purple formazan crystals of each well was dissolved
in 100 µL of DMSO. The absorbance at 550 nm of each well was then measured using a
microplate spectro-photometer (BioTek µQuant, Winooski, VT, USA). The cell viability was
calculated by the following formula:

Cell viability (%) =
ODsample

ODcontrol
× 100% (1)

2.3. Determination of Reactive Oxygen Species (ROS) Content

PM (Standard Reference Material, SRM® 1649b) were purchased from the National
Institute of Standards and Technology. This product was collected in 1976 and 1977 in
Washington, DC Made. A total of 10 mg/mL of PM were suspended in PBS and then
sonicated for 10 min before use. A total of 1 × 104 HaCaT keratinocytes were cultured
in 96-well plates for 24 h under 37 ◦C and 5% CO2 conditions. Cells were treated with
different concentrations of OA in DMSO, OA in PBS, and OAnf in PBS for 24 h, respectively.
Then, they were incubated with 20 µM dichlorodihydrofluorescein diacetate (DCFH-DA;
Sigma, Tokyo, Japan) solution for 30 min. Next, 50 µg/cm2 PM was added into each well
and incubated for 1 h. After that, cells were washed twice with PBS, and the fluorescence
intensity of each sample was analyzed using the fluorescent plate reader (excitation: 485 nm;
emission: 528 nm) (BioTek, Winooski, VT, USA). The following equation was used to
calculate the inhibition percentage of ROS production:

ROS production (%) =
ODsample

ODcontrol
× 100% (2)

2.4. Western Blot Analysis

A total of 4 × 105 HaCaT keratinocytes were cultured in 6-well plates for 24 h. Cells
were then treated with OA or OAnf in serum-free medium for 24 h followed by the addition
of PM. After various time points, cells were lysed with RIPA lysis buffer (Merck Millipore,
Burlington, MA, USA), then centrifuged at 12,000 rpm for 10 min. A BCA protein assay
kit (Thermo Fisher Scientific, Waltham, MA, USA) was used to determine protein concen-
tration. Then, the proteins were separated by sodium dodecylsulfate–polyacrylamide gel
electrophoresis (SDS-PAGE), and then blotted onto polyvinylidene difluoride (PVDF) mem-
branes (Merck Millipore). Membranes were blocked for 1 h and washed with Tris-buffered
saline (TBS) with 1% Tween-20. Membranes were incubated with primary antibodies at 4 ◦C
overnight. The primary antibodies used in this study included cyclooxygenase-2 (COX-
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2), matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metallopro-teinase-1(TIMP-1),
stress-activated protein kinase/Jun-amino-terminal kinase (SAPK/JNK) (Cell Signaling
Technology, Danvers, MA, USA), GAPDH (Santa Cruz Bi-otechnology, Dallas, TX, USA),
matrix metalloproteinase-1 (MMP-1) (Proteintech Group, Rosemont, IL, USA), p38α, extra-
cellular regulated protein kinases (ERK), and nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) (Merck Millipore, Burlington, MA, USA). Next, secondary
antibodies were added for 1 h at room temperature and reacted with enhanced chemilu-
minescence reagents (ECL; Thermo Fisher Scientific). Antibodies against GAPDH were
used as internal controls. Each protein’s expression was analyzed using a Touch Imager
(e-BLOT; Shanghai, China), and the expression was quantified using ImageJ.

2.5. Preparation of Oleanolic Acid Nanofibers (OAnf)

OAnfs were electrospun with different ratios of OA:PVP:HBPCD (1:8:5, 1:8:10, and
1:8:20). The electrospun solution was prepared as follows: 25 mg of OA was dissolved
in 5 mL of methanol, and HPBCD was added and stirred with a magnet stirrer to obtain
a clear solution; then, PVPK90 was immediately added, and the mixture was stirred for
1 h. The nanofibers were woven using FES-COS Electro-spinning equipment (Falco Tech
Enterprise Co., Taipei, Taiwan) under the following conditions: a 10 mL syringe with a
needle of internal diameter of 0.22 mm was employed for electrospinning; the flow rate was
adjusted to 0.2 mL/h; the applied voltage was set at 12 KV; the tip-collector distance was
10 cm. After the electrospinning process, the nanofibers were collected using aluminum
foil. The newly synthesized nanofibers were placed in a sealed plastic bag and stored in a
moisture-proof container.

2.6. High-Performance Liquid Chromatography (HPLC) Analysis of Oleanolic Acid

The HPLC analysis system (LaChrom Elite L-2000, Hitachi, Tokyo, Japan) consisted of
an L-2130 pump, an L-2200 autosampler, and an L-2420 ultraviolet-visible (UV-vis) detector.
The analysis column was a Mightysil RP-18 GP column (250 × 4.6 mm i.d., 5 µm). The
mobile phase was composed of methanol and 0.1% glacial acetic acid solution in a fixed
ratio (95:5; v/v). The flow rate of the mobile phase was 1 mL/min, and the detection
wavelength of the UV detector was set at 215 nm. The absorption peak for oleanolic
acid appeared at 7.5 min. The calibration curve of oleanolic acid displayed a good linear
(r = 0.999) within the range 0.01–100 µg/mL.

2.7. Morphology, Fiber Diameter, and Particle Size Measurement of OAnf

Different samples of nanofibers were plated with platinum with an ion coater (E-1045,
HITACH, Tokyo, Japan); the condition was set at 10 mA 120 s later. The morphology and
shape of each sample was observed by a scanning electron microscope (Hitachi S4700,
Hitachi, Tokyo, Japan). The diameter of each sample was calculated by image j software. A
Zetasizer 3000HS analyzer (Malvern, Worcestershire, UK) was used to measure the particle
size of OAnf. The particle size of OA and OAnf were measured at a concentration of
1 mg/mL and 0.1 mg/mL, respectively. In addition, we also observed the uniformity of the
morphology of OAnf after dissolving in water using a transmission electron microscope
(TEM, JEM-2000EXII instrument, JEOL Co., Tokyo, Japan). The test sample was adjusted
to 1 µg/mL of OA in deionized water and then dripped into the copper mesh, and then
0.5% (w/v) phosphotungstic acid was immediately dripped. After drying, each sample
was placed on the TEM for observation.

2.8. Drug Loading and Encapsulation Efficiency of OAnf

It is highly important to determine the drug loading and encapsulation efficiency of the
delivery system for evaluating the performance of the pharmaceutical process. The drug
loading was calculated as the percentage of the determined content and the theoretical
content of the OA contained in the OA nanofibers. For drug loading determination,
100 µL of each sample was added into 900 µL of methanol, and the OA concentration was
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immediately measured by the aforementioned HPLC method. The following equation was
used to calculate drug loading:

Drug loading (%) =
COA × VOAnf

WOA
× 100% (3)

where COA is the concentration of OA from OAnf, WOA is the theoretical amount of OA
added, VOAnf is the volume of OAnf solution.

The encapsulation efficiency indicates whether the nanofibers successfully encapsu-
lated the active compounds. OAnf samples was dissolved in deionized water, and was
added into the centrifugal filter devices (Microcon YM-10, Millipore, Billerica, MA, USA),
and then centrifuged at 12,000 rpm for 10 min by the refrigerated centrifuge (Centrifuge
5430R, Eppendorf, Hamburg, Germany). The encapsulated part was retained in the upper
tube, and the unencapsulated part was collected from the lower tube due to the difference in
molecular weight. The amount of unencapsulated OA was detected by the aforementioned
HPLC method. The following equation was used to calculate encapsulation efficiency:

Encapsulation efficiency(%) =
AOA − Aunentrapped OA

AOA
× 100% (4)

where AOA is the theoretical amount of OA (obtained from feeding condition) incorporated
into the nanofibers, and Aunentrapped OA is the amount of unencapsulated OA.

2.9. Aqueous Solubility of OAnf

Raw OA (1 mg) and different ratio formulations of OAnf (containing an equivalent
of 1 mg oleanolic acid) were dissolved in 1 mL deionized water, respectively, and then
sonicated under a ultrasonicator (Branson 5510, Emerson Electric, St. Louis, MO, USA)
for 20 min. Each sample was filtered through a 0.45 µm membrane (Pall Corporation,
Washington, NY, USA), and diluted 10-fold. The diluted solutions were analyzed by HPLC,
and the standard curve was employed to determine the oleanolic acid amount for compared
their aqueous solubility.

2.10. Determination of Crystalline-to-Amorphous Transformation

X-ray diffractometry (Siemens D500, Karlsruhe, Germany) was used to analyze the
crystalline form of OA, excipients and OAnf. The analysis was conducted using nickel-
filtered Cu-Kα radiation, using a voltage of 40 kV and current of 25 mA. The scan rate was
1◦/min, and the range of the angles scanned was from 5◦ to 50◦.

2.11. Intermolecular Interaction between OA and Excipients

Fourier transform infrared spectroscopy (FTIR) and 1H Nuclear magnetic resonance
(1H NMR) are usually used to confirm the intermolecular interaction between active
ingredients and excipients. Oleanolic acid, PVP, HPBCD, and different ratio formulations
of OAnf were, respectively, mixed with potassium bromide (KBr) in a volume ratio of
1:9 using a mortar and pressed into tablets. Each sample was then analyzed by the FTIR
spectrophotometer (Perkin-Elmer 200 spectrophotometer, Perkin-Elmer, Norwalk, CT,
USA). The scanning range was 400–4000 cm−1. In addition, each sample was dissolved
in 0.8 mL of 99.8% DMSO-d6 (Merck, St. Louis, MO, USA) and analyzed by JEOL Alpha
400 spectrometer (Nihon Denshi Co., Tokyo, Japan).

2.12. Ex Vivo Skin Penetration of Oleanolic Acid and Its Nanofiber

This experiment was performed according to the European Cosmetic Toiletry and
Perfumery Association (COLIPA) guidelines’ standard protocol. The Franz diffusion cell
system can be divided into glass containers of the upper donor chamber and the lower
receptor chamber. A total of 1.5 mL buffer solution comprising 0.14 M NaCl, 2 mM K2HPO4,
0.4 mM KH2PO4 (pH 7.4) was placed in the receptor chamber and stirred with a magnetic
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bar at 600 rpm throughout the experiment. Fresh flank skin from a pig was obtained from
a local butcher in the market and refrigerated during the experiment period. Each skin
sample was cut into 2 cm × 2 cm pieces and placed between the two chambers, with the
stratum corneum facing upwards. The Franz diffusion cell was maintained at 32 ◦C with a
circulating water bath. Then, 200 µL of 1 mg/mL of OA or OAnf was added to the donor
chamber for 1, 2, or 4 h. After that, the pig skin was removed from the Franz diffusion
cell, and the stratum corneum was obtained by tape stripping 15 times. Each residual skin
sample was heated to 95 ◦C with a heat pad, and the epidermis and dermis were separated
using a scalpel. Each sample was immersed in methanol and sonicated for 1 h to extract
OA, and the content of oleanolic acid in each sample was determined by the HPLC method.

2.13. Statistical Analysis

All data were displayed as mean ± standard deviation (SD). The statistically signif-
icance between different groups were analyzed by analysis of variance (ANOVA) with
Tukey’s post hoc test. p < 0.05 indicated statistical significance.

3. Results
3.1. Oleanolic Acid Can Suppress Inflammation, Aging, and ROS/MAPKs Signaling Pathways in
PM-Induced Keratinocytes Damage

To find the proper concentration range for biological activity evaluation, the cytotoxic-
ity of OA dissolved in DMSO was determined in human HaCaT keratinocytes cells using an
MTT assay. As shown in Figure 1A, 40 and 80 µM of OA were associated with 32 to 16% cell
viability. OA at less than 20 µM were still had a cell survival rate over 85%. These results
indicated that OA at a concentration of 5–20 µM has no cytotoxic effects on human HaCaT
keratinocytes (Figure 1A). Accordingly, OA was studied at a concentration of 5–20 µM to
investigate its antioxidant and antipollution activity in PM-induced keratinocytes damage.
Recently, many studies have demonstrated that PM is a common air pollutant causing ROS
overproduction and subsequent damage of the skin system through a series of oxidative
stress, including lipid peroxidation, protein carbonylation, and DNA mutation [14–16].
As shown in Figure 1B, PM treatment significantly increased the ROS production when
compared with the untreated group (p < 0.05). In contrast, pretreatment with OA effectively
decreased PM-induced ROS overproduction in a dose-dependent manner (p < 0.05). There-
fore, these results suggested that OA possessed antioxidant activity to prevent PM-induced
oxidative stress by reducing the ROS overproduction. In addition, ROS overproduction
after PM exposure can activate the phosphorylation of MAPKs proteins, including p-ERK,
p-p38, and p-JNK, triggering the protein expressions of inflammation and aging [17,18].
The present study also found that PM treatment can increase the expression of inflam-
matory proteins (COX-2 and NF-κB), skin aging-related proteins (MMP-1, MMP-9 and
TIMP-1), and phosphorylation of ERK, JNK, and p38 (p < 0.05). Our present results also
demonstrated that OA at 10 and 20 µM significantly inhibited the protein expression of
NF-κB and COX-2 when compared with the PM treatment group (p < 0.05) (Figure 1C).
Furthermore, OA pretreatment also effectively reversed PM-induced alteration on MMP-1
and TIMP-1 expression (p < 0.05) but had no effect on MMP-9 (Figure 1D). We further de-
termined the effects of OA treatment on phosphorylation of MAPKs during PM exposure,
and our results indicated that OA could inhibit the phosphorylation of JNK (p < 0.05), but
had no effect on ERK or p38 (Figure 1E). According to the above results, when dissolved
in DMSO, OA displayed good skin-protective activity and could ameliorate PM-induced
ROS overproduction, JNK activation, and inflammatory and skin-aging protein expression
in keratinocytes.
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Figure 1. Oleanolic acid inhibits protein expression related to inflammation and aging in PM−induced keratinocytes
damage through the ROS/MAPKs pathway. (A) Cell viability, (B) ROS production, (C) COX-2 and NF-κB, (D) MMP and
TIMP protein expression, and (E) phosphorylation of MAPKs. # represents p < 0.05 when compared with negative control. *
represents p < 0.05 when compared with PM-induced control.

3.2. Oleanolic Acid Nanofibers Increased the Water Solubility and Skin Penetration of Raw
Oleanolic Acid by Improving the Physicochemical Properties
3.2.1. Surface Morphology of Oleanolic Acid and Its Nanofibers

Under SEM observation, the appearance of HPBCD presented a spherical and porous
excipient, and its size was about 20 to 50 µm (Figure 2A). PVPK90 is an excipient with irreg-
ular polygonal particles and a particle size of more than 60 µm (Figure 2B). Raw oleanolic
acid is an irregularly round granular powder with a size of 3–60 µm. Figure 2D–F show
the mean fiber diameter of different weight ratios of oleanolic acid: HPBCD: PVPK90 were
174.83 ± 19.53 nm, 219.23 ± 18.93 nm, and 403.17 ± 32.99 nm, respectively. It was found
that a higher ratio of HPBCD (1:8:20) led to OAnf having a larger fiber diameter (Table 1).
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Table 1. Diameter of oleanolic acid and its nanofibers under scanning electron microscope (SEM).

OA:PVP:HPBCD (w/w/w) Diameter (nm)

1:8:5 174.83 ± 19.53
1:8:10 219.23 ± 18.93
1:8:20 403.17 ± 32.99

3.2.2. Particle Size and Morphology of OAnf Reconstituted in Water

In order to observe the particle shape and particle size of the OAnf (OA:PVP:HPBCD,
1:8:20) dissolved in water, the image of OAnf under the transmission electron micro-
scope (TEM) showed that the oleanolic acid particles were spherical and uniformly dis-
persed in water (Figure 3). The particle size was also confirmed by a laser particle size
analyzer (Table 2). The particle sizes of OA and OAnf were 5079.50 ± 384.87 nm and
302.37 ± 11.91 nm, respectively. The polydispersity indexes (PDI) of OA and OAnf were
1.63 ± 0.21 and 0.32 ± 0.02, respectively. These results indicate that the electrospinning
process effectively reduced the particle size of OA with uniform particle distribution and
resulted in enhancement of the surface area.
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Table 2. Diameters of oleanolic acid and its nanofibers detected by laser particle size analyzer. Results
are shown as mean ± SD of three independent experiments.

Particle Size (nm) Polydispersity Index (PDI)

pure oleanolic acid 5079.50 ± 384.87 1.63 ± 0.21
OAnf 302.37 ± 11.91 0.32 ± 0.02

3.2.3. Drug Loading, Encapsulation Efficiency, and Water Solubility of Oleanolic
Acid Nanofibers

As shown in Table 3, the loading percentages of OA in different ratios of excipients
were 72.36 ± 10.45%, 84.23 ± 3.62%, and 98.19 ± 4.82%, respectively. The results indicated
that a higher ratio of HPBCD displayed a better drug loading effect. The encapsulation
efficiency of all the formulations was greater than 95%, which indicated that PVPK90
and HPBCD effectively encapsulated OA. In addition, the water solubility of OAnf with
different ratios of excipients were 296.14 ± 57.75 µg/mL, 395.87 ± 32.77 µg/mL, and
998.7 ± 58.32 µg/mL, respectively. These results showed that the increase in HPBCD in
the formulation dramatically enhanced water solubility of raw OA. By contrast, the water
solubility of raw OA could not be determined due to it being below the detection limit
(0.01 µg/mL) in the HPLC method. This result indicated that the 1:8:20 OAnf had more
than a 1000-fold water solubility improvement when compared with raw OA. Thus, in
the following studies, 1:8:20 OAnf was used to determine the biological activity in the
PM-induced keratinocytes damage model.

Table 3. Drug loading, encapsulation efficiency, and water solubility of different formulations of
OAnf. Results are shown as mean ± SD of three independent experiments.

Ratio
(OA:PVP:HPBCD) Drug Loading (%) Solubility (µg/mL) Encapsulation

Efficiency(%)

raw oleanolic acid - <LOD * -
1:8:5 72.36 ± 10.45 296.14 ± 57.75 96.92 ± 3.15

1:8:10 84.23 ± 3.62 395.87 ± 32.77 >99
1:8:20 98.19 ± 4.82 998.7 ± 58.32 >99

* LOD: Limit of detection (<0.01 µg/mL).

3.2.4. Crystalline Change of Oleanolic Acid and Its Nanofibers

The X-ray diffraction (XRD) patterns of raw OA, excipients, and its nanofibers are
shown in Figure 4. Raw OA exhibited multiple high-intensity characteristic diffraction
peaks at a scanning angle of 5◦–20◦, indicating that raw OA was a crystalline compound.
On the other hand, the diffraction patterns of PVPK90 and HPBCD have no obvious char-
acteristic diffraction peaks. In addition, for raw OA under electrospinning processing, all
the characteristic diffraction peaks of the raw OA completely disappeared, which indicated
that the nature of raw OA was transformed from crystalline to amorphous (Figure 4).
According to these results, we could conclude that raw oleanolic acid was successfully
encapsulated into HPBCD and encapsulated by PVPK90 after the nanofiber process.
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(E) 1:8:20, and (F) oleanolic acid.

3.2.5. Intermolecular Hydrogen Bond Formation between Oleanolic Acid and Excipients

The intermolecular interaction of raw OA and HPBCD with PVPK90 was determined
by FTIR spectroscopy, and the results are demonstrated in Figure 5. The FTIR spectrum
clearly showed the absorbance of several chemical functional groups of raw OA, including
an absorption band at 3463 cm−1 (—OH stretch vibration), 1696 cm−1 (—C=O stretch
vibration), and 1462 cm−1 (—CH2 stretch vibration) (Figure 5). When OA, PVPK90, and
HPBCD were complexed to form nanofibers, the absorbance of these chemical functional
groups obviously shifted to a lower absorption. These findings were indicative of inter-
molecular hydrogen bond interactions between OA and HPBCD with PVPK90. In addition,
the present study also used 1H NMR to confirm the intermolecular interaction of OA
and excipients. The 1H NMR spectrum of raw OA (Figure 6C) showed a carboxyl signal
at δ12 ppm (H28), double bound protons at δ5.15 ppm (H12), hydroxy proton signal at
δ3.38 ppm (H3), and methyl protons (δ1 ppm). However, the 1H NMR spectrum of OA
nanofibers showed that carboxyl signal of OA disappeared, and the chemical shifts of dou-
ble bound, hydroxy, and methyl protons were obviously moved upfield (Figure 6). These
results demonstrated the formation of intermolecular hydrogen bonds between OA and
excipients, which supported the successful encapsulation of OA by HPBCD and PVPK90.
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3.2.6. In Vitro Skin Penetration of Raw Oleanolic Acid and Its Nanofibers

The biological activity of a topical formulation mostly depends on the skin absorption.
The skin penetrations of the raw OA and its nanofibers were determined in ex vivo pig
skin. As shown in Figure 7, a lower content of OA (<5 µg/cm2) was detected in the
epidermis and dermis after 1, 2, and 4 h of topical administration, and these results also
indicated that raw OA could not penetrate the skin in a time-dependent manner. The result
showed that the skin absorption of raw OA was extremely poor. By contrast, the nanofiber
formulation dramatically increased the content of OA in the epidermis and dermis with
19.63 µg/cm2, 31.56 µg/cm2, and 45.27 µg/cm2 after 1, 2, and 4 h of topical administration,
respectively. These results demonstrated that the OAnf formulation significantly increased
skin absorption when compared with the raw OA topical administration (p < 0.05).
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3.3. Oleanolic Acid Nanofibers at Non-Cytotoxic Concentrations Had Better Anti-Pollutant
Activity by Improving Antioxidant, Anti-Inflammatory, and Anti-Aging Activity

Similar to the OA dissolved in DMSO, the OAnf dissolved in PBS at 40 µM and 80 µM
reduced the viability of HaCaT cells to 14.1% and 5.6%, respectively (Figure 8A). Therefore,
10 µM of OAnf were evaluated for further antioxidant and antipollution activity in order
to understand whether OA and its nanofibers have the ability to inhibit the excessive
production of ROS caused by PM. Figure 8B shows that OAnf at 10 µM notably reduced PM-
induced ROS overproduction. We also calculated the rate of inhibition of ROS production
to compare the antioxidant activity between PBS-dissolved OA and OAnf. Ten micromolar
OA in PBS resulted in a 28.3% inhibition of ROS production, and OAnf achieved 97.6%
inhibition (Figure 8B). These results indicated that OAnf had better antioxidant activity than
OA in PBS in PM-induced oxidative stress in keratinocytes. In addition, we also compared
the anti-inflammatory activity of PM-induced keratinocytes damage. Pretreatment with
raw OA in PBS could not inhibit the PM-induced protein expression of NF-κB and COX-2.
In contrast, pretreatment with OAnf in PBS significantly diminished the expression of NF-
κB and COX-2 in PM-treated cells (p < 0.05). These results supported that OAnf in PBS had
better anti-inflammatory activity than raw OA in PBS (Figure 8C). Then, we also compared
their anti-skin-aging activity. Pretreatment with OA in PBS had no effects on PM-induced
MMP-1 or TIMP-1 alteration. However, OAnf in PBS could reduce the expression of MMP-1
and rescue the expression of TIMP-1 when compared with the PM-induced keratinocytes
damage group (p < 0.05) (Figure 8D). These findings indicated that OAnf possessed better
anti-skin-aging properties than raw OA in PBS. Finally, we analyzed the phosphorylation
of ERK, JNK, and p38 to confirm the regulation of MAPKs signaling. Figure 8E showed
that the treatment of raw OA in PBS could not downregulate PM-induced phosphorylation
of these MAPKs protein. However, pretreatment with OAnf only reduced PM-induced
phospho-JNK (p-JNK) expression but had no effect on p-ERK and p-p38 (Figure 8E). The
percentage changes of protein expression induced by OA in DMSO, OA in PBS, and OAnf
in PBS are summarized at Table 4. OAnf in PBS markedly reversed PM-induced protein
alterations, which was barely observed in OA in the PBS group. In addition, the effects of
OAnf in PBS were comparable to the equivalent amount of OA in DMSO, which indicated
that the electrospinning process increased the water solubility of OA without altering its
bioactivities. Accordingly, OAnf effectively inhibited the expressions of inflammatory
proteins and skin-aging proteins and downregulated the MAPKs signaling pathway in
PM-induced keratinocytes damage.

Table 4. The percentage change of protein expression from OA and OAnf in PM-induced HaCaT
cell damage.

Protein
Percentage Change (%) a

OA/DMSO OA/PBS OAnf/PBS

COX-2 49.01 ± 6.34 19.76 ± 12.03 54.37 ± 9.2
NF-κB 68.01 ± 1.87 NE b 51.7 ± 6.33
MMP-1 60.18 ± 8.02 NE 45.14 ± 8.75
TIMP-1 75.66 ± 3.13 NE 61.57 ± 3.02

JNK 86.54 ± 6.13 9.13 ± 16.43 82.31 ± 4.42
a Percentage change was calculated from the quantitative results of Figures 1 and 8 by the following equa-
tion: |Fold changePM –Fold changeOA|/|Fold changePM –Fold changeCon| × 100%. Values are expressed as
mean ± SD. b NE: no effect.
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TIMP-1 protein expression, (E) phosphorylation of MAPKs. A p-value < 0.05 was interpreted as statistically significant, #
refers to PM treatment versus negative control, * refers to PM treatment versus OAnf, and $ refers to OA/PBS versus OAnf.

4. Discussion

Recently, monitoring the concentration of particulate matters in the air has become
one of the most important indicators used to evaluate the air quality index. The skin is
the largest immune organ of human beings, and PM overexposure could damage skin
functions. Jin et al. revealed that various types of PM not only stayed in the outside
stratum corneum of the epidermis but also penetrated into the stratum spinosum and
hair follicles [14]. If exposed to excessive PM for a long time, this will cause skin barrier
dysfunction and is associated with many skin diseases, such as atopic dermatitis, psoriasis,
acne, and aging [19,20]. Dijkhoff et al. clearly illustrated that PM can trigger exogenous
and endogenous ROS formation, resulting in oxidative stress progression, including lipid
peroxidation, protein oxidation, mitochondrial dysfunction, DNA damage, inflammation
activation, and aging process acceleration [15]. Accordingly, counteracting PM-induced
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ROS overproduction is a good strategy and the first choice to prevent oxidative stress
damage during PM overexposure. Previous studies have also demonstrated that antioxi-
dant treatments, such as diphlorethohydroxycarmalol [21], dieckol [22], Opuntia humifusa
extract [23], and tart cherry extract [24] can effectively attenuate PM-induced keratinocytes
dysfunction. Our results also found that OA in DMSO can reduce PM-induced ROS over-
production and prevent the damage from PM. In addition, NF-κB is a ubiquitous and
inducible transcription factor regulating the expression of proinflammatory proteins, such
as COX-2, which play a critical role in many skin diseases. Our results mentioned that OA
can diminish the PM-induced activation of NF-κB to inhibit the expression of inflammatory
protein COX-2 [25]. Moreover, activation of MAPKs signaling can enhance the expression
of AP-1 and leads to transcriptional regulation of MMPs [18]. In this study, OA was able
to suppress the expression of skin-aging protein MMP-1 and increase the expression of
anti-skin-aging protein TIMP-1 to prevent PM-induced aging of keratinocytes. Our re-
sults also demonstrated that the OA was effectively inhibited the phosphorylation of JNK.
Therefore, OA may inhibit PM-induced skin inflammation and aging by downregulating
the ROS/JNK signaling pathway in PM-induced keratinocytes damage.

To the best of our knowledge, the poor water solubility of the active compounds is
associated with low bioavailability, which limits their application in medicine, food, and
cosmetic industries [26,27]. It is well known that compounds with poor water solubility
have several common physicochemical features, such as excessively large particle size,
a lower surface area, a lipophilic structure, and a crystalline form [28]. Our results also
indicated that raw OA had these physicochemical properties, including a large particle
size (5079.50 ± 384.87 nm), a 3–60 µm irregular granular powder with lower surface area
(Figure 2C), and an obvious crystalline form. These results indicated that the water solu-
bility of OA was lower than 0.01 µg/mL and could be classified as a practically insoluble
active compound according to the water solubility classification of the United States Phar-
macopeia (USP) [29]. If these drawbacks cannot be solved, the activities of OA on the skin
would be greatly limited. The present study successfully used PVPK90 and HPBCD as
carriers using an electrospinning process to prepare OAnf. The water solubility improve-
ment is the major index used to confirm the optimal pharmaceutical formulation, and
our results demonstrated that OA:PVPK90:HPBCD at 1:8:20 had the best water solubility.
This indicated that OAnf effectively increased the water solubility of raw OA depending
on the HPBCD ratio. Similarly, previous studies have also revealed that a higher ratio
of cyclodextrin enhances the encapsulation capacity of the formulation and results in a
significant increase in the water solubility and biological activity of curcumin [30], resvera-
trol [12], thymol [31], and difenoconazole [32]. Moreover, the present study also compared
the physicochemical properties of raw OA and its nanofibers to elucidate the mechanisms
of water solubility improvement of OA. OA nanofibers produced in this study were all
filaments with a uniform nano-size. The particle size analysis results also mentioned
that OAnf reconstituted in water exhibited nanosized particles with superior distribution
homogeneity. These results indicated that OAnf had a greater surface area than raw OA. In
addition, the formation of intermolecular hydrogen bonding between active compounds
and carriers could also contribute to the improvement of water solubility. The spectrum
of FTIR and 1H NMR of OAnf demonstrated that raw OA was effectively encapsulated
into HPBCD and formed a stabilized nanofiber structure with PVPK90 through forming
the intermolecular hydrogen bonding between OA and HPBCD/PVPK90. The crystalline
form transformed to an amorphous form of the active compound was also an indicator
of water solubility improvement. The XRD pattern of OAnf showed that the crystallin
structure of raw OA was transformed to an amorphous structure after the formation of
nanofibers. This similar result was also observed in several active compounds loaded in
nanofibers [12,30]. Taken together, the nanofiber formulation effectively improved the
water solubility of raw OA through improving the physicochemical properties, including a
particle size reduction, a surface area increase, hydrogen bonding formation with carriers,
and amorphous transformation.
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Topical formulations containing antioxidants are effective for delivery to the epidermis
and dermis to counteract PM-induced oxidative stress, inflammation, and skin aging [33].
Based on knowledge of skin absorption, the stratum corneum is the rate-limiting factor
that limits skin penetration and absorption of active compounds, resulting in a decrease
in biological activity [34]. The result from the in vitro skin penetration indicated that
OAnf passed through the stratum corneum more easily and quickly than the raw OA and
stayed in the epidermis and dermis in large amounts. This result confirmed that OAnf can
effectively improve the skin absorption of raw OA. Next, in order to determine whether
the OAnf had better antipollution activity than the raw OA, in this study, a PM-induced
keratinocytes damage model was used to compare their biological activities. Our results
demonstrated that OAnf in PBS had better antipollution effects than raw OA, including
reduced ROS overproduction, decreased inflammatory protein expression (COX-2 and
NF-κB) and skin-aging protein (MMP-1), increased anti-skin-aging protein expression
(TIMP-1), and downregulated JNK phosphorylation. Therefore, OAnf could be a topical
formulation as an antioxidant agent for preventing PM-induced keratinocytes damage.

In summary, OAnf improved its physicochemical properties to solve the poor water
solubility of raw OA and also significantly improved the skin absorption of raw OA.
OAnf had better antioxidant, anti-inflammation, and anti-aging activities in PM-induced
keratinocytes damage. Consequently, we suggest that OAnf could be used as a skin
care product or as a pharmaceutical formulation to prevent PM-induced skin damage in
the future.
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